1
|
Hikida H, Kokusho R, Katsuma S. BV/ODV-E26 is a conserved baculoviral inhibitory factor for optimizing viral virulence in lepidopteran hosts. iScience 2025; 28:111723. [PMID: 39898022 PMCID: PMC11787618 DOI: 10.1016/j.isci.2024.111723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Alphabaculoviruses induce abnormal behavior in lepidopteran larval hosts. A baculoviral gene, bv/odv-e26, is crucial for behavioral manipulation in Bombyx mori larvae by Bombyx mori nucleopolyhedrovirus (BmNPV). However, how bv/odv-e26 fulfills its role in this phenotype remains largely unknown. In this study, we found that the overexpression of BmNPV bv/odv-e26 delayed viral infection in cultured cells and decreased pathogenicity in B. mori larvae. We also discovered that homologs of bv/odv-e26 are conserved more widely in alphabaculoviruses than previously thought. The inhibitory activity was demonstrated in bv/odv-e26 homologs of phylogenetically close and distant baculoviruses, indicating conserved inhibitory function among alphabaculoviruses. Furthermore, locomotory analyses revealed that bv/odv-e26 increased larval locomotory activity but had little effect on the timing of abnormal behavior initiation. Collectively, our findings demonstrate that bv/odv-e26 is a baculoviral inhibitory factor that is widely conserved in the genus alphabaculovirus and may reduce viral virulence for successful host behavioral manipulation.
Collapse
Affiliation(s)
- Hiroyuki Hikida
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryuhei Kokusho
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Masoudi A, Joseph RA, Keyhani NO. Viral- and fungal-mediated behavioral manipulation of hosts: summit disease. Appl Microbiol Biotechnol 2024; 108:492. [PMID: 39441364 PMCID: PMC11499535 DOI: 10.1007/s00253-024-13332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Summit disease, in which infected hosts seek heights (gravitropism), first noted in modern times by nineteenth-century naturalists, has been shown to be induced by disparate pathogens ranging from viruses to fungi. Infection results in dramatic changes in normal activity patterns, and such parasite manipulation of host behaviors suggests a strong selection for convergent outcomes albeit evolved via widely divergent mechanisms. The two best-studied examples involve a subset of viral and fungal pathogens of insects that induce "summiting" in infected hosts. Summiting presumably functions as a means for increasing the dispersal of the pathogen, thus significantly increasing fitness. Here, we review current advances in our understanding of viral- and fungal-induced summit disease and the host behavioral manipulation involved. Viral genes implicated in this process include a host hormone-targeting ecdysteroid UDP-glucosyltransferase (apparently essential for mediating summit disease induced by some viruses but not all) and a protein tyrosine phosphatase, with light dependance implicated. For summit disease-causing fungi, though much remains obscure, targeting of molting, circadian rhythms, sleep, and responses to light patterns appear involved. Targeting of host neuronal pathways by summit-inducing fungi also appears to involve the production of effector molecules and secondary metabolites that affect host muscular, immune, and/or neurological processes. It is hypothesized that host brain structures, particularly Mushroom Bodies (no relation to the fungus itself), important for olfactory association learning and control of locomotor activity, are critical targets for mediating summiting during infection. This phenomenon expands the diversity of microbial pathogen-interactions and host dynamics. KEY POINTS: • Summit disease or height seeking (gravitropism) results from viral and fungal pathogens manipulating insect host behaviors presumably to increase pathogen dispersal. • Insect baculoviruses and select fungal pathogens exhibit convergent evolution in host behavioral manipulation but use disparate molecular mechanisms. • Targets for affecting host behavior include manipulation of host hormones, feeding, locomotion, and immune, circadian, and neurological pathways.
