1
|
Akpınar RK, Gürler AT, Bölükbaş CS, Kaya S, Arslan S, Aydın C, Türlek ŞÖ, Çelik SN, Beyazıt A, Öncel T, Erol U, Çiftci AT, Bastem Z, Ünal HH, Şenel M, Bozdeveci A, Karaoğlu ŞA, Yaldız M, Güven G, Küçükoğlu B, Kurt M. Prevalence and Phylogenetic Network Analysis of Nosema apis and Nosema ceranae Isolates from Honeybee Colonies in Türkiye. Acta Parasitol 2024; 69:1538-1546. [PMID: 39164540 DOI: 10.1007/s11686-024-00887-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE Nosemosis is a disease that infects both Western honeybees (Apis mellifera L.) and Asian honeybees (Apis cerana) and causes colony losses and low productivity worldwide. In order to control nosemosis, it is important to determine the distribution and prevalence of this disease agent in a particular region. For this purpose, a national study was conducted to assess the prevalence of Nosema ceranae and N. apis throughout Türkiye, to perform network analyses of the parasites, and to determine the presence of nosemosis. METHODS In this study which aimed to assess the prevalence of N. apis and N. ceranae in different colony types and regions where beekeeping is intensive in Türkiye, specimens were collected from hives with no clinical signs. RESULTS A total of 1194 Western honeybee colonies in 400 apiaries from 40 provinces of Türkiye were examined by microscopic and molecular techniques. Nosemosis was found in all of 40 provinces. The mean prevalence ratio was 64.3 ± 3.0, with 95% CI in apiaries and 40.5 ± 2.9, 95% CI in hives. Nosema ceranae DNA was detected in all of positive hives, while N. ceranae and N. apis co-infection was detected in only four colonies. CONCLUSION This study showed that nosemosis has spread to all provinces, and it is common in every region of Türkiye. All of the N. ceranae or N. apis samples examined were 100% identical within themselves. Network analysis showed that they were within largest haplotype reported worldwide.
Collapse
Affiliation(s)
- Rahşan Koç Akpınar
- T.C. Ministry of Agriculture and Forestry, Honeybee Diseases Laboratory, Samsun Veterinary Control Institute, Samsun, 55200, Türkiye.
| | - Ali Tümay Gürler
- Department of Parasitology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, 55200, Türkiye
| | - Cenk Soner Bölükbaş
- Department of Parasitology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, 55200, Türkiye
| | - Selma Kaya
- T.C. Ministry of Agriculture and Forestry, Honeybee Diseases Laboratory, Samsun Veterinary Control Institute, Samsun, 55200, Türkiye
| | - Serhat Arslan
- Department of Parasitology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, 55200, Türkiye
| | - Coşkun Aydın
- T.C. Ministry of Agriculture and Forestry, Honeybee Diseases Laboratory, Samsun Veterinary Control Institute, Samsun, 55200, Türkiye
| | - Şakir Önder Türlek
- T.C. Ministry of Agriculture and Forestry, Honeybee Diseases Laboratory, Samsun Veterinary Control Institute, Samsun, 55200, Türkiye
| | - Sema Nur Çelik
- T.C. Ministry of Agriculture and Forestry, Honeybee Diseases Laboratory, Samsun Veterinary Control Institute, Samsun, 55200, Türkiye
| | - Ayşen Beyazıt
- T.C. Ministry of Agriculture and Forestry, İzmir Bornova Veterinary Control Institute, İzmir, 35040, Türkiye
| | - Taraneh Öncel
- T.C. Ministry of Agriculture and Forestry, Istanbul Pendik Veterinary Control Institute, Istanbul, Türkiye
| | - Ufuk Erol
