1
|
Liu XG, Zhao T, Qiu QQ, Wang CK, Li TL, Liu XL, Wang L, Wang QQ, Zhou L. CRISPR/Cas9-mediated knockout of the abdominal-B homeotic gene in the global pest, fall armyworm (Spodoptera frugiperda). INSECT MOLECULAR BIOLOGY 2024. [PMID: 39314071 DOI: 10.1111/imb.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/18/2024] [Indexed: 09/25/2024]
Abstract
The Homeotic complex (Hox) genes play a crucial role in determining segment identity and appendage morphology in bilaterian animals along the antero-posterior axis. Recent studies have expanded to agricultural pests such as fall armyworm (FAW), scientifically known as Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae), which significantly threatens global agricultural productivity. However, the specific role of the hox gene Sfabd-B in FAW remains unexplored. This research investigates the spatial and temporal expression patterns of Sfabd-B in various tissues at different developmental stages using quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, we explored the potential function of the Sfabd-B gene located in the FAW genome using CRISPR/Cas9 technology. The larval mutant phenotypes can be classified into three subgroups as compared with wild-type individuals, that is, an excess of pedis in the posterior abdomen, deficient pedis due to segmental fusion and deviations in the posterior abdominal segments. Importantly, significant differences in mutant phenotypes between male and female individuals were also evident during the pupal and adult phases. Notably, both the decapentaplegic (dpp) and cuticular protein 12 (cp 12) genes displayed a substantial marked decrease in expression levels in the copulatory organ of male mutants and the ovipositor of female mutants compared with the wild type. These findings highlight the importance of Sfabd-B in genital tract patterning, providing a potential target for improving genetic control.
Collapse
Affiliation(s)
- Xiao-Guang Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Te Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qi-Qi Qiu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Cong-Ke Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Tian-Liang Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiao-Long Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
| | - Li Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qin-Qin Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou, China
- Pesticide Department of the College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
McGruddy RA, Smeele ZE, Manley B, Masucci JD, Haywood J, Lester PJ. RNA interference as a next-generation control method for suppressing Varroa destructor reproduction in honey bee (Apis mellifera) hives. PEST MANAGEMENT SCIENCE 2024; 80:4770-4778. [PMID: 38801186 DOI: 10.1002/ps.8193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/10/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND The Varroa mite (Varroa destructor) is considered to be the greatest threat to apiculture worldwide. RNA interference (RNAi) using double-stranded RNA (dsRNA) as a gene silencing mechanism has emerged as a next-generation strategy for mite control. RESULTS We explored the impact of a dsRNA biopesticide, named vadescana, designed to silence the calmodulin gene in Varroa, on mite fitness in mini-hives housed in a laboratory. Two dosages were tested: 2 g/L dsRNA and 8 g/L dsRNA. Vadescana appeared to have no effect on mite survival, however, mite fertility was substantially reduced. The majority of foundress mites exposed to vadescana failed to produce any offspring. No dose-dependent effect of vadescana was observed, as both the low and high doses inhibited mite reproduction equally well in the mini-hives and neither dose impacted pupal survival of the honey bee. Approximately 95% of bee pupae were alive at uncapping across all treatment groups. CONCLUSION These findings suggest that vadescana has significant potential as an effective alternative to conventional methods for Varroa control, with broader implications for the utilization of RNAi as a next-generation tool in the management of pest species. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Rose A McGruddy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Zoe E Smeele
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Brian Manley
- GreenLight Biosciences, Research Triangle Park, Durham, NC, USA
| | - James D Masucci
- GreenLight Biosciences, Research Triangle Park, Durham, NC, USA
| | - John Haywood
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington, New Zealand
| | - Philip J Lester
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
3
|
Huang PC, Yuan P, Grunseich JM, Taylor J, Tiénébo EO, Pierson EA, Bernal JS, Kenerley CM, Kolomiets MV. Trichoderma virens and Pseudomonas chlororaphis Differentially Regulate Maize Resistance to Anthracnose Leaf Blight and Insect Herbivores When Grown in Sterile versus Non-Sterile Soils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1240. [PMID: 38732455 PMCID: PMC11085588 DOI: 10.3390/plants13091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Soil-borne Trichoderma spp. have been extensively studied for their biocontrol activities against pathogens and growth promotion ability in plants. However, the beneficial effect of Trichoderma on inducing resistance against insect herbivores has been underexplored. Among diverse Trichoderma species, consistent with previous reports, we showed that root colonization by T. virens triggered induced systemic resistance (ISR) to the leaf-infecting hemibiotrophic fungal pathogens Colletotrichum graminicola. Whether T. virens induces ISR to insect pests has not been tested before. In this study, we investigated whether T. virens affects jasmonic acid (JA) biosynthesis and defense against fall armyworm (FAW) and western corn rootworm (WCR). Unexpectedly, the results showed that T. virens colonization of maize seedlings grown in autoclaved soil suppressed wound-induced production of JA, resulting in reduced resistance to FAW. Similarly, the bacterial endophyte Pseudomonas chlororaphis 30-84 was found to suppress systemic resistance to FAW due to reduced JA. Further comparative analyses of the systemic effects of these endophytes when applied in sterile or non-sterile field soil showed that both T. virens and P. chlororaphis 30-84 triggered ISR against C. graminicola in both soil conditions, but only suppressed JA production and resistance to FAW in sterile soil, while no significant impact was observed when applied in non-sterile soil. In contrast to the effect on FAW defense, T. virens colonization of maize roots suppressed WCR larvae survival and weight gain. This is the first report suggesting the potential role of T. virens as a biocontrol agent against WCR.
