1
|
Almigbal TH, Almunif DS, Aburisheh KH, Barhoush MM, Aldhahi RA, Anabi MJ, Alotaibi OA. Echocardiographic Changes in Saudi Patients with Type 2 Diabetes Mellitus. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1985. [PMID: 38004034 PMCID: PMC10673090 DOI: 10.3390/medicina59111985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Cardiovascular disease is one of the leading causes of morbidity and mortality among the diabetic population. Given the high prevalence of diabetes mellitus (DM) in Saudi Arabia and the high prevalence of heart failure in the diabetic population, this study assesses the echocardiographic changes in Saudi patients with type 2 DM (T2DM) compared with healthy controls. Materials and Methods: In this retrospective case-control study, 80 patients with diabetes (45 males, age: 58.78 ± 10.2 years) were compared with 80 controls (45 males, age: 58.6 ± 10 years) who underwent an echocardiographic study in the King Saud University Medical City, Riyadh, Saudi Arabia. Results: There were no significant differences between the patients with diabetes and controls in terms of aortic root diameter, left atrium diameter, posterior wall, interventricular wall thickness, left ventricular diameters and ejection fraction. However, diastolic dysfunction was statistically significantly higher in the diabetic group than in the control group (p < 0.05). Conclusions: This is the first case-control study in Saudi Arabia that assesses echocardiographic parameters in T2DM patients. DM is an independent risk factor for diastolic dysfunction regardless of its association with hypertension and dyslipidemia.
Collapse
Affiliation(s)
- Turky H. Almigbal
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh P.O. Box 11495, Saudi Arabia; (D.S.A.)
| | - Dina S. Almunif
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh P.O. Box 11495, Saudi Arabia; (D.S.A.)
| | - Khaled H. Aburisheh
- University Diabetes Centre, King Saud University Medical City, King Saud University, Riyadh P.O. Box 11495, Saudi Arabia; (K.H.A.)
| | - Mazen M. Barhoush
- University Diabetes Centre, King Saud University Medical City, King Saud University, Riyadh P.O. Box 11495, Saudi Arabia; (K.H.A.)
| | - Reem A. Aldhahi
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh P.O. Box 11495, Saudi Arabia; (D.S.A.)
| | - Mohammed J. Anabi
- King Abdulaziz University Hospital, King Saud University Medical City, King Saud University, Riyadh P.O. Box 11495, Saudi Arabia
| | - Obeed A. Alotaibi
- University Diabetes Centre, King Saud University Medical City, King Saud University, Riyadh P.O. Box 11495, Saudi Arabia; (K.H.A.)
| |
Collapse
|
2
|
Gu Y, Avolio E, Alvino VV, Thomas AC, Herman A, Miller PJ, Sullivan N, Faulkner A, Madeddu P. The tyrosine kinase inhibitor Dasatinib reduces cardiac steatosis and fibrosis in obese, type 2 diabetic mice. Cardiovasc Diabetol 2023; 22:214. [PMID: 37592236 PMCID: PMC10436421 DOI: 10.1186/s12933-023-01955-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Cardiac steatosis is an early yet overlooked feature of diabetic cardiomyopathy. There is no available therapy to treat this condition. Tyrosine kinase inhibitors (TKIs) are used as first or second-line therapy in different types of cancer. In cancer patients with diabetes mellitus, TKIs reportedly improved glycemic control, allowing insulin discontinuation. They also reduced liver steatosis in a murine model of non-alcoholic fatty liver disease. The present study aimed to determine the therapeutic effect of the second-generation TKI Dasatinib on lipid accumulation and cardiac function in obese, type 2 diabetic mice. We also assessed if the drug impacts extra-cardiac fat tissue depots. METHODS Two studies on 21-week-old male obese leptin receptor mutant BKS.Cg-+Leprdb/+Leprdb/OlaHsd (db/db) mice compared the effect of Dasatinib (5 mg/kg) and vehicle (10% DMSO + 90% PEG-300) given via gavage once every three days for a week or once every week for four weeks. Functional and volumetric indices were studied using echocardiography. Post-mortem analyses included the assessment of fat deposits and fibrosis using histology, and senescence using immunohistochemistry and flow cytometry. The anti-adipogenic action of Dasatinib was investigated on human bone marrow (BM)-derived mesenchymal stem cells (MSCs). Unpaired parametric or non-parametric tests were used to compare two and multiple groups as appropriate. RESULTS Dasatinib reduced steatosis and fibrosis in the heart of diabetic mice. The drug also reduced BM adiposity but did not affect other fat depots. These structural changes were associated with improved diastolic indexes, specifically the E/A ratio and non-flow time. Moreover, Dasatinib-treated mice had lower levels of p16 in the heart compared with vehicle-treated controls, suggesting an inhibitory impact of the drug on the senescence signalling pathway. In vitro, Dasatinib inhibited human BM-MSC viability and adipogenesis commitment. CONCLUSIONS Our findings suggest that Dasatinib opposes heart and BM adiposity and cardiac fibrosis. In the heart, this was associated with favourable functional consequences, namely improvement in an index of diastolic function. Repurposing TKI for cardiac benefit could address the unmet need of diabetic cardiac steatosis.
