1
|
Xu Z, Guan C, Cheng Z, Zhou H, Qin W, Feng J, Wan M, Zhang Y, Jia C, Shao S, Guo H, Li S, Liu B. Research trends and hotspots of circular RNA in cardiovascular disease: A bibliometric analysis. Noncoding RNA Res 2024; 9:930-944. [PMID: 38680417 PMCID: PMC11047193 DOI: 10.1016/j.ncrna.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
From a global perspective, cardiovascular diseases (CVDs), the leading factor accounting for population mortality, and circRNAs, RNA molecules with stable closed-loop structures, have been proven to be closely related. The latent clinical value and the potential role of circRNAs in CVDs have been attracting increasing, active research interest, but bibliometric studies in this field are still lacking. Thus, in this study, we conducted a bibliometric analysis by using software such as VOSviewer, CiteSpace, Microsoft Excel, and the R package to determine the current research progress and hotspots and ultimately provide an overview of the development trends and future frontiers in this field. In our study, based on our search strategy, a total of 1206 publications published before July 31, 2023 were accessed from the WOSCC database. According to our findings, there is a notable increasing trend in global publications in the field of circRNA in CVDs. China was found to be the dominant country in terms of publication number, but a lack of high-quality articles was a significant fault. A cluster analysis on the co-cited references indicated that dilated cardiomyopathy, AMI, and cardiac hypertrophy are the greatest objects of concern. In contrast, a keywords analysis indicated that high importance has been ascribed to MI, abdominal aortic aneurysm, cell proliferation, and coronary artery diseases.
Collapse
Affiliation(s)
- Zehui Xu
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chong Guan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziji Cheng
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Houle Zhou
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wanting Qin
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiaming Feng
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Melisandre Wan
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yihan Zhang
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chengyao Jia
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shuijin Shao
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Baonian Liu
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
2
|
Bononi G, Citi V, Martelli A, Poli G, Tuccinardi T, Granchi C, Testai L, Calderone V, Minutolo F. Sirtuin 1-activating derivatives belonging to the anilinopyridine class displaying in vivo cardioprotective activities. RSC Med Chem 2024; 15:267-282. [PMID: 38283227 PMCID: PMC10809423 DOI: 10.1039/d3md00489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/27/2023] [Indexed: 01/30/2024] Open
Abstract
Sirtuin 1 (SIRT1) is an enzyme that relies on NAD+ cofactor and functions as a deacetylase. It has been associated with various biological and pathological processes, including cancer, diabetes, and cardiovascular diseases. Recent studies have shown that compounds that activate SIRT1 exhibit protective effects on the heart. Consequently, targeting SIRT1 has emerged as a viable approach to treat cardiovascular diseases, leading to the identification of several SIRT1 activators derived from natural or synthetic sources. In this study, we developed anilinopyridine-based SIRT1 activators that displayed significantly greater potency in activating SIRT1 compared to the reference compound resveratrol, as demonstrated in enzymatic assays. In particular, compounds 8 and 10, representative 6-aryl-2-anilinopyridine derivatives from this series, were further investigated pharmacologically and found to reduce myocardial damage caused by occlusion and subsequent reperfusion in vivo, confirming their cardioprotective properties. Notably, the cardioprotective effects of 8 and 10 were significantly superior to that of resveratrol. Significantly, compound 10 emerged as the most potent among the tested compounds, demonstrating the ability to substantially decrease the size of the ischemic area at a dosage one hundred times lower (0.1 mg kg-1) than that of resveratrol/compound 1. These promising findings open avenues for expanding and optimizing this chemical class of potent SIRT1 activators as potential agents for cardioprotection.