Collapse
Affiliation(s)
- Pei-Cheng Huang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (P.Y.); (J.T.); (E.A.P.); (C.M.K.)
| | - Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (P.Y.); (J.T.); (E.A.P.); (C.M.K.)
| | - John M. Grunseich
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA; (J.M.G.); (J.S.B.)
| | - James Taylor
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (P.Y.); (J.T.); (E.A.P.); (C.M.K.)
| | - Eric-Olivier Tiénébo
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA;
- Agronomic Sciences and Transformation Processes Joint Research and Innovation Unit, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro P.O. Box 1093, Côte d’Ivoire
| | - Elizabeth A. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (P.Y.); (J.T.); (E.A.P.); (C.M.K.)
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA;
| | - Julio S. Bernal
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA; (J.M.G.); (J.S.B.)
| | - Charles M. Kenerley
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (P.Y.); (J.T.); (E.A.P.); (C.M.K.)
| | - Michael V. Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (P.Y.); (J.T.); (E.A.P.); (C.M.K.)
| |
Collapse
|
4
|
Meinke LJ, Spencer JL. Corn Rootworm: Biology, Ecology, Behavior, and Integrated Management. INSECTS 2024; 15:235. [PMID: 38667365 PMCID: PMC11050319 DOI: 10.3390/insects15040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Species of the beetle genus Diabrotica (Coleoptera: Chrysomelidae) are native to North and South America, with their greatest diversity occurring in neotropical areas [...].
Collapse
Affiliation(s)
- Lance J. Meinke
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA
| | - Joseph L. Spencer
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA;
| |
Collapse
|
5
|
Ortolá B, Urbaneja A, Eiras M, Pérez-Hedo M, Daròs JA. RNAi-mediated silencing of Mediterranean fruit fly (Ceratitis capitata) endogenous genes using orally-supplied double-stranded RNAs produced in Escherichia coli. PEST MANAGEMENT SCIENCE 2024; 80:1087-1098. [PMID: 37851867 DOI: 10.1002/ps.7839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/15/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The Mediterranean fruit fly (medfly), Ceratitis capitata Wiedemann, is a major pest affecting fruit and vegetable production worldwide, whose control is mainly based on insecticides. Double-stranded RNA (dsRNA) able to down-regulate endogenous genes, thus affecting essential vital functions via RNA interference (RNAi) in pests and pathogens, is envisioned as a more specific and environmentally-friendly alternative to traditional insecticides. However, this strategy has not been explored in medfly yet. RESULTS Here, we screened seven candidate target genes by injecting in adult medflies gene-specific dsRNA hairpins transcribed in vitro. Several genes were significantly down-regulated, resulting in increased insect mortality compared to flies treated with a control dsRNA targeting the green fluorescent protein (GFP) complementary DNA (cDNA). Three of the dsRNAs, homologous to the beta subunit of adenosine triphosphate (ATP) synthase (ATPsynbeta), a vacuolar ATPase (V-ATPase), and the ribosomal protein S13 (RPS13), were able to halve the probability of survival in only 48 h after injection. We then produced new versions of these three dsRNAs and that of the GFP control as circular molecules in Escherichia coli using a two-self-splicing-intron-based expression system and tested them as orally-delivered insecticidal compounds against medfly adults. We observed a significant down-regulation of V-ATPase and RPS13 messenger RNAs (mRNAs) (approximately 30% and 90%, respectively) compared with the control medflies after 3 days of treatment. No significant mortality was recorded in medflies, but egg laying and hatching reduction was achieved by silencing V-ATPase and RPS13. CONCLUSION In sum, we report the potential of dsRNA molecules as oral insecticide in medfly. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Beltrán Ortolá
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Valencia, Spain
| | - Marcelo Eiras
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
- Laboratório de Fitovirologia e Fisiopatologia, Instituto Biológico, Sao Paulo, Brazil
| | - Meritxell Pérez-Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
| |
Collapse
|
6
|
Niu J, Chen R, Wang JJ. RNA interference in insects: the link between antiviral defense and pest control. INSECT SCIENCE 2024; 31:2-12. [PMID: 37162315 DOI: 10.1111/1744-7917.13208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/11/2023]
Abstract
RNA interference (RNAi) is a form of gene silencing triggered by double-stranded RNA (dsRNA) that operates in all eukaryotic cells. RNAi has been widely investigated in insects to determine the underlying molecular mechanism, to investigate its role in systemic antiviral defense, and to develop strategies for pest control. When insect cells are infected by viruses, viral dsRNA signatures trigger a local RNAi response to block viral replication and generate virus-derived DNA that confers systemic immunity. RNAi-based insect pest control involves the application of exogenous dsRNA targeting genes essential for insect development or survival, but the efficacy of this approach has limited potency in many pests through a combination of rapid dsRNA degradation, inefficient dsRNA uptake/processing, and ineffective RNAi machinery. This could be addressed by dsRNA screening and evaluation, focusing on dsRNA design and off-target management, as well as dsRNA production and delivery. This review summarizes recent progress to determine the role of RNAi in antiviral defense and as a pest control strategy in insects, addressing gaps between our fundamental understanding of the RNAi mechanism and the exploitation of RNAi-based pest control strategies.