Collapse
Affiliation(s)
- Abolfazl Masoudi
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA
| | - Ross A Joseph
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
3
|
Gutiérrez-Cárdenas OG, Adán Á, Medina P, Muñoz D, Caballero P, Garzón A. A novel use of Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) as inoculative agent of baculoviruses. PEST MANAGEMENT SCIENCE 2023; 79:4274-4281. [PMID: 37345565 DOI: 10.1002/ps.7624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Alphabaculoviruses are Lepidoptera-specific virulent pathogens that infect numerous pests, including the Spodoptera complex. Due to their low environmental persistence, the traditional use of Alphabaculoviruses as bioinsecticides consist in high-rate spray applications with repeated treatments. Several abiotic and biotic factors can foster its dispersion, promoting their persistence in the agroecosystem. Amongst biotic factors, predatory arthropods can disperse the viruses by excretion after preying on infected individuals. Therefore, this study focused on promoting predator's ingestion of nucleopolyhedrovirus (NPV)-treated diets, and the later exposition of the insect host to leaf surfaces contaminated with predator excreta. The virus-host-predator system studied was Spodoptera littoralis nucleopolyhedrovirus (SpliNPV), Spodoptera littoralis (Boisduval) and Nesidiocoris tenuis (Reuter). The infective potential of N. tenuis feces and the retention time of SpliNPV were assessed under laboratory conditions after feeding on treated diets (sucrose solution and Ephestia kuehniella eggs). RESULTS Mortality of S. littoralis larvae was lower via N. tenuis excretion than in positive control (spray application) in the first infection cycle, together with a delay in host death. In the second infection cycle, both SpliNPV-treated diets triggered 100% mortality. Both diets allowed the transmission of SpliNPV, with a faster excretion via sucrose solution compared to E. kuehniella eggs. SpliNPV remained in N. tenuis digestive tract and was viable after excretion at least for 9 days for both diets. CONCLUSIONS This study demonstrated the potential of the predator N. tenuis as inoculative agent of baculoviruses, representing a new alternative that, along with inundative applications, might contribute to improve pest management strategies. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Oscar Giovanni Gutiérrez-Cárdenas
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Ángeles Adán
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Pilar Medina
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Delia Muñoz
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, Pamplona, Spain
| | - Primitivo Caballero
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, Pamplona, Spain
| | - Agustín Garzón
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Elya C, Lavrentovich D, Lee E, Pasadyn C, Duval J, Basak M, Saykina V, de Bivort B. Neural mechanisms of parasite-induced summiting behavior in 'zombie' Drosophila. eLife 2023; 12:e85410. [PMID: 37184212 PMCID: PMC10259475 DOI: 10.7554/elife.85410] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/14/2023] [Indexed: 05/16/2023] Open
Abstract
For at least two centuries, scientists have been enthralled by the "zombie" behaviors induced by mind-controlling parasites. Despite this interest, the mechanistic bases of these uncanny processes have remained mostly a mystery. Here, we leverage the Entomophthora muscae-Drosophila melanogaster "zombie fly" system to reveal the mechanistic underpinnings of summit disease, a manipulated behavior evoked by many fungal parasites. Using a high-throughput approach to measure summiting, we discovered that summiting behavior is characterized by a burst of locomotion and requires the host circadian and neurosecretory systems, specifically DN1p circadian neurons, pars intercerebralis to corpora allata projecting (PI-CA) neurons and corpora allata (CA), the latter being solely responsible for juvenile hormone (JH) synthesis and release. Using a machine learning classifier to identify summiting animals in real time, we observed that PI-CA neurons and CA appeared intact in summiting animals, despite invasion of adjacent regions of the "zombie fly" brain by E. muscae cells and extensive host tissue damage in the body cavity. The blood-brain barrier of flies late in their infection was significantly permeabilized, suggesting that factors in the hemolymph may have greater access to the central nervous system during summiting. Metabolomic analysis of hemolymph from summiting flies revealed differential abundance of several compounds compared to non-summiting flies. Transfusing the hemolymph of summiting flies into non-summiting recipients induced a burst of locomotion, demonstrating that factor(s) in the hemolymph likely cause summiting behavior. Altogether, our work reveals a neuro-mechanistic model for summiting wherein fungal cells perturb the fly's hemolymph, activating a neurohormonal pathway linking clock neurons to juvenile hormone production in the CA, ultimately inducing locomotor activity in their host.
