1
|
Muurmann AT, Banovic M, Gilbert MTP, Sogari G, Limborg MT, Sicheritz-Pontén T, Bahrndorff S. Framework for valorizing waste- and by-products through insects and their microbiomes for food and feed. Food Res Int 2024; 187:114358. [PMID: 38763642 DOI: 10.1016/j.foodres.2024.114358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
One third of the food produced for human consumption is currently lost or wasted. Insects have a high potential for converting organic waste- and by-products into food and feed for a growing human population due to symbiosis with microorganisms. These symbioses provide an untapped reservoir of functional microbiomes that can be used to improve industrial insect production but are poorly studied in most insect species. Here we review the most current understanding and challenges of valorizing organic waste- and by-products through insects and their microbiomes for food and feed, and emerging novel food technologies that can be used to investigate and manipulate host(insects)-microbiome interactions. We further construct a holistic framework, by integration of novel food technologies including holo-omics, genome editing, breeding, phage therapy, and administration of prebiotics and probiotics to investigate and manipulate host(insects)-microbiome interactions, and solutions for achieving stakeholder acceptance of novel food technologies for a sustainable food production.
Collapse
Affiliation(s)
- Asmus Toftkær Muurmann
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark.
| | - Marija Banovic
- Aarhus University, Aarhus BSS, Department of Management, MAPP Centre, Fuglsangs Allé 4, 8210 Aarhus V, Denmark.
| | - M Thomas P Gilbert
- University of Copenhagen, GLOBE Institute, Øster Farimagsgade 5, 1014 København K, Denmark; University Museum, NTNU, Erling Skakkes gate 47B, 7012 Trondheim, Norway.
| | - Giovanni Sogari
- University of Parma, Department of Food and Drug, Parco Area delle Scienze, 45, 43124 Parma, Italy.
| | | | - Thomas Sicheritz-Pontén
- University of Copenhagen, GLOBE Institute, Øster Farimagsgade 5, 1014 København K, Denmark; AIMST University, Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Jalan Bedong-Semeling, 08100 Bedong, Kedah, Malaysia.
| | - Simon Bahrndorff
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark.
| |
Collapse
|
2
|
Baldacchino F, Spagnoletta A, Lamaj F, Vitale ML, Verrastro V. Validation of Diets with Tomato Pomace in Complete Cycle Breeding of Tenebrio molitor (L.) (Coleoptera: Tenebrionidae). INSECTS 2024; 15:287. [PMID: 38667417 PMCID: PMC11050266 DOI: 10.3390/insects15040287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
By-product-based diets have the potential to improve the environmental and economic sustainability of Tenebrio molitor (Linnaeus, 1758) production. However, evaluations of the efficacy of new diets are generally focused on larval performance, while the effect on adults is poorly understood. This aim of this study was to evaluate diets enriched with tomato pomace over a complete breeding cycle. The results showed that when used as an oviposition substrate, all the tested diets, including tomato pomace (T), outperformed the control bran-yeast diet (WY, 95:5 ratio), possibly due to the presence of cholesterol and linoleic acid. The adults fed with the bran-tomato pomace-brewer's spent grain diet (WTB, 50:27:23 ratio), the bran-tomato pomace-yeast diet (WTY, 50:41:9 ratio), and the bran-tomato pomace diet (WT, 50:50 ratio) produced significantly more larvae than those fed with the WY diet. The WTB diet (despite being yeast-free) performed similarly to the WY control diet during the subsequent larval growth phase, making it suitable for the entire production cycle. In conclusion, the results show that tomato pomace can be used a valid by-product in the formulation of efficient diets for the breeding of T. molitor and also provide an alternative to expensive yeast.
Collapse
Affiliation(s)
- Ferdinando Baldacchino
- Laboratory of Bioproducts and Bioprocess, ENEA-. Trisaia Research Centre, S.S. Jonica 106, km 419.5, I-75026 Rotondella, Italy
| | - Anna Spagnoletta
- Laboratory of Bioproducts and Bioprocess, ENEA-. Trisaia Research Centre, S.S. Jonica 106, km 419.5, I-75026 Rotondella, Italy
| | - Flutura Lamaj
- CIHEAM-Bari, Mediterranean Agronomic Institute of Bari, Via Ceglie, 9, I-70100 Valenzano, Italy; (F.L.); (M.L.V.); (V.V.)
| | - Maria Luisa Vitale
- CIHEAM-Bari, Mediterranean Agronomic Institute of Bari, Via Ceglie, 9, I-70100 Valenzano, Italy; (F.L.); (M.L.V.); (V.V.)
| | - Vincenzo Verrastro
- CIHEAM-Bari, Mediterranean Agronomic Institute of Bari, Via Ceglie, 9, I-70100 Valenzano, Italy; (F.L.); (M.L.V.); (V.V.)
