1
|
Huang M, Zou Y, Wang W, Li Q, Tian R. The role of baseline 18F-FDG PET/CT for survival prognosis in NSCLC patients undergoing immunotherapy: a systematic review and meta-analysis. Ther Adv Med Oncol 2024; 16:17588359241293364. [PMID: 39502406 PMCID: PMC11536524 DOI: 10.1177/17588359241293364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Background The value of pretreatment baseline 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET)/computed tomography (CT) as a prognostic factor for survival of patients with non-small-cell lung cancer (NSCLC) receiving immunotherapy remained uncertain. Objectives To investigate the prognostic ability of baseline 18F-FDG PET/CT in patients with NSCLC receiving immunotherapy. Design A systematic review and meta-analysis. Data sources and methods We searched the PubMed, EMBASE, and Cochrane Central Register of Controlled Trials databases until May 7, 2024, and extracted data related to patient characteristics, semiquantitative parameters of 18F-FDG PET/CT, and survival. We pooled hazard ratios (HRs) to evaluate the prognostic value of the maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) for overall survival (OS) and progression-free survival (PFS). Results A total of 22 studies (1363 patients, average age range 30-88 years) were included. Baseline 18F-FDG PET/CT-derived MTV was significantly associated with both OS (HR: 1.124, 95% confidence interval (CI) 1.058-1.195, I 2 = 81.70%) and PFS (HR: 1.069, 95% CI: 1.016-1.124, I 2 = 71.80%). Other baseline 18F-FDG PET/CT-derived parameters, including SUVmax (OS: HR: 0.930, 95% CI: 0.718-1.230; PFS: HR: 0.979, 95% CI: 0.759-1.262), SUVmean (OS: HR: 0.801, 95% CI: 0.549-1.170; PFS: HR: 0.688, 95% CI: 0.464-1.020), and TLG (OS: HR: 0.999, 95% CI: 0.980-1.018; PFS: HR: 0.995, 95% CI: 0.980-1.010), were not associated with survival. Sensitivity analyses by removing one study at a time did not significantly alter the association between MTV and PFS or between MTV and OS. There was no evidence of publication bias. Conclusion Pretreatment baseline 18F-FDG PET/CT-derived MTV might be a prognostic biomarker in NSCLC patients receiving immunotherapy. Further studies are needed to support routine use.
Collapse
Affiliation(s)
- Mingxing Huang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuheng Zou
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Weichen Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qianrui Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan 610041, China
- National Medical Products Administration Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China
- Chinese Evidence-Based Medicine Center, Cochrane China Center and MAGIC China Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Rozani S, Lykoudis PM. The impact of intestinal and mammary microbiomes on breast cancer development: A review on the microbiota and oestrobolome roles in tumour microenvironments. Am J Surg 2024; 237:115795. [PMID: 38853033 DOI: 10.1016/j.amjsurg.2024.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Microbiota affects carcinogenesis by altering energy equilibrium, increasing fat mass, synthesizing small signaling molecules, and formulating and regulating immune response and indigestible food ingredient, xenobiotic, and pharmaceutical compound metabolism. The intestinal microbiome can moderate oestrogen and other steroid hormone metabolisms, and secrete bioactive metabolites that are important for tumour microenvironment. Specifically, the breast tissue microbiome could become altered and lead to breast cancer development. The study of oestrobolome, the microbiomic component that metabolizes oestrogens, can contribute to better breast cancer understanding and subsequent treatment. Investigating oestrobolome-related oestrogen metabolism mechanisms in immune system regulation can shed light on how intestinal microorganisms regulate tumour microenvironment. Intestinal and regional breast microbiomes can determine treatment lines and serve as possible biomarkers for breast cancer. The aim of this study is to summarise current evidence on the role of microbiome in breast cancer progression with particular interest in therapeutic and diagnostic implementation.
Collapse
Affiliation(s)
- Sofia Rozani
- Faculty of Medicine, National and Kapodistrian University of Athens, Greece.
