1
|
Trewick SA, Koot EM, Morgan-Richards M. Ngāokeoke Aotearoa: The Peripatoides Onychophora of New Zealand. INSECTS 2024; 15:248. [PMID: 38667378 PMCID: PMC11050097 DOI: 10.3390/insects15040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
(1) Background: Originally described as a single taxon, Peripatoides novaezealandiae (Hutton, 1876) are distributed across both main islands of New Zealand; the existence of multiple distinct lineages of live-bearing Onychophora across this spatial range has gradually emerged. Morphological conservatism obscured the true endemic diversity, and the inclusion of molecular tools has been instrumental in revealing these cryptic taxa. (2) Methods: Here, we review the diversity of the ovoviviparous Onychophora of New Zealand through a re-analysis of allozyme genotype data, mitochondrial DNA cytochrome oxidase subunit I sequences, geographic information and morphology. (3) Results: New analysis of the multilocus biallelic nuclear data using methods that do not require a priori assumptions of population assignment support at least six lineages of ovoviviparous Peripatoides in northern New Zealand, and mtDNA sequence variation is consistent with these divisions. Expansion of mitochondrial DNA sequence data, including representation of all existing taxa and additional populations extends our knowledge of the scale of sympatry among taxa and shows that three other lineages from southern South Island can be added to the Peripatoides list, and names are proposed here. In total, 10 species of Peripatoides can be recognised with current data.
Collapse
Affiliation(s)
- Steven A. Trewick
- Wildlife & Ecology, School of Natural Sciences, Massey University, Private Bag 11-222, Palmerston North 4410, New Zealand;
| | - Emily M. Koot
- New Zealand Institute for Plant and Food Research Ltd., Palmerston North 4410, New Zealand;
| | - Mary Morgan-Richards
- Wildlife & Ecology, School of Natural Sciences, Massey University, Private Bag 11-222, Palmerston North 4410, New Zealand;
| |
Collapse
|
2
|
Gretgrix LJ, Decker O, Green PT, Köhler F, Moussalli A, Murphy NP. Genetic diversity of a short-ranged endemic terrestrial snail. Ecol Evol 2023; 13:e10785. [PMID: 38034337 PMCID: PMC10684984 DOI: 10.1002/ece3.10785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
The factors that influence population structure and connectivity are unknown for most terrestrial invertebrates but are of particular interest both for understanding the impacts of disturbance and for determining accurate levels of biodiversity and local endemism. The main objective of this study was to determine the historical patterns of genetic differentiation and contemporary gene flow in the terrestrial snail, Austrochloritis kosciuszkoensis (Shea & O. L. Griffiths, 2010). Snails were collected in the Mt Buffalo and Alpine National Parks in Victoria, in a bid to understand how populations of this species are connected both within continuous habitat and between adjacent, yet separate environments. Utilising both mitochondrial DNA (mtDNA) and single nucleotide polymorphism (SNP) data, the degree of population structure was determined within and between sites. Very high levels of genetic divergence were found between the Mt Buffalo and Alpine snails, with no evidence for genetic exchange detected between the two regions, indicating speciation has possibly occurred between the two regions. Our analyses of the combined mtDNA and nDNA (generated from SNPs) data have revealed patterns of genetic diversity that are consistent with a history of long-term isolation and limited connectivity. This history may be related to past cycles of changes to the climate over hundreds of thousands of years, which have, in part, caused the fragmentation of Australian forests. Within both regions, extremely limited gene flow between separate populations suggests that these land snails have very limited dispersal capabilities across existing landscape barriers, especially at Mt Buffalo: here, populations only 5 km apart from each other are genetically differentiated. The distinct genetic divergences and clearly reduced dispersal ability detected in this data explain the likely existence of at least two previously unnamed cryptic Austrochloritis species within a 30-50 km radius, and highlight the need for more concentrated efforts to understand population structure and gene flow in terrestrial invertebrates.