- Department of Parasitology, Faculty of Veterinary Medicine, University of Cumhuriyet, Sivas, 58140, Türkiye
| | - Ayşe Türkan Çiftci
- T.C. Ministry of Agriculture and Forestry, Elazığ Veterinary Control Institute, Elazığ, Türkiye
| | - Zekai Bastem
- T.C. Ministry of Agriculture and Forestry, Erzurum Veterinary Control Institute, Erzurum, Türkiye
| | - Hasan Hüseyin Ünal
- T.C. Ministry of Agriculture and Forestry, Istanbul Pendik Veterinary Control Institute, Istanbul, Türkiye
| | - Mesut Şenel
- T.C. Ministry of Agriculture and Forestry, Istanbul Pendik Veterinary Control Institute, Istanbul, Türkiye
| | - Arif Bozdeveci
- Department of Biology, Faculty of Sciences and Arts, Recep Tayyip Erdoğan University, Rize, 53100, Türkiye
| | - Şengül Alpay Karaoğlu
- Department of Biology, Faculty of Sciences and Arts, Recep Tayyip Erdoğan University, Rize, 53100, Türkiye
| | - Murat Yaldız
- T.C. Ministry of Agriculture and Forestry, Honeybee Diseases Laboratory, Samsun Veterinary Control Institute, Samsun, 55200, Türkiye
| | - Gökhan Güven
- T.C. Ministry of Agriculture and Forestry, Honeybee Diseases Laboratory, Samsun Veterinary Control Institute, Samsun, 55200, Türkiye
| | - Bilal Küçükoğlu
- T.C. Ministry of Agriculture and Forestry, Honeybee Diseases Laboratory, Samsun Veterinary Control Institute, Samsun, 55200, Türkiye.
| | - Mitat Kurt
- T.C. Ministry of Agriculture and Forestry, Honeybee Diseases Laboratory, Samsun Veterinary Control Institute, Samsun, 55200, Türkiye
| |
Collapse
|
2
|
Jabal-Uriel C, Albarracín VN, Calatayud J, Higes M, Martín-Hernández R. Age and Season Effect the Timing of Adult Worker Honeybee Infection by Nosema ceranae. Front Cell Infect Microbiol 2022; 11:823050. [PMID: 35155274 PMCID: PMC8836290 DOI: 10.3389/fcimb.2021.823050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
The microsporidia Nosema ceranae is an intracellular parasite of honeybees’ midgut, highly prevalent in Apis mellifera colonies for which important epidemiological information is still unknown. Our research aimed at understanding how age and season influence the onset of infection in honeybees and its development in the colony environment. Adult worker honeybees of less than 24h were marked and introduced into 6 different colonies in assays carried out in spring and autumn. Bees of known age were individually analyzed by PCR for Nosema spp. infection and those resulting positive were studied to determine the load by Real Time-qPCR. The age of onset and development of infection in each season was studied on a total of 2401 bees and the probability and the load of infection for both periods was established with two statistical models. First N. ceranae infected honeybees were detected at day 5 post emergence (p.e.; spring) and at day 4 p.e. (autumn) and in-hive prevalence increased from that point onwards, reaching the highest mean infection on day 18 p.e. (spring). The probability of infection increased significantly with age in both periods although the age variable better correlated in spring. The N. ceranae load tended to increase with age in both periods, although the age-load relationship was clearer in spring than in autumn. Therefore, age and season play an important role on the probability and the development of N. ceranae infection in honeybees, bringing important information to understand how it spreads within a colony.