Collapse
Affiliation(s)
- Carolyn Elya
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Danylo Lavrentovich
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Emily Lee
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Cassandra Pasadyn
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Jasper Duval
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Maya Basak
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Valerie Saykina
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Benjamin de Bivort
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
5
|
Matsumura EE, Kormelink R. Small Talk: On the Possible Role of Trans-Kingdom Small RNAs during Plant-Virus-Vector Tritrophic Communication. PLANTS (BASEL, SWITZERLAND) 2023; 12:1411. [PMID: 36987098 PMCID: PMC10059270 DOI: 10.3390/plants12061411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Small RNAs (sRNAs) are the hallmark and main effectors of RNA silencing and therefore are involved in major biological processes in plants, such as regulation of gene expression, antiviral defense, and plant genome integrity. The mechanisms of sRNA amplification as well as their mobile nature and rapid generation suggest sRNAs as potential key modulators of intercellular and interspecies communication in plant-pathogen-pest interactions. Plant endogenous sRNAs can act in cis to regulate plant innate immunity against pathogens, or in trans to silence pathogens' messenger RNAs (mRNAs) and impair virulence. Likewise, pathogen-derived sRNAs can act in cis to regulate expression of their own genes and increase virulence towards a plant host, or in trans to silence plant mRNAs and interfere with host defense. In plant viral diseases, virus infection alters the composition and abundance of sRNAs in plant cells, not only by triggering and interfering with the plant RNA silencing antiviral response, which accumulates virus-derived small interfering RNAs (vsiRNAs), but also by modulating plant endogenous sRNAs. Here, we review the current knowledge on the nature and activity of virus-responsive sRNAs during virus-plant interactions and discuss their role in trans-kingdom modulation of virus vectors for the benefit of virus dissemination.
Collapse
|
6
|
Llopis-Giménez A, Parenti S, Han Y, Ros VID, Herrero S. A proctolin-like peptide is regulated after baculovirus infection and mediates in caterpillar locomotion and digestion. INSECT SCIENCE 2022; 29:230-244. [PMID: 33783135 DOI: 10.1111/1744-7917.12913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Baculoviruses constitute a large group of invertebrate DNA viruses, predominantly infecting larvae of the insect order Lepidoptera. During a baculovirus infection, the virus spreads throughout the insect body producing a systemic infection in multiple larval tissues, included the central nervous system (CNS). As a main component of the CNS, neuropeptides are small protein-like molecules functioning as neurohormones, neurotransmitters, or neuromodulators. These peptides are involved in regulating animal physiology and behavior and could be altered after baculovirus infection. In this study, we have investigated the effect of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) infection on expression of Spodoptera exigua neuropeptides and neuropeptide-like genes. Expression of the gene encoding a polypeptide that resembles the well-known insect neuropeptide proctolin and named as proctolin-like peptide (PLP), was downregulated in the larval brain following infection and was chosen for further analysis. A recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV) overexpressing the C-terminal part of the PLP was generated and used in bioassays using S. exigua larvae to study its influence on the viral infection and insect behavior. AcMNPV-PLP-infected larvae showed less locomotion activity and a reduction in growth compared to larvae infected with wild type AcMNPV or mock-infected larvae. These results are indicative of this new peptide as a neuromodulator that regulates visceral and skeletal muscle contractions and offers a novel effector involved in the behavioral changes during baculovirus infection.
Collapse
Affiliation(s)
- Angel Llopis-Giménez
- Department of Genetics and Institut Universitari en Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Stefano Parenti
- Department of Genetics and Institut Universitari en Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Yue Han
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
- Current address. Department of Pathology, University of Cambridge, Cambridge, UK
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Salvador Herrero
- Department of Genetics and Institut Universitari en Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| |
Collapse
|
7
|
The PI3K/AKT Pathway and PTEN Gene Are Involved in “Tree-Top Disease” of Lymantria dispar. Genes (Basel) 2022; 13:genes13020247. [PMID: 35205292 PMCID: PMC8871656 DOI: 10.3390/genes13020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Nucleopolyhedrovirus (NPV) can alter its host behaviour such that infected larvae hang at the top of trees before their death. This phenomenon was firstly described by Hofmann in 1891 and named as “tree-top disease”. Subsequent studies have described effects during the infection proceedings as NPVs manipulate the host to avoid the immune response, cross defensive barriers and regulate hormones. In this study, we demonstrate that the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway is involved in host manipulation by Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV). Particularly at the late stage of infection, a multifunctional dephosphorylase in the PI3K/AKT signaling pathway is dynamically upregulated, namely, the phosphatidylinositol-3, 4, 5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase (PTEN) gene. The biological assays of PTEN gene knockdown showed that an increase in PTEN gene expression was necessary for the infected Lymantria dispar larvae’s terminal climbing behavior, death postponement and virion production. The results imply that the PI3K/AKT signaling pathway and PTEN gene might play an essential role in “tree-top disease” induced by LdMNPV.