Collapse
Affiliation(s)
- Yue Gu
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Elisa Avolio
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Valeria V Alvino
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Anita C Thomas
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
- School of Cellular and Molecular Medicine, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Andrew Herman
- School of Cellular and Molecular Medicine, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Poppy J Miller
- School of Cellular and Molecular Medicine, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | | | - Ashton Faulkner
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Paolo Madeddu
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
3
|
Schick F, Ripa RS, Hansen TW, von Scholten BJ. Editorial: Advanced Cardiovascular Imaging in Diabetes. Front Endocrinol (Lausanne) 2022; 13:848975. [PMID: 35370983 PMCID: PMC8972965 DOI: 10.3389/fendo.2022.848975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fritz Schick
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, Tübingen University Hospital, Tübingen, Germany
| | - Rasmus Sejersten Ripa
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Tine Willum Hansen
- Complications Research, Steno Diabetes Center Copenhagen (SDCC), Gentofte, Denmark
| | | |
Collapse
|
4
|
Zhao X, Liu S, Wang X, Chen Y, Pang P, Yang Q, Lin J, Deng S, Wu S, Fan G, Wang B. Diabetic cardiomyopathy: Clinical phenotype and practice. Front Endocrinol (Lausanne) 2022; 13:1032268. [PMID: 36568097 PMCID: PMC9767955 DOI: 10.3389/fendo.2022.1032268] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a pathophysiological condition of cardiac structure and function changes in diabetic patients without coronary artery disease, hypertension, and other types of heart diseases. DCM is not uncommon in people with diabetes, which increases the risk of heart failure. However, the treatment is scarce, and the prognosis is poor. Since 1972, one clinical study after another on DCM has been conducted. However, the complex phenotype of DCM still has not been fully revealed. This dilemma hinders the pace of understanding the essence of DCM and makes it difficult to carry out penetrating clinical or basic research. This review summarizes the literature on DCM over the last 40 years and discusses the overall perspective of DCM, phase of progression, potential clinical indicators, diagnostic and screening criteria, and related randomized controlled trials to understand DCM better.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of Endocrine and Metabolic Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Shengwang Liu
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Xiao Wang
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Yibing Chen
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Pai Pang
- Department of Endocrine and Metabolic Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Qianjing Yang
- Department of Endocrine and Metabolic Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Jingyi Lin
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Shuaishuai Deng
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Shentao Wu
- Department of Endocrine and Metabolic Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Guanwei Fan
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| | - Bin Wang
- Department of Endocrine and Metabolic Diseases, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Xiqing, Tianjin, China
| |
Collapse
|
5
|
Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, Gambardella J, Santulli G. Heart failure in diabetes. Metabolism 2021; 125:154910. [PMID: 34627874 PMCID: PMC8941799 DOI: 10.1016/j.metabol.2021.154910] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Heart failure and cardiovascular disorders represent the leading cause of death in diabetic patients. Here we present a systematic review of the main mechanisms underlying the development of diabetic cardiomyopathy. We also provide an excursus on the relative contribution of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells to the pathophysiology of heart failure in diabetes. After having described the preclinical tools currently available to dissect the mechanisms of this complex disease, we conclude with a section on the most recent updates of the literature on clinical management.
Collapse
Affiliation(s)
- Stanislovas S Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Scott Wilson
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy.
| |
Collapse
|
6
|
Elia E, Ministrini S, Carbone F, Montecucco F. Diabetic cardiomyopathy and inflammation: development of hostile microenvironment resulting in cardiac damage. Minerva Cardiol Angiol 2021; 70:357-369. [PMID: 33427423 DOI: 10.23736/s2724-5683.20.05454-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diabetes mellitus is emerging as a major risk factor for heart failure. Diabetic cardiomyopathy is defined as a myocardial dysfunction that is not caused by underlying hypertension or coronary artery disease. Studies about clinical features, natural history and outcomes of the disease are few and often conflicting, because a universally accepted operative definition of diabetic cardiomyopathy is still lacking. Hyperglycemia and related metabolic and endocrine disorders are the triggering factors of myocardial damage in diabetic cardiomyopathy through multiple mechanisms. Among these mechanisms, inflammation has a relevant role, similar to other chronic myocardial disease, such as hypertensive or ischemic heart disease. A balance between inflammatory damage and healing processes is fundamental for homeostasis of myocardial tissue, whereas diabetes mellitus produces an imbalance, promoting inflammation and delaying healing. Therefore, diabetes-related chronic inflammatory state can produce a progressive qualitative deterioration of myocardial tissue, which reflects on progressive left ventricular functional impairment, which can be either diastolic, with prevalent myocardial hypertrophy, or systolic, with prevalent myocardial fibrosis. The aim of this narrative review is to summarize the existing evidence about the role of inflammation in diabetic cardiomyopathy onset and development. Ultimately, potential pharmacological strategies targeting inflammatory response will be reviewed and discussed.
Collapse
Affiliation(s)
- Edoardo Elia
- Division of Cardiology, Department of Internal Medicine, Città della Salute e della Scienza, Turin, Italy
| | - Stefano Ministrini
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy - .,IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| |
Collapse
|