Collapse
Affiliation(s)
- Clara Jabal-Uriel
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Verónica N. Albarracín
- Facultad de Agronomía y Zootecnia de la Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Joaquín Calatayud
- Departamento de Biología, Geología, Física y Química inorgánica, Universidad Rey Juan Carlos, Madrid, Spain
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT – ESF/EC-FSE), Fundación Parque Científico y Tecnológico de Castilla – La Mancha, Albacete, Spain
- *Correspondence: Raquel Martín-Hernández,
| |
Collapse
|
3
|
Vairimorpha ceranae was the only detected microsporidian species from Iranian honey bee colonies: a molecular and phylogenetic study. Parasitol Res 2021; 121:355-366. [PMID: 34792656 DOI: 10.1007/s00436-021-07381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Nosemosis caused by Vairimorpha ceranae is one of the most important threats to honeybee colonies worldwide. This study aimed to determine the prevalence and intensity of Vairimorpha infection in different types of colonies and locations in Iran. In October 2017 and May 2018, 376 colonies from 97 apiaries were selected for each month according to a randomly clustered design. By considering 3-5 colonies for each apiary, 20 adult bees as pooled samples were collected from each colony. In microscopic analysis, 46.52% and 46.1% of samples in May and October showed Vairimorpha spores, respectively. The infection intensities in May and October were 5.94 ± 0.19 (× 106) and 5.86 ± 0.23 (× 106) spores/bee in a pooled sample, respectively. The mean infection intensity ranged from 1.8 to 12.5 (× 106) spores/bee. Statistically, there were no significant differences in the prevalence and intensity of V. ceranae infection between May and October samples. No significant differences were found among the prevalence rates of infection in the types of colonies; however, the intensity was significantly higher in migratory and mountainous colonies in May and only in migratory colonies in October. There was a significant correlation between the prevalence and intensity of V. ceranae infection (r2 = 0.695). PCR analysis showed that the samples were only infected with V. ceranae. No intraspecific variation to V. ceranae was found by direct sequencing of the amplified fragment of 16S rRNA. The obtained sequence was mainly 100% similar to those of V. ceranae isolates from European countries.
Collapse
|
4
|
MacInnis CI, Keddie BA, Pernal SF. Nosema ceranae (Microspora: Nosematidae): A Sweet Surprise? Investigating the Viability and Infectivity of N. ceranae Spores Maintained in Honey and on Beeswax. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2069-2078. [PMID: 32882034 DOI: 10.1093/jee/toaa170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Nosema disease is a prominent malady among adult honey bees [Apis mellifera L. (Hymenoptera: Apidae)], caused by the microsporidian parasites, Nosema apis Zander (Microspora: Nosematidae) and N. ceranae Fries et al. 1996. The biology of N. apis is well understood, as this parasite was first described over a century ago. As N. ceranae is an emerging parasite of the honey bee, we do not yet understand how long spores of this parasite survive in honey bee colonies, or all the potential modes of transmission among bees. We investigated the viability and infectivity of N. ceranae spores in honey and on beeswax over time after exposure to 33, 20, -12, and -20°C. Spores in honey maintained viability at freezing temperatures for up to 1 yr and remained viable considerably longer than those on beeswax. Based on this evidence, honey may act as an important reservoir for infective spores to initiate or perpetuate N. ceranae infections in honey bee colonies. This work provides information that may help enhance current management recommendations for apiculturalists.
Collapse
Affiliation(s)
- Courtney I MacInnis
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, AB, Canada
| | - B Andrew Keddie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Stephen F Pernal
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, AB, Canada
| |
Collapse
|
5
|
Extracts from Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. Roots: A New Hope Against Honeybee Death Caused by Nosemosis. Molecules 2020; 25:molecules25194452. [PMID: 32998304 PMCID: PMC7582972 DOI: 10.3390/molecules25194452] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
Pollinators, the cornerstones of our terrestrial ecosystem, have been at the very core of our anxiety. This is because we can nowadays observe a dangerous decline in the number of insects. With the numbers of pollinators dramatically declining worldwide, the scientific community has been growing more and more concerned about the future of insects as fundamental elements of most terrestrial ecosystems. Trying to address this issue, we looked for substances that might increase bee resistance. To this end, we checked the effects of plant-based adaptogens on honeybees in laboratory tests and during field studies on 30 honeybee colonies during two seasons. In this study, we have tested extracts obtained from: Eleutherococcus senticosus, Garcinia cambogia, Panax ginseng, Ginkgo biloba, Schisandra chinensis, and Camellia sinensis. The 75% ethanol E. senticosus root extract proved to be the most effective, both as a cure and in the prophylaxis of nosemosis. Therefore, Eleutherococcus senticosus, and its active compounds, eleutherosides, are considered the most powerful adaptogens, in the pool of all extracts that were selected for screening, for supporting immunity and improving resistance of honeybees. The optimum effective concentration of 0.4 mg/mL E. senticosus extract responded to c.a. 5.76, 2.56 and 0.07 µg/mL of eleutheroside B, eleutheroside E and naringenin, respectively. The effect of E. senticosus extracts on honeybees involved a similar adaptogenic response as on other animals, including humans. In this research, we show for the first time such an adaptogenic impact on invertebrates, i.e., the effect on honeybees stressed by nosemosis. We additionally hypothesised that these adaptogenic properties were connected with eleutherosides-secondary metabolites found exclusively in the Eleutherococcus genus and undetected in other studied extracts. As was indicated in this study, eleutherosides are very stable chemically and can be found in extracts in similar amounts even after two years from extraction. Considering the role bees play in nature, we may conclude that demonstrating the adaptogenic properties which plant extracts have in insects is the most significant finding resulting from this research. This knowledge might bring to fruition numerous economic and ecological benefits.