Collapse
Affiliation(s)
- Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Ruoyu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
| |
Collapse
|
7
|
Xue Q, Swevers L, Taning CNT. Plant and insect virus-like particles: emerging nanoparticles for agricultural pest management. PEST MANAGEMENT SCIENCE 2023; 79:2975-2991. [PMID: 37103223 DOI: 10.1002/ps.7514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 06/05/2023]
Abstract
Virus-like particles (VLPs) represent a biodegradable, biocompatible nanomaterial made from viral coat proteins that can improve the delivery of antigens, drugs, nucleic acids, and other substances, with most applications in human and veterinary medicine. Regarding agricultural viruses, many insect and plant virus coat proteins have been shown to assemble into VLPs accurately. In addition, some plant virus-based VLPs have been used in medical studies. However, to our knowledge, the potential application of plant/insect virus-based VLPs in agriculture remains largely underexplored. This review focuses on why and how to engineer coat proteins of plant/insect viruses as functionalized VLPs, and how to exploit VLPs in agricultural pest control. The first part of the review describes four different engineering strategies for loading cargo at the inner or the outer surface of VLPs depending on the type of cargo and purpose. Second, the literature on plant and insect viruses the coat proteins of which have been confirmed to self-assemble into VLPs is reviewed. These VLPs are good candidates for developing VLP-based agricultural pest control strategies. Lastly, the concepts of plant/insect virus-based VLPs for delivering insecticidal and antiviral components (e.g., double-stranded RNA, peptides, and chemicals) are discussed, which provides future prospects of VLP application in agricultural pest control. In addition, some concerns are raised about VLP production on a large scale and the short-term resistance of hosts to VLP uptake. Overall, this review is expected to stimulate interest and research exploring plant/insect virus-based VLP applications in agricultural pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi Xue
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
McRae AG, Taneja J, Yee K, Shi X, Haridas S, LaButti K, Singan V, Grigoriev IV, Wildermuth MC. Spray-induced gene silencing to identify powdery mildew gene targets and processes for powdery mildew control. MOLECULAR PLANT PATHOLOGY 2023; 24:1168-1183. [PMID: 37340595 PMCID: PMC10423327 DOI: 10.1111/mpp.13361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/22/2023]
Abstract
Spray-induced gene silencing (SIGS) is an emerging tool for crop pest protection. It utilizes exogenously applied double-stranded RNA to specifically reduce pest target gene expression using endogenous RNA interference machinery. In this study, SIGS methods were developed and optimized for powdery mildew fungi, which are widespread obligate biotrophic fungi that infect agricultural crops, using the known azole-fungicide target cytochrome P450 51 (CYP51) in the Golovinomyces orontii-Arabidopsis thaliana pathosystem. Additional screening resulted in the identification of conserved gene targets and processes important to powdery mildew proliferation: apoptosis-antagonizing transcription factor in essential cellular metabolism and stress response; lipid catabolism genes lipase a, lipase 1, and acetyl-CoA oxidase in energy production; and genes involved in manipulation of the plant host via abscisic acid metabolism (9-cis-epoxycarotenoid dioxygenase, xanthoxin dehydrogenase, and a putative abscisic acid G-protein coupled receptor) and secretion of the effector protein, effector candidate 2. Powdery mildew is the dominant disease impacting grapes and extensive powdery mildew resistance to applied fungicides has been reported. We therefore developed SIGS for the Erysiphe necator-Vitis vinifera system and tested six successful targets identified using the G. orontii-A. thaliana system. For all targets tested, a similar reduction in powdery mildew disease was observed between systems. This indicates screening of broadly conserved targets in the G. orontii-A. thaliana pathosystem identifies targets and processes for the successful control of other powdery mildew fungi. The efficacy of SIGS on powdery mildew fungi makes SIGS an exciting prospect for commercial powdery mildew control.
