1
|
Johnson CF, Schafer CM, Burge KY, Coon BG, Chaaban H, Griffin CT. Endothelial RIPK3 minimizes organotypic inflammation and vascular permeability in ischemia-reperfusion injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625188. [PMID: 39651150 PMCID: PMC11623548 DOI: 10.1101/2024.11.25.625188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Recent studies have revealed a link between endothelial receptor-interacting protein kinase 3 (RIPK3) and vascular integrity. During mouse embryonic development, hypoxia can trigger elevated endothelial RIPK3 that contributes to lethal vascular rupture. However, it is unknown whether RIPK3 regulate endothelial barrier function in adult vasculature under hypoxic injury conditions such as ischemia-reperfusion (I/R) injury. Here we performed inducible genetic deletion of endothelial Ripk3 ( Ripk iECKO ) in mice, which led to elevated vascular permeability in the small intestine and multiple distal organs after intestinal I/R injury. Mechanistically, this vascular permeability correlated with increased endothelial secretion of IL-6 and organ-specific expression of VCAM-1 and ICAM-1 adhesion molecules. Circulating monocyte depletion with clodronate liposomes reduced permeability in organs with elevated adhesion molecules, highlighting the contribution of monocyte adhesion and extravasation to Ripk iECKO barrier dysfunction. These results elucidate mechanisms by which RIPK3 regulates endothelial inflammation to minimize vascular permeability in I/R injury. GRAPHICAL ABSTRACT
Collapse
|
2
|
Koc F, Magner C, Murphy K, Kelleher ST, Tan MH, O'Toole M, Jenkins D, Boyle J, Lavelle M, Maguire N, Ross PR, Stanton C, McMahon CJ. Gut Microbiome in Children with Congenital Heart Disease After Cardiopulmonary Bypass Surgery (GuMiBear Study). Pediatr Cardiol 2024:10.1007/s00246-024-03634-2. [PMID: 39174731 DOI: 10.1007/s00246-024-03634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
The gut microbiome of infants with congenital heart disease (CHD) undergoing cardiopulmonary bypass surgery (CPB) is at risk of profound alteration. The aim of this study was to examine the gut microbiome pre- and post-bypass surgery to explore potential implications of altered gut biodiversity. A prospective cohort study involving infants with CHD who underwent CPB was performed. Faecal samples were collected from infants alongside the collection of demographic and clinical data in order to examine gut microbiome changes before and after surgery. 16S rRNA sequencing analysis was performed on DNA isolated from stool samples to determine changes in gut microbiome composition. Thirty-three patients were recruited, with samples from thirteen of these available for final analysis. Compared with healthy, matched controls, at a genus level, pre-operative samples for infants with CHD demonstrated a higher relative abundance of Escherichia-Shigella (31% vs 2-6%) and a lower relative abundance of Bifidobacterium (13% vs 40-60%). In post-operative samples, the relative abundance of Escherichia-Shigella (35%), Enterococcus (11%), Akkermansia (6%), and Staphylococcus (5%) were higher than pre-op samples. One infant developed post-operative necrotising-enterocolitis (NEC). They displayed a marked abundance of the Enterococcus (93%) genus pre-operatively. This study demonstrates that infants with CHD have an altered gut microbiome when compared with healthy controls and there might be a possible link between an abundance of virulent species and NEC.
Collapse
Affiliation(s)
- Fatma Koc
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Claire Magner
- School of Nursing, Midwifery and Health Systems, University College Dublin, Dublin, Ireland
| | - Kiera Murphy
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Ireland
| | - Sean T Kelleher
- Department Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin 12, Ireland
| | - Mong H Tan
- Paediatric Intensive Care Unit, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Molly O'Toole
- Department Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin 12, Ireland
| | - Dominic Jenkins
- Laboratory, Children's Health Ireland at Crumlin, Crumlin, Ireland
| | - Jordan Boyle
- Department Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin 12, Ireland
| | - Marie Lavelle
- Department Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin 12, Ireland
| | - Niamh Maguire
- Department Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin 12, Ireland
| | - Paul R Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin J McMahon
- Department Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin 12, Ireland.
- School of Medicine, University College Dublin, Dublin, Ireland.