Collapse
|
6
|
Mortensen AN, Jack CJ, Bustamante TA, Schmehl DR, Ellis JD. Effects of Supplemental Pollen Feeding on Honey Bee (Hymenoptera: Apidae) Colony Strength and Nosema spp. Infection. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:60-66. [PMID: 30388242 DOI: 10.1093/jee/toy341] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 06/08/2023]
Abstract
Beekeepers commonly supplement honey bee (Apis mellifera L.) colonies' nutrition with commercial pollen and nectar substitutes in an effort to encourage growth and reduce colony losses. However, there is a broad lack of understanding regarding the extent to which supplemental protein feeding affects honey bee colony health. We conducted a field study to determine if feeding protein substitutes affected colony strength and Nosema spp. spore intensity in commercially managed honey bee colonies. Seventy-five honey bee colonies were randomly assigned to one of six treatments (no supplemental protein, one of four commercially available protein supplements, or wildflower pollen supplement). The number of adult bees, the number of capped brood cells, and Nosema intensity were assessed prior to-, 4 wk post-, and 8 wk post-treatment. There was an overall decrease in Nosema intensity across all treatments over time. However, there were no statistically detectable differences in colony strength or Nosema intensity between any of the pollen feeding treatments and those of the negative control treatment. Thus far, multiple investigations regarding supplemental protein feeding have failed to provide a clear consensus on the impact that this practice has on honey bee colony strength or productivity. Additional research is needed to determine the impact, if any, that diet supplementation, including microbial and nutritional supplements, has on colony health, to better inform beekeepers' management decisions.
Collapse
Affiliation(s)
- Ashley N Mortensen
- Honey Bee Research and Extension Laboratory, Entomology & Nematology Department, University of Florida, Building, Natural Area Drive, Gainesville, FL
| | - Cameron J Jack
- Honey Bee Research and Extension Laboratory, Entomology & Nematology Department, University of Florida, Building, Natural Area Drive, Gainesville, FL
| | - Tomas A Bustamante
- Honey Bee Research and Extension Laboratory, Entomology & Nematology Department, University of Florida, Building, Natural Area Drive, Gainesville, FL
| | - Daniel R Schmehl
- Honey Bee Research and Extension Laboratory, Entomology & Nematology Department, University of Florida, Building, Natural Area Drive, Gainesville, FL
| | - James D Ellis
- Honey Bee Research and Extension Laboratory, Entomology & Nematology Department, University of Florida, Building, Natural Area Drive, Gainesville, FL
| |
Collapse
|
7
|
Ferguson JA, Northfield TD, Lach L. Honey Bee (Apis mellifera) Pollen Foraging Reflects Benefits Dependent on Individual Infection Status. MICROBIAL ECOLOGY 2018; 76:482-491. [PMID: 29380027 DOI: 10.1007/s00248-018-1147-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Parasites often modify host foraging behavior, for example, by spurring changes to nutrient intake ratios or triggering self-medication. The gut parasite, Nosema ceranae, increases energy needs of the European or Western honey bee (Apis mellifera), but little is known about how infection affects foraging behavior. We used a combination of experiments and observations of caged and free-flying individual bees and hives to determine how N. ceranae affects honey bee foraging behavior. In an experiment with caged bees, we found that infected bees with access to a high-quality pollen were more likely to survive than infected bees with access to a lower quality pollen or no pollen. Non-infected bees showed no difference in survival with pollen quality. We then tested free-flying bees in an arena of artificial flowers and found that pollen foraging bees chose pollen commensurate with their infection status; twice as many infected bees selected the higher quality pollen than the lower quality pollen, while healthy bees showed no preference between pollen types. However, healthy and infected bees visited sucrose and pollen flowers in the same proportions. Among hive-level observations, we found no significant correlations between N. ceranae infection intensity in the hive and the proportion of bees returning with pollen. Our results indicate that N. ceranae-infected bees benefit from increased pollen quality and will selectively forage for higher quality while foraging for pollen, but infection status does not lead to increased pollen foraging at either the individual or hive levels.