Collapse
Affiliation(s)
- Lachlan J. Gretgrix
- Department of Environment and Genetics, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
| | - Orsi Decker
- Department of Environment and Genetics, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
- Bavarian National ParkNationalparkverwaltung Bayerischer WaldGrafenauGermany
| | - Peter T. Green
- Department of Environment and Genetics, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
| | | | | | - Nicholas P. Murphy
- Department of Environment and Genetics, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Cox K, McKeown N, Antonini G, Harvey D, Solano E, Van Breusegem A, Thomaes A. Phylogeographic structure and ecological niche modelling reveal signals of isolation and postglacial colonisation in the European stag beetle. PLoS One 2019; 14:e0215860. [PMID: 31022224 PMCID: PMC6483211 DOI: 10.1371/journal.pone.0215860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/09/2019] [Indexed: 12/13/2022] Open
Abstract
Lucanus cervus (L.), the stag beetle, is a saproxylic beetle species distributed widely across Europe. Throughout its distribution the species has exhibited pronounced declines and is widely considered threatened. Conservation efforts may be hindered by the lack of population genetic data and understanding of the spatial scale of population connectivity. To address this knowledge gap this research details the first broad scale phylogeographic study of L. cervus based on mitochondrial DNA (mtDNA) sequencing and microsatellite analysis of samples collected from 121 localities across Europe. Genetic data were complemented by palaeo-distribution models of spatial occupancy during the Last Glacial Maximum to strengthen inferences of refugial areas. A salient feature of the mtDNA was the identification of two lineages. Lineage I was widespread across Europe while lineage II was confined to Greece. Microsatellites supported the differentiation of the Greek samples and alongside palaeo-distribution models indicated this area was a glacial refuge. The genetic endemism of the Greek samples, and demographic results compatible with no signatures of spatial expansion likely reflects restricted dispersal into and out of the area. Lineage I exhibited a shallow star like phylogeny compatible with rapid population expansion across Europe. Demographic analysis indicated such expansions occurred after the Last Glacial Maximum. Nuclear diversity and hindcast species distribution models indicated a central Italian refuge for lineage I. Palaeo-distribution modelling results also suggested a western refuge in northern Iberia and south-west France. In conclusion the results provide evidence of glacial divergence in stag beetle while also suggesting high, at least on evolutionary timescales, gene flow across most of Europe. The data also provide a neutral genetic framework against which patterns of phenotypic variation may be assessed.
Collapse
Affiliation(s)
- Karen Cox
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | - Niall McKeown
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, United Kingdom
| | - Gloria Antonini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza - University of Rome, Rome, Italy
| | - Deborah Harvey
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, United Kingdom
| | - Emanuela Solano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza - University of Rome, Rome, Italy
| | - An Van Breusegem
- Research Institute for Nature and Forest (INBO), Geraardsbergen, Belgium
| | - Arno Thomaes
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
| |
Collapse
|
4
|
Trophic interactions among dead-wood-dependent forest arthropods in the southern Appalachian Mountains, USA. FOOD WEBS 2019. [DOI: 10.1016/j.fooweb.2018.e00112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Comparative phylogeography clarifies the complexity and problems of continental distribution that drove A. R. Wallace to favor islands. Proc Natl Acad Sci U S A 2017; 113:7970-7. [PMID: 27432953 DOI: 10.1073/pnas.1601072113] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Deciphering the geographic context of diversification and distributional dynamics in continental biotas has long been an interest of biogeographers, ecologists, and evolutionary biologists. Thirty years ago, the approach now known as comparative phylogeography was introduced in a landmark study of a continental biota. Here, I use a set of 455 studies to explore the current scope of continental comparative phylogeography, including geographic, conceptual, temporal, ecological, and genomic attributes. Geographically, studies are more frequent in the northern hemisphere, but the south is catching up. Most studies focus on a Quaternary timeframe, but the Neogene is well represented. As such, explanations for geographic structure and history include geological and climatic events in Earth history, and responses include vicariance, dispersal, and range contraction-expansion into and out of refugia. Focal taxa are biased toward terrestrial or semiterrestrial vertebrates, although plants and invertebrates are well represented in some regions. The use of various kinds of nuclear DNA markers is increasing, as are multiple locus studies, but use of organelle DNA is not decreasing. Species distribution models are not yet widely incorporated into studies. In the future, continental comparative phylogeographers will continue to contribute to erosion of the simple vicariance vs. dispersal paradigm, including exposure of the widespread nature of temporal pseudocongruence and its implications for models of diversification; provide new templates for addressing a variety of ecological and evolutionary traits; and develop closer working relationships with earth scientists and biologists in a variety of disciplines.
Collapse
|
6
|
Wong MKL, Woodman JD, Rowell DM. Short-range phenotypic divergence among genetically distinct parapatric populations of an Australian funnel-web spider. Ecol Evol 2017; 7:5094-5102. [PMID: 28770049 PMCID: PMC5528234 DOI: 10.1002/ece3.3084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 11/24/2022] Open
Abstract
Speciation involves divergence at genetic and phenotypic levels. Where substantial genetic differentiation exists among populations, examining variation in multiple phenotypic characters may elucidate the mechanisms by which divergence and speciation unfold. Previous work on the Australian funnel-web spider Atrax sutherlandi Gray (2010; Records of the Australian Museum62, 285-392; Mygalomorphae: Hexathelidae: Atracinae) has revealed a marked genetic structure along a 110-kilometer transect, with six genetically distinct, parapatric populations attributable to past glacial cycles. In the present study, we explore variation in three classes of phenotypic characters (metabolic rate, water loss, and morphological traits) within the context of this phylogeographic structuring. Variation in metabolic and water loss rates shows no detectable association with genetic structure; the little variation observed in these rates may be due to the spiders' behavioral adaptations (i.e., burrowing), which buffer the effects of climatic gradients across the landscape. However, of 17 morphological traits measured, 10 show significant variation among genetic populations, in a disjunct manner that is clearly not latitudinal. Moreover, patterns of variation observed for morphological traits serving different organismic functions (e.g., prey capture, burrowing, and locomotion) are dissimilar. In contrast, a previous study of an ecologically similar sympatric spider with little genetic structure indicated a strong latitudinal response in 10 traits over the same range. The congruence of morphological variation with deep phylogeographic structure in Tallaganda's A. sutherlandi populations, as well as the inconsistent patterns of variation across separate functional traits, suggest that the spiders are likely in early stages of speciation, with parapatric populations independently responding to local selective forces.