- School of Health Professions Education (SHE), Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
3
|
Stepan M, Oleh L, Oleksandr D, Justyna S. Effects of multimodal low-opioid anesthesia protocol during on-pump coronary artery bypass grafting: a prospective cohort study. J Cardiothorac Surg 2023; 18:272. [PMID: 37803334 PMCID: PMC10559440 DOI: 10.1186/s13019-023-02395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND The most favorable anesthesia protocol during on-pump coronary artery bypass grafting (CABG) in patients with coronary heart disease remains unclear, despite previous publications regarding the interaction between anesthesia protocol and postoperative complications. The aim of the study was to compare the effect of a multimodal low-opioid anesthesia protocol (MLOP) on early postoperative complications during on-pump CABG. METHODS A single-center prospective cohort study including 120 patients undergoing on-pump CABG aged 18 to 65 years, divided into two groups according to undergoing MLOP or routine-opioid anesthesia protocol (ROP). The analyzed parameters were plasma IL-6 levels, complications, duration of mechanical ventilation, length of intensive care unit stay, and hospitalization. RESULTS In the MLOP group, the levels of IL-6 at the end of the surgery were 25.6% significantly lower compared to the ROP group (33.4 ± 9.4 vs. 44.9 ± 15.9, p < 0.0001), the duration of mechanical ventilation was significantly shorter (2.0 (2.0; 3.0) h vs. 4.0 (3.0; 5.0) h, p < 0.001), the incidence of low cardiac output syndrome was almost two and half times lower (7 (11.7%) vs. 16 (26.7%), p = 0.037), and also the incidence of postoperative atrial fibrillation was significantly lower (9 (15.0%) vs. 19 (31.7%), p = 0.031). CONCLUSION Our study confirms that using MLOP was characterized by significantly lower levels of IL-6 at the end of surgery and a lower incidence of low cardiac output syndrome and postoperative atrial fibrillation than ROP. TRIAL REGISTRATION The study is registered in clinicaltrials.gov №NCT05514652.
Collapse
Affiliation(s)
- Maruniak Stepan
- Department of Extracorporeal Methods of Treatment, Heart Institute Ministry of Health of Ukraine, Bratyslavska str. 5A, Kyiv, 02166, Ukraine.
- Department of Anaesthesiology and Intensive Care, Shupyk National Healthcare University of Ukraine, Bratyslavska str. 3 A, Kyiv, PL, 02166, Ukraine.
- Department of Respiratory Medicine, Paracelsus Medical University, Prof.-Ernst-Nathan-Str. 1, 90419, Nuremberg, Germany.
| | - Loskutov Oleh
- Department of Extracorporeal Methods of Treatment, Heart Institute Ministry of Health of Ukraine, Bratyslavska str. 5A, Kyiv, 02166, Ukraine
- Department of Anaesthesiology and Intensive Care, Shupyk National Healthcare University of Ukraine, Bratyslavska str. 3 A, Kyiv, PL, 02166, Ukraine
| | - Druzhyna Oleksandr
- Department of Extracorporeal Methods of Treatment, Heart Institute Ministry of Health of Ukraine, Bratyslavska str. 5A, Kyiv, 02166, Ukraine
- Department of Anaesthesiology and Intensive Care, Shupyk National Healthcare University of Ukraine, Bratyslavska str. 3 A, Kyiv, PL, 02166, Ukraine
| | - Swol Justyna
- Department of Respiratory Medicine, Paracelsus Medical University, Prof.-Ernst-Nathan-Str. 1, 90419, Nuremberg, Germany
| |
Collapse
|
4
|
Benscoter AL, Alten JA, Atreya MR, Cooper DS, Byrnes JW, Nelson DP, Ollberding NJ, Wong HR. Biomarker-based risk model to predict persistent multiple organ dysfunctions after congenital heart surgery: a prospective observational cohort study. Crit Care 2023; 27:193. [PMID: 37210541 PMCID: PMC10199562 DOI: 10.1186/s13054-023-04494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Multiple organ dysfunction syndrome (MODS) is an important cause of post-operative morbidity and mortality for children undergoing cardiac surgery requiring cardiopulmonary bypass (CPB). Dysregulated inflammation is widely regarded as a key contributor to bypass-related MODS pathobiology, with considerable overlap of pathways associated with septic shock. The pediatric sepsis biomarker risk model (PERSEVERE) is comprised of seven protein biomarkers of inflammation and reliably predicts baseline risk of mortality and organ dysfunction among critically ill children with septic shock. We aimed to determine if PERSEVERE biomarkers and clinical data could be combined to derive a new model to assess the risk of persistent CPB-related MODS in the early post-operative period. METHODS This study included 306 patients < 18 years old admitted to a pediatric cardiac ICU after surgery