1
|
Knols BG. A shot in the foot: Could chemical control of malaria vectors threaten food security? MALARIAWORLD JOURNAL 2024; 15:13. [PMID: 39465121 PMCID: PMC11502436 DOI: 10.5281/zenodo.13969756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Overwhelmingly, contemporary malaria vector control equals the use of chemical pesticides (through insecticide-treated bednets or indoor residual spraying). Gradually, but surely, we have become enslaved to thinking that controlling malaria mosquitoes equals the use of chemical insecticides, and much of the vector control field today is dominated by scientists, lobbyists, chemical companies, funding agencies and (global) institutions that endlessly repeat this dogmatic belief. Although chemical control has undoubtedly saved millions of lives, which, morally speaking would immediately justify its continued use, it has many sides that may ultimately cost more lives than it saves. Not only the cyclical problems with insecticide resistance, but also our increased understanding of the human and environmental health impacts of these chemicals, continue to raise red flags. Furthermore, the millions of kilogrammes of annual bednet waste (polyethylene, polypropylene) and bednet packaging material cannot be ignored. In recent years, an abundance of evidence that the use of chemical pesticides is a prime cause for the global decline in insect biodiversity and abundance has surfaced. The rate at which this decline is happening is frightening and may sooner rather than later threaten food production on a global scale. Should we opt for saving lives in the short term by using chemicals and face devastating and irrevocable long-term consequences or become wise(r) in the way we control malaria mosquitoes?
Collapse
|
2
|
Singh S, Verma AK, Chowdhary N, Sharma S, Awasthi A. Dengue havoc: overview and eco-friendly strategies to forestall the current epidemic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124806-124828. [PMID: 37989950 DOI: 10.1007/s11356-023-30745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Dengue fever is a mosquito-borne viral illness that affects over 100 nations around the world, including Africa, America, the Eastern Mediterranean, Southeast Asia, and the Western Pacific. Those who get infected by virus for the second time are at greater risk of having persistent dengue symptoms. Dengue fever has yet to be treated with a long-lasting vaccination or medication. Because of their ease of use, mosquito repellents have become popular as a dengue prevention technique. However, this has resulted in environmental degradation and harm, as well as bioaccumulation and biomagnification of hazardous residues in the ecosystem. Synthetic pesticides have caused a plethora of serious problems that were not foreseen when they were originally introduced. The harm caused by the allopathic medications/synthetic pesticides/chemical mosquito repellents has paved the door to employment of eco-friendly/green approaches in order to reduce dengue cases while protecting the integrity of the nearby environment too. Since the cases of dengue have become rampant these days, hence, starting the medication obtained from green approaches as soon as the disease is detected is advisable. In the present paper, we recommend environmentally friendly dengue management strategies, which, when combined with a reasonable number of vector control approaches, may help to avoid the dengue havoc as well as help in maintaining the integrity of the ecosystem.
Collapse
Affiliation(s)
- Satpal Singh
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India, 174103
| | - Arunima Kumar Verma
- Department of Zoology, Autonomous Government P.G. College, Satna, Madhya Pradesh, India, 485001
| | - Nupoor Chowdhary
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India, 174103
| | - Shikha Sharma
- Department of Botany, Post Graduate Government College for Girls, Sector-11, Chandigarh, India, 160011
| | - Abhishek Awasthi
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India, 174103.
| |
Collapse
|
3
|
Knols BGJ, Posada A, Sison MJ, Knols JMH, Patty NFA, Jahir A. Rapid Elimination of Aedes aegypti and Culex quinquefasciatus Mosquitoes from Puerco Island, Palawan, Philippines with Odor-Baited Traps. INSECTS 2023; 14:730. [PMID: 37754698 PMCID: PMC10531793 DOI: 10.3390/insects14090730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Globalization and climate change are key drivers for arboviral and parasitic infectious diseases to expand geographically, posing a growing threat to human health and biodiversity. New non-pesticidal approaches are urgently needed because of increasing insecticide resistance and the negative human and environmental health impacts of synthetic pyrethroids used for fogging. Here, we report the complete and rapid removal of two mosquito species (Aedes aegypti L. and Culex quinquefasciatus Say), both arboviral disease vectors, with odor-baited mosquito traps (at a density of 10 traps/hectare) from a 7.2-hectare island in the Philippines in just 5 months. This rapid elimination of mosquitoes from an island is remarkable and provides further proof that high-density mosquito trapping can play a significant role in mosquito- and vector-borne disease elimination in small islands around the world.