Collapse
|
8
|
Hussain AG, Wennmann JT, Goergen G, Bryon A, Ros VI. Viruses of the Fall Armyworm Spodoptera frugiperda: A Review with Prospects for Biological Control. Viruses 2021; 13:v13112220. [PMID: 34835026 PMCID: PMC8625175 DOI: 10.3390/v13112220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, is a native pest species in the Western hemisphere. Since it was first reported in Africa in 2016, FAW has spread throughout the African continent and is now also present in several countries in Asia as well as Australia. The invasion of FAW in these areas has led to a high yield reduction in crops, leading to huge economic losses. FAW management options in the newly invaded areas are limited and mainly rely on the use of synthetic pesticides. Since there is a risk of resistance development against pesticides in addition to the negative environmental and human health impacts, other effective, sustainable, and cost-efficient control alternatives are desired. Insect pathogenic viruses fulfil these criteria as they are usually effective and highly host-specific with no significant harmful effect on beneficial insects and non-target organisms. In this review, we discuss all viruses known from FAW and their potential to be used for biological control. We specifically focus on baculoviruses and describe the recent advancements in the use of baculoviruses for biological control in the native geographic origin of FAW, and their potential use in the newly invaded areas. Finally, we identify current knowledge gaps and suggest new avenues for productive research on the use of viruses as a biopesticide against FAW.
Collapse
Affiliation(s)
- Ahmed G. Hussain
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.G.H.); (A.B.)
| | - Jörg T. Wennmann
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Biological Control, Heinrichstr. 243, 64287 Darmstadt, Germany;
| | - Georg Goergen
- International Institute of Tropical Agriculture (IITA), Biological Control Centre for Africa, Cotonou 08 BP 0932, Benin;
| | - Astrid Bryon
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.G.H.); (A.B.)
| | - Vera I.D. Ros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (A.G.H.); (A.B.)
- Correspondence:
| |
Collapse
|
9
|
Llopis-Giménez A, Caballero-Vidal G, Jacquin-Joly E, Crava CM, Herrero S. Baculovirus infection affects caterpillar chemoperception. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 138:103648. [PMID: 34536505 DOI: 10.1016/j.ibmb.2021.103648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/11/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Baculoviruses are double-stranded DNA entomopathogenic viruses that infect predominantly insects of the order Lepidoptera. Research in the last decade has started to disentangle the mechanisms underlying the insect-virus interaction, particularly focusing on the effects of the baculovirus infection in the host's physiology. Among crucial physiological functions, olfaction has a key role in reproductive tasks, food source detection and enemy avoidance. In this work, we describe that Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) induces expression changes in some odorant receptors (ORs) - the centrepiece of insect's olfaction - when infecting larvae from its natural host Spodoptera exigua (Lepidoptera: Noctuidae). Different ORs are up-regulated in larvae after SeMNPV infection, and two of them, SexiOR35 and SexiOR23, were selected for further functional characterization by heterologous expression in empty neurons of Drosophila melanogaster coupled to single-sensillum recordings. SexiOR35 appears to be a broadly tuned receptor able to recognise multiple and different chemical compounds. SexiOR23, although correctly expressed in Drosophila neurons, did not display any significant response to a panel of 58 stimuli. Behavioural experiments revealed that larvae infected by SeMNPV exhibit altered olfactory-driven behaviour to diet when it is supplemented with the plant volatiles linalool or estragole, two of the main SexiOR35 ligands, supporting the hypothesis that viral infection triggers changes in host perception through changes in the expression level of specific ORs.