requiring cardiopulmonary bypass (CPB) for congenital heart disease. Persistent MODS, defined as dysfunction of two or more organ systems on postoperative day 5, was the primary outcome. PERSEVERE biomarkers were collected 4 and 12 h after CPB. Classification and regression tree methodology were used to derive a model to assess the risk of persistent MODS. RESULTS The optimal model containing interleukin-8 (IL-8), chemokine ligand 3 (CCL3), and age as predictor variables had an area under the receiver operating characteristic curve (AUROC) of 0.86 (0.81-0.91) for differentiating those with or without persistent MODS and a negative predictive value of 99% (95-100). Ten-fold cross-validation of the model yielded a corrected AUROC of 0.75 (0.68-0.84). CONCLUSIONS We present a novel risk prediction model to assess the risk for development of multiple organ dysfunction after pediatric cardiac surgery requiring CPB. Pending prospective validation, our model may facilitate identification of a high-risk cohort to direct interventions and studies aimed at improving outcomes via mitigation of post-operative organ dysfunction.
Collapse
Affiliation(s)
- Alexis L Benscoter
- Division of Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave, MLC 2003, Cincinnati, OH, 45229, USA.
| | - Jeffrey A Alten
- Division of Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave, MLC 2003, Cincinnati, OH, 45229, USA
| | - Mihir R Atreya
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - David S Cooper
- Division of Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave, MLC 2003, Cincinnati, OH, 45229, USA
| | - Jonathan W Byrnes
- Division of Cardiology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David P Nelson
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Kentucky, Lexington, KY, USA
| | - Nicholas J Ollberding
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Hector R Wong
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
5
|
Benscoter AL, Alten JA, Atreya MR, Cooper DS, Byrnes JW, Nelson DP, Ollberding NJ, Wong HR. Biomarker-based risk model to predict persistent multiple organ dysfunctions after congenital heart surgery â€" A prospective observational cohort study. RESEARCH SQUARE 2023:rs.3.rs-2488327. [PMID: 36747744 PMCID: PMC9901021 DOI: 10.21203/rs.3.rs-2488327/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background: Multiple organ dysfunction syndrome (MODS) is an important cause of post-operative morbidity and mortality for children undergoing cardiac surgery requiring cardiopulmonary bypass (CPB). Dysregulated inflammation is widely regarded as a key contributor to bypass-related MODS pathobiology, with considerable overlap of pathways associated with septic shock. The pediatric sepsis biomarker risk model (PERSEVERE) is comprised of seven protein biomarkers of inflammation, and reliably predicts baseline risk of mortality and organ dysfunction among critically ill children with septic shock. We aimed to determine if PERSEVERE biomarkers and clinical data could be combined to derive a new model to assess the risk of persistent CPB-related MODS in the early post-operative period. Methods: This study included 306 patients <18 years old admitted to a pediatric cardiac ICU after surgery requiring cardiopulmonary bypass (CPB) for congenital heart disease. Persistent MODS, defined as dysfunction of two or more organ systems on postoperative day 5, was the primary outcome. PERSEVERE biomarkers were collected 4 and 12 hours after CPB. Classification and Regression Tree methodology was used to derive a model to assess the risk of persistent MODS. Results: The optimal model containing interleukin-8 (IL-8), chemokine ligand 3 (CCL3), and age as predictor variables, had an area under the receiver operating characteristic curve (AUROC) of 0.86 (0.81-0.91) for differentiating those with or without persistent MODS, and a negative predictive value of 99% (95-100). Ten-fold cross-validation of the model yielded a corrected AUROC of 0.75. Conclusions: We present a novel risk prediction model to assess the risk for development of multiple organ dysfunction after pediatric cardiac surgery requiring CPB. Pending prospective validation, our model may facilitate identification of a high-risk cohort to direct interventions and studies aimed at improving outcomes via mitigation of post-operative organ dysfunction. Clinical Trial Registration Number: This study does not meet criteria for a clinical trial per the WHO International Clinical Trials Registry Platform as no intervention was performed.