Collapse
Affiliation(s)
- Bart G. J. Knols
- K&S Consulting, Kalkestraat 20, 6669 CP Dodewaard, The Netherlands
| | - Arnel Posada
- Ecoresort Development Corporation, Purok Bagong Silang, Poblacion 1, Roxas 5308, Palawan, Philippines
| | - Mark J. Sison
- Ecoresort Development Corporation, Purok Bagong Silang, Poblacion 1, Roxas 5308, Palawan, Philippines
| | | | - Nila F. A. Patty
- K&S Consulting, Kalkestraat 20, 6669 CP Dodewaard, The Netherlands
| | - Akib Jahir
- Soneva Fushi, 4th Floor Jazeera Building, Boduthakurufaanu Magu, Male 20077, Maldives
| |
Collapse
|
4
|
Maasayi MS, Machange JJ, Kamande DS, Kibondo UA, Odufuwa OG, Moore SJ, Tambwe MM. The MTego trap: a potential tool for monitoring malaria and arbovirus vectors. Parasit Vectors 2023; 16:212. [PMID: 37370169 DOI: 10.1186/s13071-023-05835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Odour-baited traps are useful for vector surveillance and control. However, most existing traps have shown inconsistent recapture rates across different mosquito species, necessitating the need for more effective and efficient traps. The MTego trap with integrated thermal stimuli has been developed as an alternative trap. This study was undertaken to determine and compare the efficacy of the MTego trap to that of the Biogents (BG) modular BG-Pro (BGP) trap for sampling different mosquito species in a semi-field system. METHODS Fully balanced Latin square design experiments (no-choice and dual choice) were conducted in semi-field chambers using laboratory-reared female Anopheles gambiae sensu stricto, Anopheles funestus, Anopheles arabiensis, Culex quinquefasciatus and Aedes aegypti. There were 16 replicates, and 50 mosquitoes of each species were released in each chamber per replicate. The evaluated traps were as follows: the MTego trap baited with PM6 (MT-PM6), the MTego trap baited with BG-Lure (BGL) (MT-BGL), and the BGP trap baited with BG-Lure (BGP-BGL). RESULTS In the no-choice test, the MT-BGL and BGP-BGL traps captured a similar proportion of An. gambiae (31% vs 29%, P-value = 0.519) and An. funestus (32% vs 33%, P = 0.520). The MT-PM6 and BGP-BGL traps showed no significant difference in capturing Ae. aegypti (33% vs 31%, P = 0.324). However, the BGP-BGL caught more An. arabiensis and Cx. quinquefasciatus mosquitoes than the other traps (P < 0.0001). In the dual-choice test of MT-PM6 vs BGP-BGL, similar proportions of An. funestus (25% vs 27%, P = 0.473) and Ae. aegypti (29% vs 25%, P = 0.264) were captured in the traps, while the BGP-BGL captured more An. gambiae, An. arabiensis and Cx. quinquefasciatus mosquitoes than the MT-PM6 (P < 0.0001). CONCLUSIONS This study demonstrated that the MTego trap has potential as a tool that can be used interchangeably with the BGP trap for sampling anthropophilic mosquitoes including African malaria vectors An. gambiae and An. funestus and the principal arbovirus vector Ae. aegypti.
Collapse
Affiliation(s)
- Masudi Suleiman Maasayi
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania.
| | - Jane Johnson Machange
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
| | - Dismas S Kamande
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
| | - Ummi Abdul Kibondo
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Olukayode G Odufuwa
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Sarah Jane Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Mgeni Mohamed Tambwe
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| |
Collapse
|
5
|
Wang J, Zhu Z. Novel paradigm of mosquito-borne disease control based on self-powered strategy. Front Public Health 2023; 11:1115000. [PMID: 36741958 PMCID: PMC9895093 DOI: 10.3389/fpubh.2023.1115000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Affiliation(s)
- Junhao Wang
- School of Electronic Information Engineering, Southwest University, Chongqing, China,State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Zhiyuan Zhu
- School of Electronic Information Engineering, Southwest University, Chongqing, China,*Correspondence: Zhiyuan Zhu ✉
| |
Collapse
|
6
|
Ogunlade ST, Meehan MT, Adekunle AI, McBryde ES. A Systematic Review of Mathematical Models of Dengue Transmission and Vector Control: 2010-2020. Viruses 2023; 15:254. [PMID: 36680294 PMCID: PMC9862433 DOI: 10.3390/v15010254] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Vector control methods are considered effective in averting dengue transmission. However, several factors may modify their impact. Of these controls, chemical methods, in the long run, may increase mosquitoes' resistance to chemicides, thereby decreasing control efficacy. The biological methods, which may be self-sustaining and very effective, could be hampered by seasonality or heatwaves (resulting in, e.g., loss of Wolbachia infection). The environmental methods that could be more effective than the chemical methods are under-investigated. In this study, a systematic review is conducted to explore the present understanding of the effectiveness of vector control approaches via dengue transmission models.
Collapse
Affiliation(s)
- Samson T. Ogunlade
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia
- College of Medicine and Dentistry, James Cook University, Townsville 4811, Australia
| | - Michael T. Meehan
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia
| | - Adeshina I. Adekunle
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia
- Defence Science and Technology Group, Department of Defence, Melbourne 3207, Australia
| | - Emma S. McBryde
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia
| |
Collapse
|