| | - Panagis M Lykoudis
- Faculty of Medicine, National and Kapodistrian University of Athens, Greece; Honorary Lecturer, Division of Surgery and Interventional Science, University College London (UCL), United Kingdom
| |
Collapse
|
3
|
Wehlte L, Walter J, Daisenberger L, Kuhnle F, Ingenerf M, Schmid-Tannwald C, Brendel M, Kauffmann-Guerrero D, Heinzerling L, Tufman A, Pfluger T, Völter F. The Association between the Body Mass Index, Chronic Obstructive Pulmonary Disease and SUV of the Non-Tumorous Lung in the Pretreatment [ 18F]FDG-PET/CT of Patients with Lung Cancer. Diagnostics (Basel) 2024; 14:1139. [PMID: 38893665 PMCID: PMC11171792 DOI: 10.3390/diagnostics14111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Background: A debate persists on the prognostic value of the pre-therapeutic standardized uptake value (SUV) of non-tumorous lung tissue for the risk assessment of therapy-related pneumonitis, with most studies lacking significant correlation. However, the influence of patient comorbidities on the pre-therapeutic lung SUV has not yet been systematically evaluated. Thus, we aimed to elucidate the association between comorbidities, biological variables and lung SUVs in pre-therapeutic [18F]FDG-PET/CT. Methods: In this retrospective study, the pre-therapeutic SUV in [18F]FDG-PET/CT was measured in non-tumorous areas of both lobes of the lung. SUVMEAN, SUVMAX and SUV95 were compared to a multitude of patient characteristics and comorbidities with Spearman's correlation analysis, followed by a Bonferroni correction and multilinear regression. Results: In total, 240 patients with lung cancer were analyzed. An elevated BMI was significantly associated with increased SUVMAX (β = 0.037, p < 0.001), SUVMEAN (β = 0.017, p < 0.001) and SUV95 (β = 0.028, p < 0.001). Patients with chronic obstructive pulmonary disease (COPD) showed a significantly decreased SUVMAX (β = -0.156, p = 0.001), SUVMEAN (β = -0.107, p < 0.001) and SUV95 (β = -0.134, p < 0.001). Multiple other comorbidities did not show a significant correlation with the SUV of the non-tumorous lung. Conclusions: Failure to consider the influence of BMI and COPD on the pre-therapeutic SUV measurements may lead to an erroneous interpretation of the pre-therapeutic SUV and subsequent treatment decisions in patients with lung cancer.
Collapse
Affiliation(s)
- Lukas Wehlte
- Department of Medicine V, LMU University Hospital, 80336 Munich, Germany
| | - Julia Walter
- Department of Medicine V, LMU University Hospital, 80336 Munich, Germany
- German Center for Lung Research (DZL CPC-M), 81377 Munich, Germany
| | - Lea Daisenberger
- Department of Dermatology and Allergy, LMU University Hospital, 80336 Munich, Germany
| | - Felix Kuhnle
- Department of Radiology, LMU University Hospital, 80336 Munich, Germany
| | - Maria Ingenerf
- Department of Radiology, LMU University Hospital, 80336 Munich, Germany
| | | | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, 80336 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Diego Kauffmann-Guerrero
- Department of Medicine V, LMU University Hospital, 80336 Munich, Germany
- German Center for Lung Research (DZL CPC-M), 81377 Munich, Germany
| | - Lucie Heinzerling
- Department of Dermatology and Allergy, LMU University Hospital, 80336 Munich, Germany
- Department of Dermatology, University Hospital Erlangen, Comprehensive Cancer Center Erlangen—European Metropolitan Region Nürnberg, CCC Alliance WERA, 91054 Erlangen, Germany
| | - Amanda Tufman
- Department of Medicine V, LMU University Hospital, 80336 Munich, Germany
- German Center for Lung Research (DZL CPC-M), 81377 Munich, Germany
| | - Thomas Pfluger
- Department of Nuclear Medicine, LMU University Hospital, 80336 Munich, Germany
| | - Friederike Völter
- Department of Nuclear Medicine, LMU University Hospital, 80336 Munich, Germany
| |
Collapse
|
4
|
Hansen I, Gebhardt C, Booken N, Schneider SW. Erfolgreiche Behandlung eines Checkpoint‐Inhibitor‐assoziierten bullösen Pemphigoids mit Dupilumab bei Angiosarkom. J Dtsch Dermatol Ges 2024; 22:587-590. [PMID: 38574016 DOI: 10.1111/ddg.15340_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/16/2023] [Indexed: 04/06/2024]
Affiliation(s)
- Inga Hansen
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Christoffer Gebhardt
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Nina Booken
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Stefan W Schneider
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| |
Collapse
|
5
|
Hansen I, Gebhardt C, Booken N, Schneider SW. Successful treatment of checkpoint inhibitor-associated bullous pemphigoid with dupilumab in a patient with angiosarcoma. J Dtsch Dermatol Ges 2024; 22:587-589. [PMID: 38379256 DOI: 10.1111/ddg.15340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/16/2023] [Indexed: 02/22/2024]
Affiliation(s)
- Inga Hansen
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Christoffer Gebhardt
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Nina Booken
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Stefan W Schneider
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| |
Collapse
|
6
|
Kifjak D, Hochmair M, Sobotka D, Haug AR, Ambros R, Prayer F, Heidinger BH, Roehrich S, Milos RI, Wadsak W, Fuereder T, Krenbek D, Fazekas A, Meilinger M, Mayerhoefer ME, Langs G, Herold C, Prosch H, Beer L. Metabolic tumor volume and sites of organ involvement predict outcome in NSCLC immune-checkpoint inhibitor therapy. Eur J Radiol 2024; 170:111198. [PMID: 37992608 DOI: 10.1016/j.ejrad.2023.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/13/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