Collapse
Affiliation(s)
- Jade A Ferguson
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, PO Box 6811, Cairns, Queensland, 4870, Australia
| | - Tobin D Northfield
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, PO Box 6811, Cairns, Queensland, 4870, Australia
| | - Lori Lach
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, PO Box 6811, Cairns, Queensland, 4870, Australia.
| |
Collapse
|
8
|
Ptaszyńska AA, Gancarz M, Hurd PJ, Borsuk G, Wiącek D, Nawrocka A, Strachecka A, Załuski D, Paleolog J. Changes in the bioelement content of summer and winter western honeybees (Apis mellifera) induced by Nosema ceranae infection. PLoS One 2018; 13:e0200410. [PMID: 30044811 PMCID: PMC6060561 DOI: 10.1371/journal.pone.0200410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
Proper bioelement content is crucial for the health and wellness of all
organisms, including honeybees. However, the situation is more complicated in
these important pollinators due to the fact that they change their physiology
during winter in order to survive the relatively harsh climatic conditions.
Additionally, honeybees are susceptible to many diseases such as
nosemosis, which during winter can depopulate an entire
colony. Here we show that summer bees have a markedly higher content of
important bioelements such as: Al, Cu, P, V, (physiologically essential); Ca, K,
Mg, (electrolytic); Cr, Se, Zn, (enzymatic); As, Hg, (toxic). In contrast, a
markedly higher content of: Fe (physiologically essential); Mn, Ni, (enzymatic);
Cd (exclusively toxic) were present in winter bees. Importantly,
N. ceranae infection resulted in an
increased honeybee bioelement content of: S, Sr (physiologically essential) and
Pb (exclusively toxic), whereas the Nosema-free worker-bees had
higher amounts of B and Si (physiologically essential). We propose that the
shortages of Fe, Mn, Ni, and Na observed in Nosema-infected
bees, could be the reason for the higher mortality of
Nosema-infected bees throughout overwintering. In addition, a
shortage of bioelements such as B and Si may be a reason for accelerated aging
in foragers that is observed following N.
ceranae infection. Therefore, in winter, bioelement content
was more strongly affected by N. ceranae
infection than during summer. We found a strong correlation between the
bioelement content of bees and seasons (summer or winter) and also with
Nosema infection. We conclude that the balance of
bioelements in the honeybee is altered by both seasonal affects and by
Nosema infection.