Collapse
Affiliation(s)
- Alexis L. Benscoter
- University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center
| | - Jeffrey A. Alten
- University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center
| | - Mihir R. Atreya
- University of Cincinnati, Cincinnati Children’s Hospital Medical Center
| | - David S. Cooper
- University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center
| | | | | | | | - Hector R. Wong
- University of Cincinnati, Cincinnati Children’s Hospital Medical Center
| |
Collapse
|
6
|
Kajimoto M, Nuri M, Sleasman JR, Charette KA, Kajimoto H, Portman MA. Right ventricular energy metabolism in a porcine model of acute right ventricular pressure overload after weaning from cardiopulmonary bypass. Physiol Rep 2022; 10:e15421. [PMID: 36394073 PMCID: PMC9669618 DOI: 10.14814/phy2.15421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 06/16/2023] Open
Abstract
Acute right ventricular pressure overload (RVPO) occurs following congenital heart surgery and often results in low cardiac output syndrome. We tested the hypothesis that the RV exhibits limited ability to modify substrate utilization in response to increasing energy requirements during acute RVPO after cardiopulmonary bypass (CPB). We assessed the RV fractional contributions (Fc) of substrates to the citric acid cycle in juvenile pigs exposed to acute RVPO by pulmonary artery banding (PAB) and CPB. Sixteen Yorkshire male pigs (median 38 days old, 12.2 kg of body weight) were randomized to SHAM (Ctrl, n = 5), 2-h CPB (CPB, n = 5) or CPB with PAB (PAB-CPB, n = 6). Carbon-13 (13 C)-labeled lactate, medium-chain, and mixed long-chain fatty acids (MCFA and LCFAs) were infused as metabolic tracers for energy substrates. After weaning from CPB, RV systolic pressure (RVSP) doubled baseline in PAB-CPB while piglets in CPB group maintained normal RVSP. Fc-LCFAs decreased significantly in order PAB-CPB > CPB > Ctrl groups by 13 C-NMR. Fc-lactate and Fc-MCFA were similar among the three groups. Intragroup analysis for PAB-CPB showed that the limited Fc-LCFAs appeared prominently in piglets exposed to high RVSP-to-left ventricular systolic pressure ratio and high RV rate-pressure product, an indicator of myocardial oxygen demand. Acute RVPO after CPB strongly inhibits LCFA oxidation without compensation by lactate oxidation, resulting in energy deficiency as determined by lower (phosphocreatine)/(adenosine triphosphate) in PAB-CPB. Adequate energy supply but also metabolic interventions may be required to circumvent these RV energy metabolic abnormalities during RVPO after CPB.
Collapse
Affiliation(s)
- Masaki Kajimoto
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Muhammad Nuri
- Division of Cardiothoracic Surgery at Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Justin R. Sleasman
- Division of Pediatric Cardiac SurgeryLucile Packard Children's HospitalPalo AltoCaliforniaUSA
| | - Kevin A. Charette
- Division of Pediatric Cardiac SurgerySeattle Children's HospitalSeattleWashingtonUSA
| | - Hidemi Kajimoto
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
| | - Michael A. Portman
- Center for Integrative Brain ResearchSeattle Children's Research InstituteSeattleWashingtonUSA
- Division of Cardiology, Department of PediatricsUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
7
|
Zou L, Yu D, Wang R, Cun Y, Li Y, Wang Q, Shu Y, Mo X. Predictors of Low Cardiac Output Syndrome in Infants After Open-Heart Surgery. Front Pediatr 2022; 10:829731. [PMID: 35359906 PMCID: PMC8960261 DOI: 10.3389/fped.2022.829731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To evaluate the predictors of low cardiac output syndrome (LCOS) in infants with congenital heart disease (CHD) after cardiopulmonary bypass (CPB). STUDY DESIGN A total of 217 infants were enrolled and classified according to whether they developed LCOS after cardiac surgery. Each infant's preoperative and intraoperative clinical variables were collected. RESULTS The incidence of LCOS was 28.11% in our study. The univariate analysis showed that the LCOS group was younger than the non-LCOS group (25.69 ± 25.01 days vs. 44.45 ± 26.97 days, P < 0.001), with a higher proportion of neonates (60.7 vs. 27.6%, P < 0.001) and a higher proportion of patients with a RACHS-1 score ≥4 (50.8 vs. 17.9%, P < 0.001). A lower weight (3.70 ± 0.74 vs. 4.23 ± 1.10 kg, P = 0.001), longer ACC time (61.96 ± 21.44 min vs. 41.06 ± 18.37 min, P < 0.001) and longer CPB time (131.54 ± 67.21 