Collapse
Affiliation(s)
- Angel Llopis-Giménez
- Department of Genetics, University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Burjassot (València), Spain
| | - Gabriela Caballero-Vidal
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, F78026, Versailles Cedex, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, F78026, Versailles Cedex, France
| | - Cristina Maria Crava
- Department of Genetics, University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Burjassot (València), Spain.
| | - Salvador Herrero
- Department of Genetics, University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Burjassot (València), Spain.
| |
Collapse
|
10
|
Kokusho R, Katsuma S. Bombyx mori nucleopolyhedrovirus ptp and egt genes are dispensable for triggering enhanced locomotory activity and climbing behavior in Bombyx mandarina larvae. J Invertebr Pathol 2021; 183:107604. [PMID: 33971220 DOI: 10.1016/j.jip.2021.107604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/28/2021] [Accepted: 04/09/2021] [Indexed: 11/18/2022]
Abstract
Baculoviruses are classic pathogens that alter host behavior to enhance their dispersal and transmission. While viral protein tyrosine phosphatase (ptp) has been considered as a critical factor for inducing enhanced locomotory activity, preceding investigations have reported that viral ecdysteroid UDP-glucosyltransferase (egt) contributes to triggering climbing behavior in some virus and host species. Here we found that both egt and ptp were dispensable for these abnormal behaviors in Bombyx mandarina larvae induced by Bombyx mori nucleopolyhedrovirus, thus implying that there is an unknown core mechanism of baculovirus-induced alteration of host behaviors.
Collapse
Affiliation(s)
- Ryuhei Kokusho
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
11
|
Mangold CA, Hughes DP. Insect Behavioral Change and the Potential Contributions of Neuroinflammation-A Call for Future Research. Genes (Basel) 2021; 12:465. [PMID: 33805190 PMCID: PMC8064348 DOI: 10.3390/genes12040465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/21/2022] Open
Abstract
Many organisms are able to elicit behavioral change in other organisms. Examples include different microbes (e.g., viruses and fungi), parasites (e.g., hairworms and trematodes), and parasitoid wasps. In most cases, the mechanisms underlying host behavioral change remain relatively unclear. There is a growing body of literature linking alterations in immune signaling with neuron health, communication, and function; however, there is a paucity of data detailing the effects of altered neuroimmune signaling on insect neuron function and how glial cells may contribute toward neuron dysregulation. It is important to consider the potential impacts of altered neuroimmune communication on host behavior and reflect on its potential role as an important tool in the "neuro-engineer" toolkit. In this review, we examine what is known about the relationships between the insect immune and nervous systems. We highlight organisms that are able to influence insect behavior and discuss possible mechanisms of behavioral manipulation, including potentially dysregulated neuroimmune communication. We close by identifying opportunities for integrating research in insect innate immunity, glial cell physiology, and neurobiology in the investigation of behavioral manipulation.
Collapse
Affiliation(s)
- Colleen A. Mangold
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA;
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - David P. Hughes
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA;
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, State College, PA 16802, USA
| |
Collapse
|
12
|
Abstract
Many parasites manipulate host behaviour to enhance their transmission. Baculoviruses induce enhanced locomotory activity (ELA) combined with subsequent climbing behaviour in lepidopteran larvae, which facilitates viral dispersal. However, the mechanisms underlying host manipulation system are largely unknown. Previously, larval locomotion during ELA was summarized as the distance travelled for a few minutes at several time points, which are unlikely to characterize ELA precisely, as ELA typically persists for several hours. In this study, we modified a recently developed method using time-lapse recording to characterize locomotion of Bombyx mori larvae infected with B. mori nucleopolyhedrovirus (BmNPV) for 24 h at 3 s resolution. Our data showed that the locomotion of the mock-infected larvae was restricted to a small area, whereas the BmNPV-infected larvae exhibited a large locomotory area. These results indicate that BmNPV dysregulates the locomotory pattern of host larvae. Furthermore, both the mock- and BmNPV-infected larvae showed periodic cycles of movement and stationary behaviour with a similar frequency, suggesting the physiological mechanisms that induce locomotion are unaffected by BmNPV infection. In contrast, the BmNPV-infected larvae exhibited fast and long-lasting locomotion compared with mock-infected larvae, which indicates that locomotory speed and duration are manipulated by BmNPV.