Collapse
Affiliation(s)
- Aneta A. Ptaszyńska
- Department of Botany and Mycology, Institute of Biology and Biochemistry,
Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin,
Poland
- * E-mail:
| | - Marek Gancarz
- Institute of Agrophysics, Polish Academy of Sciences, Lublin,
Poland
| | - Paul J. Hurd
- School of Biological and Chemical Sciences, Queen Mary University of
London, London, United Kingdom
| | - Grzegorz Borsuk
- Laboratory of Environmental Biology and Apidologie, Institute of
Biological Basis of Animal Production, Faculty of Biology, Animal Sciences and
Bioeconomy, University of Life Sciences in Lublin, Lublin,
Poland
| | - Dariusz Wiącek
- Institute of Agrophysics, Polish Academy of Sciences, Lublin,
Poland
| | | | - Aneta Strachecka
- Laboratory of Environmental Biology and Apidologie, Institute of
Biological Basis of Animal Production, Faculty of Biology, Animal Sciences and
Bioeconomy, University of Life Sciences in Lublin, Lublin,
Poland
| | - Daniel Załuski
- Department of Pharmacognosy, Ludwik Rydygier Collegium Medicum, Nicolaus
Copernicus University, Bydgoszcz, Poland
| | - Jerzy Paleolog
- Department of Zoology, Ecology and Wildlife Management, Life Science
University in Lublin, Lublin, Poland
| |
Collapse
|
9
|
Li W, Evans JD, Li J, Su S, Hamilton M, Chen Y. Spore load and immune response of honey bees naturally infected by Nosema ceranae. Parasitol Res 2017; 116:3265-3274. [DOI: 10.1007/s00436-017-5630-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/20/2017] [Indexed: 01/16/2023]
|
10
|
Papini R, Mancianti F, Canovai R, Cosci F, Rocchigiani G, Benelli G, Canale A. Prevalence of the microsporidian Nosema ceranae in honeybee ( Apis mellifera) apiaries in Central Italy. Saudi J Biol Sci 2017; 24:979-982. [PMID: 28663691 PMCID: PMC5478366 DOI: 10.1016/j.sjbs.2017.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/05/2016] [Accepted: 01/11/2017] [Indexed: 11/22/2022] Open
Abstract
Nosema ceranae and Nosema apis are microsporidia which play an important role in the epidemiology of honeybee microsporidiosis worldwide. Nosemiasis reduces honeybee population size and causes significant losses in honey production. To the best of our knowledge, limited information is available about the prevalence of nosemiasis in Italy. In this research, we determined the occurrence of Nosema infection in Central Italy. Thirty-eight seemingly healthy apiaries (2 to 4 hives each) were randomly selected and screened from April to September 2014 (n = 11) or from May to September 2015 (n = 27). The apiaries were located in six areas of Central Italy, including Lucca (n = 11), Massa Carrara (n = 9), Pisa (n = 9), Leghorn (n = 7), Florence (n = 1), and Prato (n = 1) provinces. Light microscopy was carried out according to current OIE recommendations to screen the presence of microsporidiosis in adult worker honeybees. Since the morphological characteristics of N. ceranae and N. apis spores are similar and can hardly be distinguished by optical microscopy, all samples were also screened by multiplex polymerase chain reaction (M-PCR) assay based on 16S rRNA-gene-targeted species-specific primers to differentiate N. ceranae from N. apis. Furthermore, PCR-positive samples were also sequenced to confirm the species of amplified Nosema DNA. Notably, Nosema spores were detected in samples from 24 out of 38 (63.2%, 95% CI: 47.8-78.5%) apiaries. Positivity rates in single provinces were 10/11, 8/9, 3/9, 1/7, or 1/1 (n = 2). A full agreement (Cohen's Kappa = 1) was assessed between microscopy and M-PCR. Based on M-PCR and DNA sequencing results, only N. ceranae was found. Overall, our results highlighted that N. ceranae infection occurs frequently in the cohort of honeybee populations that was examined despite the lack of clinical signs. These findings suggest that colony disease outbreaks might result from environmental factors that lead to higher susceptibility of honeybees to this microsporidian.