| |
Collapse
|
3
|
Savio C, Herren P, Rejasse A, Rios A, Bourelle W, Bruun-Jensen A, Lecocq A, van Loon JJA, Nielsen-LeRoux C. Minor impact of probiotic bacteria and egg white on Tenebrio molitor growth, microbial composition, and pathogen infection. FRONTIERS IN INSECT SCIENCE 2024; 4:1334526. [PMID: 38469340 PMCID: PMC10926391 DOI: 10.3389/finsc.2024.1334526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/23/2024] [Indexed: 03/13/2024]
Abstract
The industrial rearing of the yellow mealworm (Tenebrio molitor) for feed and food purposes on agricultural by-products may expose larvae and adults to entomopathogens used as biocontrol agents in crop production. Bacterial spores/toxins or fungal conidia from species such as Bacillus thuringiensis or Metarhizium brunneum could affect the survival and growth of insects. Therefore, the aim of this study was to investigate the potential benefits of a wheat bran diet supplemented with probiotic bacteria and dried egg white on larval development and survival and its effects on the gut microbiome composition. Two probiotic bacterial species, Pediococcus pentosaceus KVL B19-01 and Lactiplantibacillus plantarum WJB, were added to wheat bran feed with and without dried egg white, as an additional protein source, directly from neonate larval hatching until reaching a body mass of 20 mg. Subsequently, larvae from the various diets were exposed for 72 h to B. thuringiensis, M. brunneum, or their combination. Larval survival and growth were recorded for 14 days, and the bacterial microbiota composition was analyzed using 16S rDNA sequencing prior to pathogen exposure and on days 3 and 11 after inoculation with the pathogens. The results showed increased survival for T. molitor larvae reared on feed supplemented with P. pentosaceus in the case of co-infection. Larval growth was also impacted in the co-infection treatment. No significant impact of egg white or of P. pentosaceus on larval growth was recorded, while the addition of Lb. plantarum resulted in a minor increase in individual mass gain compared with infected larvae without the latter probiotic. On day 14, B. thuringiensis was no longer detected and the overall bacterial community composition of the larvae was similar in all treatments. On the other hand, the relative operational taxonomic unit (OTU) abundance was dependent on day, diet, and probiotic. Interestingly, P. pentosaceus was present throughout the experiments, while Lb. plantarum was not found at a detectable level, although its transient presence slightly improved larval performance. Overall, this study confirms the potential benefits of some probiotics during the development of T. molitor while underlining the complexity of the relationship between the host and its microbiome.
Collapse
Affiliation(s)
- Carlotta Savio
- University of Paris Saclay, INRAE, Micalis, Jouy-en-Josas, France
- Laboratory of Entomology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Pascal Herren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- UK Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford, United Kingdom
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Agnès Rejasse
- University of Paris Saclay, INRAE, Micalis, Jouy-en-Josas, France
| | | | - William Bourelle
- University of Paris Saclay, INRAE, Micalis, Jouy-en-Josas, France
| | - Annette Bruun-Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Antoine Lecocq
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Joop J. A. van Loon
- Laboratory of Entomology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | | |
Collapse
|
4
|
Khan SA, Kojour MAM, Han YS. Recent trends in insect gut immunity. Front Immunol 2023; 14:1272143. [PMID: 38193088 PMCID: PMC10773798 DOI: 10.3389/fimmu.2023.1272143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The gut is a crucial organ in insect defense against various pathogens and harmful substances in their environment and diet. Distinct insect gut compartments possess unique functionalities contributing to their physiological processes, including immunity. The insect gut's cellular composition is vital for cellular and humoral immunity. The peritrophic membrane, mucus layer, lumen, microvilli, and various gut cells provide essential support for activating and regulating immune defense mechanisms. These components also secrete molecules and enzymes that are imperative in physiological activities. Additionally, the gut microbiota initiates various signaling pathways and produces vitamins and minerals that help maintain gut homeostasis. Distinct immune signaling pathways are activated within the gut when insects ingest pathogens or hazardous materials. The pathway induced depends on the infection or pathogen type; include immune deficiency (imd), Toll, JAK/STAT, Duox-ROS, and JNK/FOXO regulatory pathways. These pathways produce different antimicrobial peptides (AMPs) and maintain gut homeostasis. Furthermore, various signaling mechanisms within gut cells regulate insect gut recovery following infection. Although some questions regarding insect gut immunity in different species require additional study, this review provides insights into the insect gut's structure and composition, commensal microorganism roles in Drosophila melanogaster and Tenebrio molitor life cycles, different signaling pathways involved in gut immune systems, and the insect gut post-infection recovery through various signaling mechanisms.
Collapse
Affiliation(s)
- Shahidul Ahmed Khan
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Maryam Ali Mohmmadie Kojour
- Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit, University of Bonn, Bonn, Germany
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|