Collapse
|
13
|
Genetic Underpinnings of Host Manipulation by Ophiocordyceps as Revealed by Comparative Transcriptomics. G3-GENES GENOMES GENETICS 2020; 10:2275-2296. [PMID: 32354705 PMCID: PMC7341126 DOI: 10.1534/g3.120.401290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ant-infecting Ophiocordyceps fungi are globally distributed, host manipulating, specialist parasites that drive aberrant behaviors in infected ants, at a lethal cost to the host. An apparent increase in activity and wandering behaviors precedes a final summiting and biting behavior onto vegetation, which positions the manipulated ant in a site beneficial for fungal growth and transmission. We investigated the genetic underpinnings of host manipulation by: (i) producing a high-quality hybrid assembly and annotation of the Ophiocordyceps camponoti-floridani genome, (ii) conducting laboratory infections coupled with RNAseq of O. camponoti-floridani and its host, Camponotus floridanus, and (iii) comparing these data to RNAseq data of Ophiocordyceps kimflemingiae and Camponotus castaneus as a powerful method to identify gene expression patterns that suggest shared behavioral manipulation mechanisms across Ophiocordyceps-ant species interactions. We propose differentially expressed genes tied to ant neurobiology, odor response, circadian rhythms, and foraging behavior may result by activity of putative fungal effectors such as enterotoxins, aflatrem, and mechanisms disrupting feeding behaviors in the ant.
Collapse
|
14
|
Wang M, Hu Z. Cross-talking between baculoviruses and host insects towards a successful infection. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180324. [PMID: 30967030 DOI: 10.1098/rstb.2018.0324] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Baculoviridae is a family of large DNA viruses that infect insects. They have been extensively used as safe and efficient biological agents for the control of insect pests. As a result of coevolution with their hosts, baculoviruses developed unique life cycles characterized by the production of two distinctive virion phenotypes, occlusion-derived virus and budded virus, which are responsible for mediating primary infection in insect midgut epithelia and spreading systemic infection within infected insects, respectively. In this article, advances associated with virus-host interactions during the baculovirus life cycle are reviewed. We mainly focus on how baculoviruses exploit versatile strategies to overcome diverse host barriers and establish successful infections. For example, in the midgut, baculoviruses encode enzymes to degrade peritrophic membranes and use a series of per os infectivity factors to initiate primary infection. A viral fibroblast growth factor is expressed to attract tracheoblasts that spread the virus for systemic infection. Baculoviruses use different strategies to suppress host defence systems, including apoptosis, melanization and RNA interference. Additionally, baculoviruses can manipulate host physiology and induce 'tree-top disease' for optimal virus replication and dispersal. These advances in our understanding of baculoviruses will greatly inform the development of more effective baculoviral pesticides. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071 , People's Republic of China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan 430071 , People's Republic of China
| |
Collapse
|
15
|
Mangold CA, Ishler MJ, Loreto RG, Hazen ML, Hughes DP. Zombie ant death grip due to hypercontracted mandibular muscles. J Exp Biol 2019; 222:jeb200683. [PMID: 31315924 PMCID: PMC6679347 DOI: 10.1242/jeb.200683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/03/2019] [Indexed: 12/25/2022]
Abstract
There are numerous examples of parasites that manipulate the behavior of the hosts that they infect. One such host-pathogen relationship occurs between the 'zombie-ant fungus' Ophiocordyceps unilateralis sensu lato and its carpenter ant host. Infected ants climb to elevated locations and bite onto vegetation where they remain permanently affixed well after death. The mandibular muscles, but not the brain, of infected ants are extensively colonized by the fungus. We sought to investigate the mechanisms by which O. unilateralis s.l. may be able to influence mandibular muscle contraction despite widespread muscle damage. We found that infected muscles show evidence of hypercontraction. Despite the extensive colonization, both motor neurons and neuromuscular junctions appear to be maintained. Infection results in sarcolemmal damage, but this is not specific to the death grip. We found evidence of precise penetration of muscles by fungal structures and the presence of extracellular vesicle-like particles, both of which may contribute to mandibular hypercontraction.