Collapse
Affiliation(s)
- Giulia Bononi
- Department of Pharmacy, University of Pisa Via Bonanno 6 56126 Pisa Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa Via Bonanno 6 56126 Pisa Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa Via Bonanno 6 56126 Pisa Italy
- Center for Instrument Sharing of the University of Pisa (CISUP) Lungarno Pacinotti 43 56126 Pisa Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa Via Bonanno 6 56126 Pisa Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa Via Bonanno 6 56126 Pisa Italy
- Center for Instrument Sharing of the University of Pisa (CISUP) Lungarno Pacinotti 43 56126 Pisa Italy
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa Via Bonanno 6 56126 Pisa Italy
- Center for Instrument Sharing of the University of Pisa (CISUP) Lungarno Pacinotti 43 56126 Pisa Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa Via Bonanno 6 56126 Pisa Italy
- Center for Instrument Sharing of the University of Pisa (CISUP) Lungarno Pacinotti 43 56126 Pisa Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa Via Bonanno 6 56126 Pisa Italy
- Center for Instrument Sharing of the University of Pisa (CISUP) Lungarno Pacinotti 43 56126 Pisa Italy
| | - Filippo Minutolo
- Department of Pharmacy, University of Pisa Via Bonanno 6 56126 Pisa Italy
- Center for Instrument Sharing of the University of Pisa (CISUP) Lungarno Pacinotti 43 56126 Pisa Italy
| |
Collapse
|
3
|
Hoque P, Romero B, Akins RE, Batish M. Exploring the Multifaceted Biologically Relevant Roles of circRNAs: From Regulation, Translation to Biomarkers. Cells 2023; 12:2813. [PMID: 38132133 PMCID: PMC10741722 DOI: 10.3390/cells12242813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
CircRNAs are a category of regulatory RNAs that have garnered significant attention in the field of regulatory RNA research due to their structural stability and tissue-specific expression. Their circular configuration, formed via back-splicing, results in a covalently closed structure that exhibits greater resistance to exonucleases compared to linear RNAs. The distinctive regulation of circRNAs is closely associated with several physiological processes, as well as the advancement of pathophysiological processes in several human diseases. Despite a good understanding of the biogenesis of circular RNA, details of their biological roles are still being explored. With the steady rise in the number of investigations being carried out regarding the involvement of circRNAs in various regulatory pathways, understanding the biological and clinical relevance of circRNA-mediated regulation has become challenging. Given the vast landscape of circRNA research in the development of the heart and vasculature, we evaluated cardiovascular system research as a model to critically review the state-of-the-art understanding of the biologically relevant functions of circRNAs. We conclude the review with a discussion of the limitations of current functional studies and provide potential solutions by which these limitations can be addressed to identify and validate the meaningful and impactful functions of circRNAs in different physiological processes and diseases.
Collapse
Affiliation(s)
- Parsa Hoque
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Brigette Romero
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Robert E Akins
- Nemours Children’s Research, Nemours Children’s Health System, Wilmington, DE 19803, USA;
| | - Mona Batish
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA;
| |
Collapse
|
4
|
Carmona R, López-Sánchez C, Garcia-Martinez V, Garcia-López V, Muñoz-Chápuli R, Lozano-Velasco E, Franco D. Novel Insights into the Molecular Mechanisms Governing Embryonic Epicardium Formation. J Cardiovasc Dev Dis 2023; 10:440. [PMID: 37998498 PMCID: PMC10672416 DOI: 10.3390/jcdd10110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/25/2023] Open
Abstract
The embryonic epicardium originates from the proepicardium, an extracardiac primordium constituted by a cluster of mesothelial cells. In early embryos, the embryonic epicardium is characterized by a squamous cell epithelium resting on the myocardium surface. Subsequently, it invades the subepicardial space and thereafter the embryonic myocardium by means of an epithelial-mesenchymal transition. Within the myocardium, epicardial-derived cells present multilineage potential, later differentiating into smooth muscle cells and contributing both to coronary vasculature and cardiac fibroblasts in the mature heart. Over the last decades, we have progressively increased our understanding of those cellular and molecular mechanisms driving proepicardial/embryonic epicardium formation. This study provides a state-of-the-art review of the transcriptional and emerging post-transcriptional mechanisms involved in the formation and differentiation of the embryonic epicardium.