Collapse
Affiliation(s)
- Mark K. L. Wong
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACTAustralia
- National Parks BoardSingapore
| | - James D. Woodman
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACTAustralia
- Australian Chief Plant Protection OfficeAustralian Government Department of Agriculture and Water ResourcesCanberraAustralia
| | - David M. Rowell
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACTAustralia
| |
Collapse
|
7
|
Kotrbová J, Opatova V, Gardini G, Šťáhlavský F. Karyotype diversity of pseudoscorpions of the genus Chthonius (Pseudoscorpiones, Chthoniidae) in the Alps. COMPARATIVE CYTOGENETICS 2016; 10:325-345. [PMID: 27830045 PMCID: PMC5088348 DOI: 10.3897/compcytogen.v10i3.8906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Pseudoscorpions are found in almost all terrestrial habitats. However, their uniform appearance presents a challenge for morphology-based taxonomy, which may underestimate the diversity of this order. We performed cytogenetic analyses on 11 pseudoscorpion species of the genus Chthonius C. L. Koch, 1843 from the Alps, including three subgenera: Chthonius (Chthonius) C. L. Koch, 1843, Chthonius (Ephippiochthonius) Beier, 1930 and Chthonius (Globochthonius) Beier, 1931 inhabiting this region. The results show that the male diploid number of chromosomes ranges from 21-35. The sex chromosome system X0 has been detected in all male specimens. The X sex chromosome is always metacentric and represents the largest chromosome in the nucleus. Achiasmatic meiosis, already known from the family Chthoniidae, was further confirmed in males of Chthonius. C-banding corroborated the localization of constitutive heterochromatin in the centromere region, which corresponds to heteropycnotic knobs on the standard chromosome preparations. Morphological types and size differentiation of chromosomes in the karyotype suggest that the main chromosomal rearrangements in the evolution of Chthonius are centric or tandem fusions resulting in a decrease in the number of chromosomes. Pericentric inversions, inducing the change of acrocentric chromosomes into biarmed chromosomes, could also be expected. Variability in chromosome morphology and number was detected in several species: Chthonius (Chthonius) ischnocheles (Hermann, 1804), Chthonius (Chthonius) raridentatus, Chthonius (Chthonius) rhodochelatus Hadži, 1930, and Chthonius (Chthonius) tenuis L. Koch, 1873. We discuss the intraspecific variability within these species and the potential existence of cryptic species.
Collapse
Affiliation(s)
- Jana Kotrbová
- Charles University in Prague, Faculty of Science, Department of Zoology, Viničná 7, CZ-12844 Praha, Czech Republic
| | - Vera Opatova
- Charles University in Prague, Faculty of Science, Department of Zoology, Viničná 7, CZ-12844 Praha, Czech Republic
| | - Giulio Gardini
- c/o DISTAV, Università degli Studi, Genova, corso Europa 26, I-16132 Genova, Italy
| | - František Šťáhlavský
- Charles University in Prague, Faculty of Science, Department of Zoology, Viničná 7, CZ-12844 Praha, Czech Republic
| |
Collapse
|
8
|
Bryant LM, Krosch MN. Lines in the land: a review of evidence for eastern Australia's major biogeographical barriers to closed forest taxa. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12821] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Litticia M. Bryant
- School of Earth, Environmental and Biological Sciences; Queensland University of Technology; Brisbane Qld 4000 Australia
| | - Matt N. Krosch
- School of Earth, Environmental and Biological Sciences; Queensland University of Technology; Brisbane Qld 4000 Australia
| |
Collapse
|
9
|
Identification of Eastern United States Reticulitermes Termite Species via PCR-RFLP, Assessed Using Training and Test Data. INSECTS 2015; 6:524-37. [PMID: 26463202 PMCID: PMC4553497 DOI: 10.3390/insects6020524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/30/2015] [Accepted: 06/02/2015] [Indexed: 11/29/2022]
Abstract
Reticulitermes termites play key roles in dead wood decomposition and nutrient cycling in forests. They also damage man-made structures, resulting in considerable economic loss. In the eastern United States, five species (R. flavipes, R. virginicus, R. nelsonae, R. hageni and R. malletei) have overlapping ranges and are difficult to distinguish morphologically. Here we present a molecular tool for species identification. It is based on polymerase chain reaction (PCR) amplification of a section of the mitochondrial cytochrome oxidase subunit II gene, followed by a three-enzyme restriction fragment length polymorphism (RFLP) assay, with banding patterns resolved via agarose gel electrophoresis. The assay was designed using a large set of training data obtained from a public DNA sequence database, then evaluated using an independent test panel of Reticulitermes from the Southern Appalachian Mountains, for which species assignments were determined via phylogenetic comparison to reference sequences. After refining the interpretive framework, the PCR-RFLP assay was shown to provide accurate identification of four co-occurring species (the fifth species, R. hageni, was absent from the test panel, so accuracy cannot yet be extended to training data). The assay is cost- and time-efficient, and will help improve knowledge of Reticulitermes species distributions.