Collapse
Affiliation(s)
- Amanda G. McRae
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Jyoti Taneja
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Kathleen Yee
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Xinyi Shi
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Sajeet Haridas
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Kurt LaButti
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Vasanth Singan
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Igor V. Grigoriev
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- US Department of Energy Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Mary C. Wildermuth
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
9
|
Zhang R, Lun X, Zhang Y, Zhao Y, Xu X, Zhang Z. Characterization of Ionotropic Receptor Gene EonuIR25a in the Tea Green Leafhopper, Empoasca onukii Matsuda. PLANTS (BASEL, SWITZERLAND) 2023; 12:2034. [PMID: 37653951 PMCID: PMC10223087 DOI: 10.3390/plants12102034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 09/02/2023]
Abstract
Ionotropic receptors (IRs) play a central role in detecting chemosensory information from the environment and guiding insect behaviors and are potential target genes for pest control. Empoasca onukii Matsuda is a major pest of the tea plant Camellia sinensis (L.) O. Ktze, and seriously influences tea yields and quality. In this study, the ionotropic receptor gene EonuIR25a in E. onukii was cloned, and the expression pattern of EonuIR25a was detected in various tissues. Behavioral responses of E. onukii to volatile compounds emitted by tea plants were determined using olfactometer bioassay and field trials. To further explore the function of EonuIR25a in olfactory recognition of compounds, RNA interference (RNAi) of EonuIR25a was carried out by ingestion of in vitro synthesized dsRNAs. The coding sequence (CDS) length of EonuIR25a was 1266 bp and it encoded a 48.87 kD protein. EonuIR25a was enriched in the antennae of E. onukii. E. onukii was more significantly attracted by 1-phenylethanol at a concentration of 100 µL/mL. Feeding with dsEonuIR25a significantly downregulated the expression level of EonuIR25a, after 3 h of treatment, which disturbed the behavioral responses of E. onukii to 1-phenylethanol at a concentration of 100 µL/mL. The response rate of E. onukii to 1-phenylethanol was significantly decreased after dsEonuIR25a treatment for 12 h. In summary, the ionotropic receptor gene EonuIR25a was highly expressed in the antennae of E. onukii and was involved in olfactory recognition of the tea plant volatile 1-phenylethanol. The present study may help us to use the ionotropic receptor gene as a target for the behavioral manipulation of E. onukii in the future.
Collapse
Affiliation(s)
- Ruirui Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| | - Xiaoyue Lun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| | - Yu Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| | - Yunhe Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| | - Xiuxiu Xu
- Tea Research Institute, Shandong Academy of Agricultural Science, Ji’nan 250100, China
| | - Zhengqun Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| |
Collapse
|
10
|
Zhou Q, Han L, Li Y, Li J, Yang X. Neutral Dietary Effects of Two MicroRNAs, Csu-Novel-260 and Csu-Mir-14, on the Non-Target Arthropod Folsomia candida. PLANTS (BASEL, SWITZERLAND) 2023; 12:1885. [PMID: 37176942 PMCID: PMC10181208 DOI: 10.3390/plants12091885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
RNA interference (RNAi) that is triggered by small or short RNAs has shown enormous potential in the development of pest control strategies. Two microRNAs (miRNAs), Csu-novel-260 and Csu-miR-14, were used in insect-resistant genetically engineered (IRGE) rice lines to confer resistance to Chilo suppressalis. However, a risk assessment of RNAi-based products is essential to determine the safety of a biopesticide or IRGE crop for commercialization. The non-target organism Folsomia candida, which plays an important ecological role as a soil decomposer in agricultural ecosystems, was used to assess the risk of miRNAs Csu-novel-260 and Csu-miR-14. In this study, a dietary miRNA toxicity assay system was established in F. candida. The expression levels of target genes, survival rate, fecundity and body size were investigated to evaluate the effects of the miRNAs on F. candida under the worst-case scenario. The results showed that the dietary miRNA toxicity assay system could be used for risk assessment of miRNA in F. candida. The target genes of miRNAs were influenced by miRNA at some time points. However, no significant differences were observed in the life-table parameters in F. candida fed with a diet containing miRNAs. The dietary effects of two miRNAs on F. candida are neutral.