Collapse
Affiliation(s)
- Roberto Papini
- Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy
| | - Francesca Mancianti
- Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy
| | - Roberto Canovai
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Francesca Cosci
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Guido Rocchigiani
- Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Angelo Canale
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
11
|
Ansari MJ, Al-Ghamdi A, Nuru A, Khan KA, Alattal Y. Geographical distribution and molecular detection of Nosema ceranae from indigenous honey bees of Saudi Arabia. Saudi J Biol Sci 2017; 24:983-991. [PMID: 28663692 PMCID: PMC5478367 DOI: 10.1016/j.sjbs.2017.01.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 11/27/2022] Open
Abstract
The aim of the study was to detect the infection level of honey bees with Nosema apis and/or Nosema ceranae using microscopic and molecular analysis from indigenous honeybee race of eight Saudi Arabian geographical regions. A detailed survey was conducted and fifty apiaries were chosen at random from these locations. Infection level was determined both by microscope and Multiplex-PCR and data were analyzed using bioinformatics tools and phylogenetic analysis. Result showed that N. ceranae was the only species infecting indigenous honeybee colonies in Saudi Arabia. As determined by microscope, Nosema spores were found to be in 20.59% of total samples colonies, while 58% of the samples evaluated by PCR were found to be positive for N. ceranae, with the highest prevalence in Al-Bahah, a tropical wet and dry climatic region, whereas low prevalence was found in the regions with hot arid climate. Honeybees from all eight locations surveyed were positive for N. ceranae. This is the first report about the N. ceranae detection, contamination level and distribution pattern in Saudi Arabia.
Collapse
Affiliation(s)
- Mohammad Javed Ansari
- Bee Research Chair, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, PO Box 2460, Saudi Arabia
| | - Ahmad Al-Ghamdi
- Bee Research Chair, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, PO Box 2460, Saudi Arabia
| | - Adgaba Nuru
- Bee Research Chair, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, PO Box 2460, Saudi Arabia
| | - Khalid Ali Khan
- Bee Research Chair, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, PO Box 2460, Saudi Arabia
| | - Yehya Alattal
- Bee Research Chair, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, PO Box 2460, Saudi Arabia
| |
Collapse
|
12
|
Ptaszyńska AA, Paleolog J, Borsuk G. Nosema ceranae Infection Promotes Proliferation of Yeasts in Honey Bee Intestines. PLoS One 2016; 11:e0164477. [PMID: 27736915 PMCID: PMC5063367 DOI: 10.1371/journal.pone.0164477] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023] Open
Abstract
Background Nosema ceranae infection not only damages honey bee (Apis melifera) intestines, but we believe it may also affect intestinal yeast development and its seasonal pattern. In order to check our hypothesis, infection intensity versus intestinal yeast colony forming units (CFU) both in field and cage experiments were studied. Methods/Findings Field tests were carried out from March to October in 2014 and 2015. N. ceranae infection intensity decreased more than 100 times from 7.6 x 108 in March to 5.8 x 106 in October 2014. A similar tendency was observed in 2015. Therefore, in the European eastern limit of its range, N. ceranae infection intensity showed seasonality (spring peak and subsequent decline in the summer and fall), however, with an additional mid-summer peak that had not been recorded in other studies. Due to seasonal changes in the N. ceranae infection intensity observed in honey bee colonies, we recommend performing studies on new therapeutics during two consecutive years, including colony overwintering. A natural decrease in N. ceranae spore numbers observed from March to October might be misinterpreted as an effect of Nosema spp. treatment with new compounds. A similar seasonal pattern was observed for intestinal yeast population size in field experiments. Furthermore, cage experiments confirmed the size of intestinal yeast population to increase markedly together with the increase in the N. ceranae infection intensity. Yeast CFUs amounted to respectively 2,025 (CV = 13.04) and 11,150 (CV = 14.06) in uninfected and N. ceranae-infected workers at the end of cage experiments. Therefore, honey bee infection with N. ceranae supported additional opportunistic yeast infections, which may have resulted in faster colony depopulations.