PURPOSE The purpose of this study was to assess the ability of pretreatment PET parameters and peripheral blood biomarkers to predict progression-free survival (PFS) and overall survival (OS) in NSCLC patients treated with ICIT. METHODS We prospectively included 87 patients in this study who underwent pre-treatment [18F]-FDG PET/CT. Organ-specific and total metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were measured using a semiautomatic software. Sites of organ involvement (SOI) were assessed by PET/CT. The log-rank test and Cox-regression analysis were used to assess associations between clinical, laboratory, and imaging parameters with PFS and OS. Time dependent ROC were calculated and model performance was evaluated in terms of its clinical utility. RESULTS MTV increased with the number of SOI and was correlated with neutrophil and lymphocyte cell count (Spearman's rho = 0.27 or 0.32; p =.02 or 0.003; respectively). Even after adjustment for known risk factors, such as PD-1 expression and neutrophil cell count, the MTV and the number of SOI were independent risk factors for progression (per 100 cm3; adjusted hazard ratio [aHR]: 1.13; 95% confidence interval [95%CI]: 1.01-1.28; p =.04; single SOI vs. ≥ 4 SOI: aHR: 2.26, 95%CI: 1.04-4.94; p =.04). MTV and the number of SOI were independent risk factors for overall survival (per 100 cm3 aHR: 1.11, 95%CI: 1.01-1.23; p =.03; single SOI vs. ≥ 4 SOI: aHR: 4.54, 95%CI: 1.64-12.58; p =.04). The combination of MTV and the number of SOI improved the risk stratification for PFS and OS (log-rank test p <.001; C-index: 0.64 and 0.67). CONCLUSION The MTV and the number of SOI are simple imaging markers that provide complementary information to facilitate risk stratification in NSCLC patients scheduled for ICIT.
Collapse
Affiliation(s)
- Daria Kifjak
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Department of Radiology, UMass Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA, USA; Christian Doppler Laboratory for Machine Learning Driven Precision, Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Maximilian Hochmair
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Daniel Sobotka
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alexander R Haug
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Raphael Ambros
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Florian Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Benedikt H Heidinger
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Sebastian Roehrich
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ruxandra-Iulia Milos
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Thorsten Fuereder
- Department of Internal Medicine I & Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Dagmar Krenbek
- Department of Pathology and Bacteriology, Klinik Floridsdorf, Brünner Strasse 68, 1210 Vienna, Austria
| | - Andreas Fazekas
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Michael Meilinger
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Marius E Mayerhoefer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Christian Doppler Laboratory for Machine Learning Driven Precision, Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria; Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christian Herold
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Machine Learning Driven Precision, Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria.
| | - Lucian Beer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Machine Learning Driven Precision, Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| |
Collapse
|
7
|
Zhao Z, Yua Y. Antibiotic adoption effects on nutrition and quality of life in lung cancer patients undergoing radiotherapy and chemotherapy: A meta-analysis. Technol Health Care 2024; 32:4515-4536. [PMID: 39520156 PMCID: PMC11612965 DOI: 10.3233/thc-240660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Lung cancer (LC) is one of the leading causes of death worldwide. Treatment methodologies such as chemotherapy and radiotherapy have improved patient survival rates. Nevertheless, these treatments can also lead to adverse reactions and impact patients' nutritional status and quality of life (QOL). Antibiotics are commonly used for treating infections, but there is still controversy regarding their potential adverse effects on LC patients. OBJECTIVE This work aimed to investigate the impact of antibiotic adoption on the nutritional status and QOL of LC patients undergoing radiotherapy or chemotherapy, providing valuable insights for the clinical management of LC. METHODS A meta-analysis approach was employed to comprehensively evaluate the relationship by synthesizing relevant literature. Published studies were identified through searches in databases such as PubMed, EMBASE, Cochrane Library, Web of Science, and CNKI. The inclusion criteria encompassed randomized controlled trials, cohort studies, and cross-sectional studies. Assessment indicators included patient weight, BMI, hemoglobin levels, and QOL. Meta-analysis was conducted using software such as the Cochrane Collaboration and RevMan5.3. Heterogeneity was evaluated using the Higgins I2 index, where values between 25% and 50% indicate moderate heterogeneity, and values greater than 50% indicate substantial heterogeneity. RESULTS 12 eligible studies involving 1,917 patients were finally included. LC patients who received antibiotics during radiotherapy or chemotherapy were found to have a higher risk of malnutrition. The antibiotic group exhibited a more significant decrease in body mass index (BMI) (P< 0.05) and lower serum albumin levels (P< 0.05) versus the control (C) group. Additionally, the overall QOL scores in the antibiotic group were dramatically lower than those in the C group, showing a significant difference with P< 0.05. Sensitivity analysis indicated that the overall conclusions of this work were robust and unbiased. CONCLUSION Antibiotics in LC patients undergoing radiotherapy or chemotherapy may increase the risk of malnutrition and decrease their QOL. Hence, physicians should carefully consider antibiotics and take necessary preventive measures and supportive treatments to improve LC patients' nutritional status and QOL.