Collapse
Affiliation(s)
- Qinli Zhou
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lanzhi Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences and College of Agriculture, Henan University, Kaifeng 475004, China
| | - Jing Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Xiaowei Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
11
|
Willow J, Silva AI, Taning CNT, Smagghe G, Veromann E. Towards dsRNA-integrated protection of medical Cannabis crops: considering human safety, recent- and developing RNAi methods, and research inroads. PEST MANAGEMENT SCIENCE 2023; 79:1267-1272. [PMID: 36514999 DOI: 10.1002/ps.7323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Owing to the expanding industry of medical Cannabis, we discuss recent milestones in RNA interference (RNAi)-based crop protection research and development that are transferable to medical Cannabis cultivation. Recent and prospective increases in pest pressure in both indoor and outdoor Cannabis production systems, and the need for effective nonchemical pest control technologies (particularly crucial in the context of cultivating plants for medical purposes), are discussed. We support the idea that developing RNAi tactics towards protection of medical Cannabis could play a major role in maximizing success in this continuously expanding industry. However, there remain critical knowledge gaps, especially with regard to RNA pesticide biosafety from a human toxicological viewpoint, as a result of the medical context of Cannabis product use. Furthermore, efforts are needed to optimize transformation and micropropagation of Cannabis plants, examine cutting edge RNAi techniques for various Cannabis-pest scenarios, and investigate the combined application of RNAi- and biological control tactics in medical Cannabis cultivation. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonathan Willow
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Ana I Silva
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Eve Veromann
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
12
|
Zhang X, Fan Z, Zhang R, Kong X, Liu F, Fang J, Zhang S, Zhang Z. Bacteria-mediated RNAi for managing fall webworm, Hyphantria cunea: screening target genes and analyzing lethal effect. PEST MANAGEMENT SCIENCE 2023; 79:1566-1577. [PMID: 36527705 DOI: 10.1002/ps.7326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/23/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The fall webworm, Hyphantria cunea, an invasive forest pest found worldwide, causes serious ecological and economic damage. Currently, the application of chemical pesticides is the most widely used strategy for H. cunea management. However, long-term pesticide use leads to pest resistance, phytotoxicity, human poisoning, and environmental deterioration. RNA interference (RNAi) technology may provide an environmentally friendly and cost-effective option for H. cunea control. However, effective RNAi targets and application methods for H. cunea are lacking. RESULTS We screened and obtained two highly effective RNAi targets, vATPase A (V-type proton ATPase catalytic subunit A) and Rop (Ras opposite), from 23 candidate genes, using initial and repeat screening tests with the double-stranded RNA (dsRNA) injection method. RNAi against these two genes was effective in suppressing each target messenger RNA level and interfering with larval growth, leading to significant larval mortality and pupal abnormality. For massive production of dsRNA and practical application of RNAi technology in H. cunea, transformed bacteria expressing dsRNAs of these two genes were prepared using the L4440 expression vector and HT115 strain of Escherichia coli. Oral administration of bacterially expressed dsRNA targeting vATPase A and Rop genes showed high mortality and the same malformed phenotype as the injection treatment. To further investigate the lethal effects of targeting these two genes on larval development, transcriptome sequencing (RNA-seq) was performed on RNAi samples. The results demonstrated disorders in multiple metabolic pathways, and the expression levels of most genes related to insect cuticle metabolism were significantly different, which may directly threaten insect survival. In addition, some new findings were obtained via RNA-seq analysis; for example, the progesterone-mediated oocyte maturation and oocyte meiosis processes were significantly different after silencing vATPase A, and the insect olfactory protein-related genes were significantly downregulated after dsHcRop treatment. CONCLUSION vATPase A and Rop are two highly effective RNAi-mediated lethal genes in H. cunea that regulate insect growth via multiple metabolic pathways. Oral delivery of bacterially expressed dsRNA specific to vATPase A and Rop can potentially be used for RNAi-based H. cunea management. This is the first study to apply bacteria-mediated RNAi for the control of this invasive pest, which is a major step forward in the application of the RNAi technology in H. cunea. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xun Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zhizhi Fan
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Rong Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Xiangbo Kong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Fu Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Jiaxing Fang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Sufang Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
13
|
IPD072Aa from Pseudomonas chlororaphis Targets Midgut Epithelial Cells in Killing Western Corn Rootworm ( Diabrotica virgifera virgifera). Appl Environ Microbiol 2023; 89:e0162222. [PMID: 36847510 PMCID: PMC10057879 DOI: 10.1128/aem.01622-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
IPD072Aa from Pseudomonas chlororaphis is a new insecticidal protein that has been shown to have high activity against western corn rootworm (WCR). IPD072 has no sequence signatures or predicted structural motifs with any known protein revealing little insight into its mode of action using bioinformatic tools. As many bacterially derived insecticidal proteins are known to act through mechanisms that lead to death of midgut cells, we evaluated whether IPD072Aa also acts by targeting the cells of WCR midgut. IPD072Aa exhibits specific binding to brush border membrane vesicles (BBMVs) prepared from WCR guts. The binding was found to occur at binding sites that are different than those recognized by Cry3A or Cry34Ab1/Cry35Ab1, proteins expressed by current maize traits that target WCR. Using fluorescence confocal microscopy, immuno-detection of IPD072Aa in longitudinal sections from whole WCR larvae that were fed IPD072Aa revealed the association of the protein with the cells that line the gut. High-resolution scanning electron microscopy of similar whole larval sections revealed the disruption of the gut lining resulting from cell death caused by IPD072Aa exposure. These data show that the insecticidal activity of IPD072Aa results from specific targeting and killing of rootworm midgut cells. IMPORTANCE Transgenic traits targeting WCR based on insecticidal proteins from Bacillus thuringiensis have proven effective in protecting maize yield in North America. High adoption has led to WCR populations that are resistant to the trait proteins. Four proteins have been developed into commercial traits, but they represent only two modes of action due to cross-resistance among three. New proteins suited for trait development are needed. IPD072Aa, identified from the bacterium Pseudomonas chlororaphis, was shown to be effective in protecting transgenic maize against WCR. To be useful, IPD072Aa must work through binding to different receptors than those utilized by current traits to reduce risk of cross-resistance and understanding its mechanism of toxicity could aid in countering resistance development. Our results show that IPD072Aa binds to receptors in WCR gut that are different than those utilized by current commercial traits and its targeted killing of midgut cells results in larval death.