Collapse
Affiliation(s)
- Aneta A. Ptaszyńska
- Department of Botany and Mycology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20–033 Lublin, Poland
- * E-mail:
| | - Jerzy Paleolog
- Department of Zoology, Ecology and Wildlife Management, University of Life Sciences in Lublin, Akademicka 13, 20–950 Lublin, Poland
| | - Grzegorz Borsuk
- Department of Biological Basis of Animal Production, Faculty of Biology and Animal Breeding, University of Life Sciences in Lublin, Akademicka 13, 20–950 Lublin, Poland
| |
Collapse
|
13
|
Jack CJ, Lucas HM, Webster TC, Sagili RR. Colony Level Prevalence and Intensity of Nosema ceranae in Honey Bees (Apis mellifera L.). PLoS One 2016; 11:e0163522. [PMID: 27658258 PMCID: PMC5033419 DOI: 10.1371/journal.pone.0163522] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/09/2016] [Indexed: 01/30/2023] Open
Abstract
Nosema ceranae is a widely prevalent microsporidian parasite in the western honey bee. There is considerable uncertainty regarding infection dynamics of this important pathogen in honey bee colonies. Understanding the infection dynamics at the colony level may aid in development of a reliable sampling protocol for N. ceranae diagnosis, and provide insights into efficient treatment strategies. The primary objective of this study was to characterize the prevalence (proportion of the sampled bees found infected) and intensity (number of spores per bee) of N. ceranae infection in bees from various age cohorts in a colony. We examined N. ceranae infection in both overwintered colonies that were naturally infected with N. ceranae and in quadruple cohort nucleus colonies that were established and artificially inoculated with N. ceranae. We also examined and quantified effects of N. ceranae infection on hypopharyngeal gland protein content and gut pH. There was no correlation between the prevalence and intensity of N. ceranae infection in composite samples (pooled bee samples used for analysis). Our results indicated that the prevalence and intensity of N. ceranae infection is significantly influenced by honey bee age. The N. ceranae infection prevalence values from composite samples of background bees (unmarked bees collected from four different locations in a colony) were not significantly different from those pertaining to marked-bee age cohorts specific to each sampling date. The foraging-aged bees had a higher prevalence of N. ceranae infection when compared to nurse-aged bees. N. ceranae did not have a significant effect on hypopharyngeal gland protein content. Further, there was no significant difference in mean gut pH of N. ceranae infected bees and non-infected bees. This study provides comprehensive insights into N. ceranae infection dynamics at the colony level, and also demonstrates the effects of N. ceranae infection on hypopharyngeal gland protein content and midgut pH.
Collapse
Affiliation(s)
- Cameron J. Jack
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Hannah M. Lucas
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| | - Thomas C. Webster
- College of Agriculture, Food Science & Sustainable Systems, Kentucky State University, Frankfort, Kentucky, United States of America
| | - Ramesh R. Sagili
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
14
|
Martin SJ, Hardy J, Villalobos E, Martín-Hernández R, Nikaido S, Higes M. Do the honeybee pathogens Nosema ceranae and deformed wing virus act synergistically? ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:506-10. [PMID: 23864563 PMCID: PMC3806273 DOI: 10.1111/1758-2229.12052] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/25/2013] [Indexed: 05/20/2023]
Abstract
The honeybee pathogens Nosema ceranae and deformed wing virus (DWV) cause the collapse of honeybee colonies. Therefore, it is plausible that these two pathogens act synergistically to increase colony losses, since N.ceranae causes damage to the mid-gut epithelial ventricular cells and actively suppresses the honeybees' immune response, either of which could increase the virulence of viral pathogens within the bee. To test this hypothesis we exploited 322 Hawaiian honeybee colonies for which DWV prevalence and load is known. We determined via PCR that N.ceranae was present in 89-95% of these colonies, with no Nosema apis being detected. We found no significant difference in spore counts in colonies infected with DWV and those in which DWV was not detected, either on any of the four islands or across the entire honeybee population. Furthermore, no significant correlation between DWV loads (ΔCT levels) and N.ceranae spore counts was found, so these two pathogens are not acting synergistically. Although the Hawaiian honeybees have the highest known prevalence of N.ceranae in the world, with average number of spores been 2.7 million per bee, no acute Nosema related problems i.e. large-scale colony deaths, have been reported by Hawaiian beekeepers.
Collapse
Affiliation(s)
- Stephen J Martin
- School of Environment and Life Sciences, University of Salford, Greater Manchester, M5 4WT, UK.
| | | | | | | | | | | |
Collapse
|