min vs. 95.78 ± 62.67 min, P < 0.001) were found in the LCOS group. The levels of free triiodothyronine (FT3) (4.55 ± 1.29 pmol/L vs. 5.18 ± 1.42 pmol/L, P = 0.003) and total triiodothyronine (TT3) (1.80 ± 0.56 nmol/L vs. 1.98 ± 0.54 nmol/L, P = 0.026) were also lower in the LCOS group. The multivariate binary logistic regression analysis and receiver operating characteristic (ROC) indicated that the ACC time, FT3 level and body weight were independent predictors of LCOS. CONCLUSIONS In our patient population, we first propose that preoperative FT3 can predict the occurrence of postoperative LCOS. ACC time, FT3 level and body weight are independent predictors of LCOS and maybe helpful in reducing the incidence of postoperative LCOS in the future.
Collapse
Affiliation(s)
- Liang Zou
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Di Yu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ruonan Wang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yueshuang Cun
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yaping Li
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qingfeng Wang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yaqin Shu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Wang P, Fu C, Bai G, Cuan L, Tang X, Jin C, Jin H, Zhu J, Xie C. Risk factors of postoperative low cardiac output syndrome in children with congenital heart disease: A systematic review and meta-analysis. Front Pediatr 2022; 10:954427. [PMID: 36704129 PMCID: PMC9871777 DOI: 10.3389/fped.2022.954427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Low cardiac output syndrome (LCOS) is the most common complication after cardiac surgery, which is associated with the extension of postoperative hospital stay and postoperative death in children with congenital heart disease (CHD). Although there are some studies on the risk factors of LCOS in children with CHD, an unified conclusion is lack at present. PURPOSES To synthesize the risk factors of LCOS after CHD in children, and to provide evidence-based insights into the early identification and early intervention of LCOS. METHODS The databases of the China National Knowledge Infrastructure (CNKI), Wanfang Database, China Science and Technology Journal Database (VIP), PubMed, Cochrane Library, Embase and Web of Science were searched for relevant articles that were published between the establishing time of each database and January 2022. Based on retrospective records or cohort studies, the influencing factors of postoperative low cardiac output in children with congenital heart disease were included in Meta analysis.This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The risk of bias was evaluated according to the Newcastle-Ottawa Scale (NOS). RevMan 5.4 software was used to conduct the meta-analysis. RESULTS A total of 1,886 records were screened, of which 18 were included in the final review. In total, 37 risk factors were identified in the systematic review. Meta- analysis showed that age, type of CHD, cardiac reoperation, biventricular shunt before operation, CPB duration, ACC duration, postoperative residual shunt, cTn-1 level 2 h after CPB > 14 ng/ml and postoperative 24 h MR-ProADM level > 1.5 nmol/l were independent risk factors of LCOS. Additionally, the level of blood oxygen saturation before the operation was found to have no statistically significant relationship with LOCS. CONCLUSION The risk factors of postoperative LCOS in children with CHD are related to disease condition, intraoperative time and postoperative related indexes, so early prevention should be aimed at high-risk children. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier: CRD42022323043.
Collapse
Affiliation(s)
- Peiying Wang
- Department of Pediatric Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Cangcang Fu
- Department of Nursing, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guannan Bai
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Linbo Cuan
- Department of Pediatric Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaomin Tang
- Department of Pediatric Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chendi Jin
- Cardiac Intensive Care Unit, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hongchong Jin
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jihua Zhu
- Department of Pediatric Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chunhong Xie
- Department of Cardiovascular Medicine, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|