Collapse
|
14
|
Coates BS, Walden KKO, Lata D, Vellichirammal NN, Mitchell RF, Andersson MN, McKay R, Lorenzen MD, Grubbs N, Wang YH, Han J, Xuan JL, Willadsen P, Wang H, French BW, Bansal R, Sedky S, Souza D, Bunn D, Meinke LJ, Miller NJ, Siegfried BD, Sappington TW, Robertson HM. A draft Diabrotica virgifera virgifera genome: insights into control and host plant adaption by a major maize pest insect. BMC Genomics 2023; 24:19. [PMID: 36639634 PMCID: PMC9840275 DOI: 10.1186/s12864-022-08990-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Adaptations by arthropod pests to host plant defenses of crops determine their impacts on agricultural production. The larval host range of western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is restricted to maize and a few grasses. Resistance of D. v. virgifera to crop rotation practices and multiple insecticides contributes to its status as the most damaging pest of cultivated maize in North America and Europe. The extent to which adaptations by this pest contributes to host plant specialization remains unknown. RESULTS A 2.42 Gb draft D. v. virgifera genome, Dvir_v2.0, was assembled from short shotgun reads and scaffolded using long-insert mate-pair, transcriptome and linked read data. K-mer analysis predicted a repeat content of ≥ 61.5%. Ortholog assignments for Dvir_2.0 RefSeq models predict a greater number of species-specific gene duplications, including expansions in ATP binding cassette transporter and chemosensory gene families, than in other Coleoptera. A majority of annotated D. v. virgifera cytochrome P450s belong to CYP4, 6, and 9 clades. A total of 5,404 transcripts were differentially-expressed between D. v. virgifera larvae fed maize roots compared to alternative host (Miscanthus), a marginal host (Panicum virgatum), a poor host (Sorghum bicolor) and starvation treatments; Among differentially-expressed transcripts, 1,908 were shared across treatments and the least number were between Miscanthus compared to maize. Differentially-expressed transcripts were enriched for putative spliceosome, proteosome, and intracellular transport functions. General stress pathway functions were unique and enriched among up-regulated transcripts in marginal host, poor host, and starvation responses compared to responses on primary (maize) and alternate hosts. CONCLUSIONS Manual annotation of D. v. virgifera Dvir_2.0 RefSeq models predicted expansion of paralogs with gene families putatively involved in insecticide resistance and chemosensory perception. Our study also suggests that adaptations of D. v. virgifera larvae to feeding on an alternate host plant invoke fewer transcriptional changes compared to marginal or poor hosts. The shared up-regulation of stress response pathways between marginal host and poor host, and starvation treatments may reflect nutrient deprivation. This study provides insight into transcriptomic responses of larval feeding on different host plants and resources for genomic research on this economically significant pest of maize.
Collapse
Affiliation(s)
- Brad S. Coates
- grid.508983.fCorn Insects & Crop Genetics Research Unit, USDA-ARS, 2310 Pammel Dr, 532 Science II, Iowa State University, Ames, IA 50011 USA
| | - Kimberly K. O. Walden
- grid.35403.310000 0004 1936 9991Roy J. Carver Biotechnology Center, University of Illinois at Champaign-Urbana, Urbana, IL USA
| | - Dimpal Lata
- grid.62813.3e0000 0004 1936 7806Department of Biology, Illinois Institute of Technology, Chicago, IL USA
| | | | - Robert F. Mitchell
- grid.267474.40000 0001 0674 4543University of Wisconsin Oshkosh, Oshkosh, WI USA
| | - Martin N. Andersson
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Lund, Sweden
| | - Rachel McKay
- grid.267474.40000 0001 0674 4543University of Wisconsin Oshkosh, Oshkosh, WI USA
| | - Marcé D. Lorenzen
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Nathaniel Grubbs
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Yu-Hui Wang
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Jinlong Han
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Jing Li Xuan
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Peter Willadsen
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Huichun Wang
- grid.24434.350000 0004 1937 0060Department of Entomology, University of Nebraska, Lincoln, NE USA
| | - B. Wade French
- grid.508981.dIntegrated Crop Systems Research Unit, USDA-ARS, Brookings, SD USA
| | - Raman Bansal
- grid.512850.bUSDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA USA
| | - Sammy Sedky
- grid.512850.bUSDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA USA
| | - Dariane Souza
- grid.15276.370000 0004 1936 8091Department of Entomology, University of Florida, Gainesville, FL USA
| | - Dakota Bunn
- grid.62813.3e0000 0004 1936 7806Department of Biology, Illinois Institute of Technology, Chicago, IL USA
| | - Lance J. Meinke
- grid.24434.350000 0004 1937 0060Department of Entomology, University of Nebraska, Lincoln, NE USA
| | - Nicholas J. Miller
