1
|
Fuente-Ballesteros A, Brugnerotto P, Nguyen VD, Costa ACO, Bernal J, Ares AM. Contamination of Honeybee ( Apis mellifera L.) Royal Jelly by Pesticides and Sample Preparation Methods for Its Determination: A Critical Appraisal. Foods 2023; 12:3612. [PMID: 37835264 PMCID: PMC10572548 DOI: 10.3390/foods12193612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Pesticides can easily enter the food chain, harming bee populations and ecosystems. Exposure of beehive products to various contaminants has been identified as one of the factors contributing to the decline in bee populations, and multiple food alerts have been reported. Despite this fact, royal jelly, a valuable bee product with nutritional and functional properties, has received less attention in this context. Pesticide residues of different chemical class can contaminate royal jelly when foraging bees collect pollen or nectar from pesticide-treated flowers, or in some cases, due to its frequent and inappropriate use in the treatment of mites in beehives. To monitor this issue and also make it more reliable, it is crucial to develop effective sample preparation methods for extracting pesticides from royal jelly for subsequent analysis. In this context, this review provides information about sample preparation methods (solid-phase extraction, solvent extraction, and QuEChERS-quick, easy, cheap, effective, rugged and safe) and analytical methods that have been validated or improved to extract and analyze pesticides, respectively, in royal jelly samples of different origins. Finally, future perspectives are discussed. With this background, we aim to provide data that can guide future research related to this topic.
Collapse
Affiliation(s)
- Adrián Fuente-Ballesteros
- Analytical Chemistry Group (TESEA), I.U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; (A.F.-B.); (J.B.)
| | - Patricia Brugnerotto
- Laboratory of Food Chemistry, Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis 88034-001, SC, Brazil; (P.B.); (A.C.O.C.)
| | - Vinh Dinh Nguyen
- Faculty of Chemistry, TNU-University of Sciences, Tan Thinh Ward, Thai Nguyen City 25000, Vietnam;
| | - Ana C. O. Costa
- Laboratory of Food Chemistry, Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis 88034-001, SC, Brazil; (P.B.); (A.C.O.C.)
| | - José Bernal
- Analytical Chemistry Group (TESEA), I.U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; (A.F.-B.); (J.B.)
| | - Ana M. Ares
- Analytical Chemistry Group (TESEA), I.U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; (A.F.-B.); (J.B.)
| |
Collapse
|
2
|
Mackei M, Sebők C, Vöröházi J, Tráj P, Mackei F, Oláh B, Fébel H, Neogrády Z, Mátis G. Detrimental consequences of tebuconazole on redox homeostasis and fatty acid profile of honeybee brain. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103990. [PMID: 37488035 DOI: 10.1016/j.ibmb.2023.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Excessive use of azole fungicides in agriculture poses a potential threat to honeybees and other pollinator insects; however, the detailed effects of these molecules remain largely unclear. Hence, in the present study it was aimed to investigate the acute sublethal effects of tebuconazole on the redox homeostasis and fatty acid composition in the brain of honeybees. Our findings demonstrate that tebuconazole decreased total antioxidant capacity, the ratio of reduced to oxidized glutathione and disturbed the function of key antioxidant defense enzymes along with the induction of lipid peroxidation indicated by increased malondialdehyde levels, while it also altered the fatty acid profile of the brain. The present study highlights the negative impact of tebuconazole on honeybees and contributes to the understanding of potential consequences related to azole exposure on pollinator insects' health, such as the occurrence of colony collapse disorder.
Collapse
Affiliation(s)
- Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary.
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Júlia Vöröházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Fruzsina Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Barnabás Oláh
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Hedvig Fébel
- Nutrition Physiology Research Group, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Gesztenyés Street 1, H-2053 Herceghalom, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| |
Collapse
|
3
|
Wueppenhorst K, Eckert JH, Steinert M, Erler S. What about honey bee jelly? Pesticide residues in larval food jelly of the Western honey bee Apis mellifera. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158095. [PMID: 35987228 DOI: 10.1016/j.scitotenv.2022.158095] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/05/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Karoline Wueppenhorst
- Institute for Bee Protection, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.
| | - Jakob H Eckert
- Institute for Bee Protection, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Michael Steinert
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Silvio Erler
- Institute for Bee Protection, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Messeweg 11-12, 38104 Braunschweig, Germany; Zoological Institute, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany
| |
Collapse
|