Collapse
Affiliation(s)
- Rita Carmona
- Department of Human Anatomy, Legal Medicine and History of Science, Faculty of Medicine, University of Málaga, 29071 Málaga, Spain;
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
| | - Virginio Garcia-Martinez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (C.L.-S.); (V.G.-M.)
| | - Virginio Garcia-López
- Department of Medical and Surgical Therapeutics, Pharmacology Area, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain;
| | - Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Málaga, 29071 Málaga, Spain;
| | - Estefanía Lozano-Velasco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain;
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain;
| |
Collapse
|
5
|
Jin C, Yuan S, Piao L, Ren M, Liu Q. Propofol synergizes with circAPBB2 to protect against hypoxia/reoxygenation-induced oxidative stress, inflammation, and apoptosis of human cardiomyocytes. Immun Inflamm Dis 2023; 11:e952. [PMID: 37647434 PMCID: PMC10408373 DOI: 10.1002/iid3.952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Myocardial injury is the main manifestation of cardiovascular diseases, and previous studies have shown that propofol (PPF) regulates myocardial injury. However, the mechanism of PPF in regulating myocardial injury remains to be further explored. This work aims to analyze the effects of PPF on human cardiomyocyte injury and the underlying mechanism. METHODS The regulatory and functional role of PPF and circAPBB2 in human cardiomyocyte injury were analyzed using an in vitro hypoxia/reoxygenation (H/R) cell model, which was established by treating human cardiomyocytes (AC16 cells) with H/R. The study evaluated AC16 cell injury by analyzing cytotoxicity, oxidative stress, inflammation and apoptosis of H/R-induced AC16 cells. Quantitative real-time polymerase chain reaction was performed to detect circAPBB2, miR-18a-5p and dual specificity phosphatase 14 (DUSP14) expression. Protein expression was analyzed by Western blot analysis assay. Dual-luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation assay were performed to identify the associations among circAPBB2, miR-18a-5p and DUSP14. Cytotoxicity was investigated by cell counting kit-8 assay and lactate dehydrogenase activity detection kit. Oxidative stress was evaluated by cellular reactive oxygen species assay kit and superoxide dismutase activity assay kit. The production of tumor necrosis factor-α and interleukin-1β was evaluated by enzyme-linked immunosorbent assays. RESULTS The expression of circAPBB2 and DUSP14 was significantly decreased, while miR-18a-5p was increased in H/R-induced AC16 cells when compared with controls. H/R treatment-induced cytotoxicity, oxidative stress, inflammation and cell apoptosis were attenuated after circAPBB2 overexpression or PPF treatment, whereas these effects were restored by increasing miR-18a-5p expression. PPF treatment improved the inhibitory effect of ectopic circAPBB2 expression on H/R-induced cell injury. MiR-18a-5p silencing ameliorated H/R-induced AC16 damage by interacting with DUSP14. Mechanically, circAPBB2 acted as a miR-18a-5p sponge, and miR-18a-5p targeted DUSP14 in AC16 cells. CONCLUSION PPF synergized with circAPBB2 to protect AC16 cells against H/R-induced oxidative stress, inflammation and apoptosis through the miR-18a-5p/DUSP14 pathway.
Collapse
Affiliation(s)
- Chenghao Jin
- Department of AnesthesiologyBeijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Shunnv Yuan
- Laboratory MedicineThe Affiliated Hospital of Yanbian UniversityJilinChina
| | - Longyi Piao
- Department of OncologyJilin Central Hospital of Jilin UniversityJilinChina
| | - Mingcheng Ren
- Department of OncologyDandong Central Hospital DandongLiaoningChina
| | - Qiang Liu
- Department of AnesthesiologyBeijing Tongren Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|