- grid.62813.3e0000 0004 1936 7806Department of Biology, Illinois Institute of Technology, Chicago, IL USA
| | - Blair D. Siegfried
- grid.15276.370000 0004 1936 8091Department of Entomology, University of Florida, Gainesville, FL USA
| | - Thomas W. Sappington
- grid.508983.fCorn Insects & Crop Genetics Research Unit, USDA-ARS, 2310 Pammel Dr, 532 Science II, Iowa State University, Ames, IA 50011 USA
| | - Hugh M. Robertson
- grid.35403.310000 0004 1936 9991Department of Entomology, University of Illinois at Champaign-Urbana, Urbana, IL USA
| |
Collapse
|
15
|
Barathi S, Sabapathi N, Aruljothi KN, Lee JH, Shim JJ, Lee J. Regulatory Small RNAs for a Sustained Eco-Agriculture. Int J Mol Sci 2023; 24:ijms24021041. [PMID: 36674558 PMCID: PMC9863784 DOI: 10.3390/ijms24021041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Small RNA (sRNA) has become an alternate biotechnology tool for sustaining eco-agriculture by enhancing plant solidity and managing environmental hazards over traditional methods. Plants synthesize a variety of sRNA to silence the crucial genes of pests or plant immune inhibitory proteins and counter adverse environmental conditions. These sRNAs can be cultivated using biotechnological methods to apply directly or through bacterial systems to counter the biotic stress. On the other hand, through synthesizing sRNAs, microbial networks indicate toxic elements in the environment, which can be used effectively in environmental monitoring and management. Moreover, microbes possess sRNAs that enhance the degradation of xenobiotics and maintain bio-geo-cycles locally. Selective bacterial and plant sRNA systems can work symbiotically to establish a sustained eco-agriculture system. An sRNA-mediated approach is becoming a greener tool to replace xenobiotic pesticides, fertilizers, and other chemical remediation elements. The review focused on the applications of sRNA in both sustained agriculture and bioremediation. It also discusses limitations and recommends various approaches toward future improvements for a sustained eco-agriculture system.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Nadana Sabapathi
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Kandasamy Nagarajan Aruljothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, India
- Correspondence: (K.N.A.); (J.L.); Tel.: +91-995-235-8239 (K.N.A.); +82-53-810-2533 (J.L.); Fax: +82-53-810-4631 (J.L.)
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Correspondence: (K.N.A.); (J.L.); Tel.: +91-995-235-8239 (K.N.A.); +82-53-810-2533 (J.L.); Fax: +82-53-810-4631 (J.L.)
| |
Collapse
|
16
|
Lucena-Leandro VS, Abreu EFA, Vidal LA, Torres CR, Junqueira CICVF, Dantas J, Albuquerque ÉVS. Current Scenario of Exogenously Induced RNAi for Lepidopteran Agricultural Pest Control: From dsRNA Design to Topical Application. Int J Mol Sci 2022; 23:ijms232415836. [PMID: 36555476 PMCID: PMC9785151 DOI: 10.3390/ijms232415836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Invasive insects cost the global economy around USD 70 billion per year. Moreover, increasing agricultural insect pests raise concerns about global food security constraining and infestation rising after climate changes. Current agricultural pest management largely relies on plant breeding-with or without transgenes-and chemical pesticides. Both approaches face serious technological obsolescence in the field due to plant resistance breakdown or development of insecticide resistance. The need for new modes of action (MoA) for managing crop health is growing each year, driven by market demands to reduce economic losses and by consumer demand for phytosanitary measures. The disabling of pest genes through sequence-specific expression silencing is a promising tool in the development of environmentally-friendly and safe biopesticides. The specificity conferred by long dsRNA-base solutions helps minimize effects on off-target genes in the insect pest genome and the target gene in non-target organisms (NTOs). In this review, we summarize the status of gene silencing by RNA interference (RNAi) for agricultural control. More specifically, we focus on the engineering, development and application of gene silencing to control Lepidoptera through non-transforming dsRNA technologies. Despite some delivery and stability drawbacks of topical applications, we reviewed works showing convincing proof-of-concept results that point to innovative solutions. Considerations about the regulation of the ongoing research on dsRNA-based pesticides to produce commercialized products for exogenous application are discussed. Academic and industry initiatives have revealed a worthy effort to control Lepidoptera pests with this new mode of action, which provides more sustainable and reliable technologies for field management. New data on the genomics of this taxon may contribute to a future customized target gene portfolio. As a case study, we illustrate how dsRNA and associated methodologies could be applied to control an important lepidopteran coffee pest.