Collapse
Affiliation(s)
- Colleen A Mangold
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Melissa J Ishler
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Raquel G Loreto
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, Institute Pasteur, Paris 75015, France
| | - Missy L Hazen
- Huck Institutes of the Life Sciences Microscopy and Cytometry Facility, Pennsylvania State University, University Park, PA 16802, USA
| | - David P Hughes
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
16
|
Gasque SN, van Oers MM, Ros VI. Where the baculoviruses lead, the caterpillars follow: baculovirus-induced alterations in caterpillar behaviour. CURRENT OPINION IN INSECT SCIENCE 2019; 33:30-36. [PMID: 31358192 DOI: 10.1016/j.cois.2019.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 06/10/2023]
Abstract
Baculoviruses are well-known for altering the behaviour of their caterpillar hosts by inducing hyperactivity (enhanced locomotion) and/or tree-top disease (climbing to elevated positions before death). These features, along with the genomic small size of baculoviruses compared to non-viral parasites and the at hand techniques for producing mutants, imply that baculoviruses are excellent tools for unravelling the molecular mechanisms underlying parasitic alteration of host behaviour. Baculoviruses can be easily mutated, allowing an optimal experimental setup in comparative studies, where for instance host gene expression can be compared between insects infected with wild-type viruses or with mutant viruses lacking genes involved in behavioural manipulation. Recent studies have revealed the first insight into the underlying molecular pathways that lead to the typical behaviour of baculovirus-infected caterpillars and into the role of light therein. Since host behaviour in general is mediated through the host's central nervous system (CNS), a promising future step will be to study how baculoviruses regulate the neuronal activity of the host.
Collapse
Affiliation(s)
- Simone N Gasque
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Vera Id Ros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
17
|
|
18
|
Llopis-Giménez A, Han Y, Kim Y, Ros VID, Herrero S. Identification and expression analysis of the Spodoptera exigua neuropeptidome under different physiological conditions. INSECT MOLECULAR BIOLOGY 2019; 28:161-175. [PMID: 30171635 DOI: 10.1111/imb.12535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neuropeptides are small signalling molecules acting as neurohormones, neurotransmitters and neuromodulators. Being part of the chemical communication system between cells within an organism, they are involved in the regulation of different aspects of animal physiology and behaviour such as feeding, reproduction, development and locomotion. Transcriptomic data from larval and adult tissues have been obtained and mined to generate a comprehensive neuropeptidome for the polyphagous insect pest Spodoptera exigua. Sixty-three neuropeptides have been identified and described based on their tissue specificity and their regulation in response to different abiotic perturbations. Expression analyses have identified those neuropeptides involved in ingestive and digestive behaviour of S. exigua larvae and revealed a general pattern of upregulation in the midgut during larval starvation. Our results represent a comprehensive neuropeptidome of a lepidopteran species that will be highly relevant to future studies and provide novel information of the insect's perception of its environment.
Collapse
Affiliation(s)
- A Llopis-Giménez
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Burjassot (Valencia), Spain
| | - Y Han
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | - Y Kim
- Department of Bio-Sciences, Andong National University, Andong, Republic of Korea
| | - V I D Ros
- Laboratory of Virology, Wageningen University & Research, Wageningen, Netherlands
| | - S Herrero
- Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Burjassot (Valencia), Spain
| |
Collapse
|
19
|
Bhattarai MK, Bhattarai UR, Feng JN, Wang D. Effect of Different Light Spectrum in Helicoverpa armigera Larvae during HearNPV Induced Tree-Top Disease. INSECTS 2018; 9:insects9040183. [PMID: 30518028 PMCID: PMC6316081 DOI: 10.3390/insects9040183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 01/04/2023]
Abstract
Lepidopteran larvae upon infection by baculovirus show positive photo-tactic movement during tree-top disease. In light of many insects exploiting specific spectral information for the different behavioral decision, each spectral wavelength of light is an individual parsimonious candidate for such behavior stimulation. Here, we investigated the responses of third instar Helicoverpa armigera larvae infected by Helicoverpa armigera nucleopolyhedrovirus (HearNPV) to white (broad-spectrum), blue (450–490 nm), UVA (320–400 nm), and UVB (290–320 nm) lights for the tree-top disease. Our findings suggest that tree-top phenomenon is induced only when the light is applied from above. Blue, white and UVA lights from above induced tree-top disease, causing infected larvae to die in an elevated position compared to those larvae living in the complete dark. In contrast, UVB from above did not induce tree-top disease. Blue light exerted the maximum photo-tactic response, significantly (p < 0.01) higher than white light. The magnitude of the response decreased with decreasing wavelength to UVA, and no response at UVB. Our results suggested that the spectral wavelength of the light has a significant effect on the induction of the tree-top disease in H. armigera third instar larvae infected with HearNPV.