Collapse
|
10
|
Aridification drove repeated episodes of diversification between Australian biomes: Evidence from a multi-locus phylogeny of Australian toadlets (Uperoleia: Myobatrachidae). Mol Phylogenet Evol 2014; 79:106-17. [DOI: 10.1016/j.ympev.2014.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023]
|
11
|
Bull JK, Sunnucks P. Strong genetic structuring without assortative mating or reduced hybrid survival in an onychophoran in the Tallaganda State Forest region, Australia. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- James K. Bull
- School of Biological Sciences; Monash University; Clayton Campus Melbourne Vic. 3800 Australia
| | - Paul Sunnucks
- School of Biological Sciences; Monash University; Clayton Campus Melbourne Vic. 3800 Australia
| |
Collapse
|
12
|
Bull JK, Sands CJ, Garrick RC, Gardner MG, Tait NN, Briscoe DA, Rowell DM, Sunnucks P. Environmental complexity and biodiversity: the multi-layered evolutionary history of a log-dwelling velvet worm in Montane Temperate Australia. PLoS One 2013; 8:e84559. [PMID: 24358365 PMCID: PMC3866147 DOI: 10.1371/journal.pone.0084559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
Phylogeographic studies provide a framework for understanding the importance of intrinsic versus extrinsic factors in shaping patterns of biodiversity through identifying past and present microevolutionary processes that contributed to lineage divergence. Here we investigate population structure and diversity of the Onychophoran (velvet worm) Euperipatoides rowelli in southeastern Australian montane forests that were not subject to Pleistocene glaciations, and thus likely retained more forest cover than systems under glaciation. Over a ~100 km transect of structurally-connected forest, we found marked nuclear and mitochondrial (mt) DNA genetic structuring, with spatially-localised groups. Patterns from mtDNA and nuclear data broadly corresponded with previously defined geographic regions, consistent with repeated isolation in refuges during Pleistocene climatic cycling. Nevertheless, some E. rowelli genetic contact zones were displaced relative to hypothesized influential landscape structures, implying more recent processes overlying impacts of past environmental history. Major impacts at different timescales were seen in the phylogenetic relationships among mtDNA sequences, which matched geographic relationships and nuclear data only at recent timescales, indicating historical gene flow and/or incomplete lineage sorting. Five major E. rowelli phylogeographic groups were identified, showing substantial but incomplete reproductive isolation despite continuous habitat. Regional distinctiveness, in the face of lineages abutting within forest habitat, could indicate pre- and/or postzygotic gene flow limitation. A potentially functional phenotypic character, colour pattern variation, reflected the geographic patterns in the molecular data. Spatial-genetic patterns broadly match those in previously-studied, co-occurring low-mobility organisms, despite a variety of life histories. We suggest that for E. rowelli, the complex topography and history of the region has led to interplay among limited dispersal ability, historical responses to environmental change, local adaptation, and some resistance to free admixture at geographic secondary contact, leading to strong genetic structuring at fine spatial scale.
Collapse
Affiliation(s)
- James K. Bull
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- * E-mail:
| | - Chester J. Sands
- Natural Environment Research Council, British Antarctic Survey, Cambridge, United Kingdom
| | - Ryan C. Garrick
- Department of Biology, University of Mississippi, Oxford, Mississippi, United States of America
| | - Michael G. Gardner
- School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
| | - Noel N. Tait
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - David A. Briscoe
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - David M. Rowell
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Paul Sunnucks
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Affiliation(s)
- Simon Y W Ho
- School of Biological Sciences; University of Sydney; Sydney; NSW; 2006; Australia
| | - Nathan Lo
- School of Biological Sciences; University of Sydney; Sydney; NSW; 2006; Australia
| |
Collapse
|