Collapse
Affiliation(s)
| | | | - Leonardo A. Vidal
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Cellular Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Caroline R. Torres
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Camila I. C. V. F. Junqueira
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Juliana Dantas
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
| | | |
Collapse
|
17
|
Egan LM, Stiller WN. The Past, Present, and Future of Host Plant Resistance in Cotton: An Australian Perspective. FRONTIERS IN PLANT SCIENCE 2022; 13:895877. [PMID: 35873986 PMCID: PMC9297922 DOI: 10.3389/fpls.2022.895877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/06/2022] [Indexed: 05/24/2023]
Abstract
Cotton is a key global fiber crop. However, yield potential is limited by the presence of endemic and introduced pests and diseases. The introduction of host plant resistance (HPR), defined as the purposeful use of resistant crop cultivars to reduce the impact of pests and diseases, has been a key breeding target for the Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program. The program has seen success in releasing cultivars resistant to Bacterial blight, Verticillium wilt, Fusarium wilt, and Cotton bunchy top. However, emerging biotic threats such as Black root rot and secondary pests, are becoming more frequent in Australian cotton production systems. The uptake of tools and breeding methods, such as genomic selection, high throughput phenomics, gene editing, and landscape genomics, paired with the continued utilization of sources of resistance from Gossypium germplasm, will be critical for the future of cotton breeding. This review celebrates the success of HPR breeding activities in the CSIRO cotton breeding program and maps a pathway for the future in developing resistant cultivars.
Collapse
|
18
|
Risk Assessment and Area-Wide Crop Rotation to Keep Western Corn Rootworm Below Damage Thresholds and Avoid Insecticide Use in European Maize Production. INSECTS 2022; 13:insects13050415. [PMID: 35621751 PMCID: PMC9145323 DOI: 10.3390/insects13050415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 12/07/2022]
Abstract
Simple Summary Diabrotica virgifera virgifera LeConte, the Western corn rootworm (WCR), is a maize-specific pest that has been a serious threat in Europe since the mid-1990s. To properly implement integrated pest management, it is necessary to identify the key factors associated with risks of crop damage from WCR and to evaluate the effectiveness of area-wide strategies based on agronomic measures, such as crop rotation, in reducing those risks. In Italy and Croatia, a survey of agronomic and cultural factors in fields damaged by WCR allowed us to determine that the beetle population size accounts for most of the risk of maize damage from WCR. Crop rotation (without insecticide use), both structural and flexible, was the most effective strategy for keeping WCR populations below the damage threshold. This indicates that WCR management can be carried out in accordance with European Union regulations to limit or avoid insecticide treatments and reduce environmental impacts. Abstract The Western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, has been a serious quarantine pest to maize in Europe since the mid-1990s. The integrated pest management of WCR requires an accurate knowledge of the factors that contribute most to risks of crop damage, as well as knowledge of effective area-wide strategies based on agronomic measures, such as crop rotation. In Italy and Croatia, agronomic and cultural factors in fields damaged by WCR were evaluated through a long-term survey. Based on the survey results, high-WCR densities contribute most to risks of damage to maize. Extensive field research in north-eastern Italy compared large areas of continuous maize production with areas under different crop rotation systems (i.e., a structural one with one-time maize planting in a three-year rotation and a flexible one with continuous maize planting interrupted when beetle populations exceed the threshold). The objective was to evaluate the effectiveness of different rotation regimes as possible best practices for WCR management. Captures of beetles in yellow sticky traps, root damage, larval densities, and damage to maize plants (e.g., lodging) were assessed at the center of each area. The results demonstrated the both structural and flexible crop rotation systems were effective strategies for maintaining WCR below damage threshold densities without the need for insecticides.
Collapse
|
19
|
Willow J, Cook SM, Veromann E, Smagghe G. Uniting RNAi Technology and Conservation Biocontrol to Promote Global Food Security and Agrobiodiversity. Front Bioeng Biotechnol 2022; 10:871651. [PMID: 35547161 PMCID: PMC9081497 DOI: 10.3389/fbioe.2022.871651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/05/2022] [Indexed: 12/01/2022] Open
Abstract
Habitat loss and fragmentation, and the effects of pesticides, contribute to biodiversity losses and unsustainable food production. Given the United Nation's (UN's) declaration of this decade as the UN Decade on Ecosystem Restoration, we advocate combining conservation biocontrol-enhancing practices with the use of RNA interference (RNAi) pesticide technology, the latter demonstrating remarkable target-specificity via double-stranded (ds)RNA's sequence-specific mode of action. This specificity makes dsRNA a biosafe candidate for integration into the global conservation initiative. Our interdisciplinary perspective conforms to the UN's declaration, and is facilitated by the Earth BioGenome Project, an effort valuable to RNAi development given its utility in providing whole-genome sequences, allowing identification of genetic targets in crop pests, and potentially relevant sequences in non-target organisms. Interdisciplinary studies bringing together biocontrol-enhancing techniques and RNAi are needed, and should be examined for various crop‒pest systems to address this global problem.
Collapse
Affiliation(s)
- Jonathan Willow
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Samantha M. Cook
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, United Kingdom
| | - Eve Veromann
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|