Collapse
Affiliation(s)
- Mandira Katuwal Bhattarai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Upendra Raj Bhattarai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Ji-Nian Feng
- Department of Entomology, Northwest A&F University, Yangling 712100, China.
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
20
|
Han Y, van Houte S, van Oers MM, Ros VID. Baculovirus PTP2 Functions as a Pro-Apoptotic Protein. Viruses 2018; 10:v10040181. [PMID: 29642442 PMCID: PMC5923475 DOI: 10.3390/v10040181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/16/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Abstract
The family Baculoviridae encompasses a large number of invertebrate viruses, mainly infecting caterpillars of the order Lepidoptera. The baculovirus Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) induces physiological and behavioral changes in its host Spodoptera exigua, as well as immunological responses, which may affect virus transmission. Here we show that the SeMNPV-encoded protein tyrosine phosphatase 2 (PTP2) induces mild apoptosis in Spodoptera frugiperda (Sf) 21 cells upon transient expression. Transient expression of a catalytic-site mutant of ptp2 did not lead to apoptosis, indicating that the phosphatase activity of PTP2 is needed to induce apoptosis. We also found that the caspase level (indicator of apoptosis) was higher in cells transfected with the ptp2 gene than in cells transfected with the catalytic mutant. Adding a caspase inhibitor reduced the level of ptp2-induced apoptosis. Moreover, deletion of the ptp2 gene from the viral genome prevented the induction of apoptosis in S. exigua hemocytes. The virus titer and virulence indices (the viral infectivity and the time to death) were not affected by deletion of the ptp2 gene. However, the viral occlusion body yield from S. exigua larvae infected with the mutant virus lacking the ptp2 gene was much lower than the yield from larvae infected with the wild-type (WT) virus. We hypothesize that the observed pro-apoptotic effects of PTP2 are the result of PTP2-mediated immune suppression in larvae, which consequently leads to higher viral occlusion body yields.
Collapse
Affiliation(s)
- Yue Han
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Stineke van Houte
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn, Cornwall TR10 9FE, UK.
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
21
|
Timely trigger of caterpillar zombie behaviour: temporal requirements for light in baculovirus-induced tree-top disease. Parasitology 2017; 145:822-827. [DOI: 10.1017/s0031182017001822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractHost behavioural manipulation is a common strategy used by parasites to enhance their survival and/or transmission. Baculoviruses induce hyperactivity and tree-top disease (pre-death climbing behaviour) in their caterpillar hosts. However, little is known about the underlying mechanisms of this behavioural manipulation. A previous study showed that the baculovirus Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) induced tree-top disease at 3 days post infection in third instar S. exigua larvae and that light plays a key role in triggering this behaviour. Here we investigated the temporal requirements for the presence of light to trigger this behaviour and found that light from above was needed between 43 and 50 h post infection to induce tree-top disease. Infected larvae that were not exposed to light from above in this period finally died at low positions. Exposure to light prior to this period did not affect the final positions where larvae died. Overall we conclude that light in a particular time frame is needed to trigger SeMNPV-induced tree-top disease in S. exigua larvae.
Collapse
|
22
|
van Houte S, van Oers MM, Han Y, Vlak JM, Ros VID. Baculovirus infection triggers a positive phototactic response in caterpillars: a response to Dobson et al. (2015). Biol Lett 2015; 11:rsbl.2015.0633. [PMID: 26445987 DOI: 10.1098/rsbl.2015.0633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Stineke van Houte
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Yue Han
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|