Collapse
Affiliation(s)
- Zhifeng Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiangzhaung, Hebei, China
| | - Yadong Yua
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiangzhaung, Hebei, China
| |
Collapse
|
8
|
Alshammari K, Alotaibi FM, Alsugheir F, Aldawoud M, Alolayan A, Algarni MA, Sabatin F, Mohammad MF, Alosaimi A, Sanai FM, Odah H, Alshehri AS, Aldibasi OS, Alrehaily S, Al Saleh AS. Antibiotic Exposure Concurrently with Anti-PD1 Blockade Therapy Reduces Overall Survival in Patients with Child-Pugh Class A Advanced Hepatocellular Carcinoma. Cancers (Basel) 2023; 16:133. [PMID: 38201560 PMCID: PMC10777962 DOI: 10.3390/cancers16010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide with a poor prognosis. Treatment with immune checkpoint inhibitors (ICIs) has improved overall survival in patients with HCC. However, not all patients benefit from the treatment. In this study, 59 patients with HCC were enrolled from two medical centers in Saudi Arabia, with 34% using antibiotics concurrently with their Nivolumab (anti-PD1 blockade). The impact of antibiotic use on the clinical outcomes of patients with HCC undergoing treatment with anti-PD1 blockade was examined. The patients' overall survival (OS) was 5 months (95% CI: 3.2, 6.7) compared to 10 months (95% CI: 0, 22.2) (p = 0.08). Notably, patients with Child-Pugh A cirrhosis receiving anti-PD1 blockade treatment without concurrent antibiotic use showed a significantly longer median OS reaching 22 months (95% CI: 6.5, 37.4) compared to those who were given antibiotics with a median OS of 6 months (95% CI: 2.7, 9.2) (p = 0.02). This difference in overall survival was particularly found in Child-Pugh class A patients receiving anti-PD1 blockade. These findings suggest that antibiotic use may negatively affect survival outcomes in HCC patients undergoing anti-PD1 blockade, potentially due to antibiotic-induced alterations to the gut microbiome impacting the anti-PD1 blockade response. This study suggests the need for careful consideration when prescribing antibiotics to patients with HCC receiving anti-PD1 blockade.
Collapse
Affiliation(s)
- Kanan Alshammari
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia; (K.A.); (F.A.); (M.A.); (A.A.); (M.A.A.); (F.S.); (A.A.); (O.S.A.); (A.S.A.S.)
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
| | - Faizah M. Alotaibi
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia; (K.A.); (F.A.); (M.A.); (A.A.); (M.A.A.); (F.S.); (A.A.); (O.S.A.); (A.S.A.S.)
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Alahsa 31982, Saudi Arabia
| | - Futoon Alsugheir
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia; (K.A.); (F.A.); (M.A.); (A.A.); (M.A.A.); (F.S.); (A.A.); (O.S.A.); (A.S.A.S.)
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
| | - Mohammad Aldawoud
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia; (K.A.); (F.A.); (M.A.); (A.A.); (M.A.A.); (F.S.); (A.A.); (O.S.A.); (A.S.A.S.)
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
| | - Ashwaq Alolayan
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia; (K.A.); (F.A.); (M.A.); (A.A.); (M.A.A.); (F.S.); (A.A.); (O.S.A.); (A.S.A.S.)
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
| | - Mohammed Ahmad Algarni
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia; (K.A.); (F.A.); (M.A.); (A.A.); (M.A.A.); (F.S.); (A.A.); (O.S.A.); (A.S.A.S.)
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
| | - Fouad Sabatin
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia; (K.A.); (F.A.); (M.A.); (A.A.); (M.A.A.); (F.S.); (A.A.); (O.S.A.); (A.S.A.S.)
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
| | - Mohammad F. Mohammad
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
- Abdominal Imaging Section, Department of Radiology, King Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Abdulaziz Alosaimi
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia; (K.A.); (F.A.); (M.A.); (A.A.); (M.A.A.); (F.S.); (A.A.); (O.S.A.); (A.S.A.S.)
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
| | - Faisal M. Sanai
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Jeddah 21423, Saudi Arabia; (F.M.S.); dr.hassan-@hotmail.com (H.O.); (A.S.A.); (S.A.)
| | - Hassan Odah
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Jeddah 21423, Saudi Arabia; (F.M.S.); dr.hassan-@hotmail.com (H.O.); (A.S.A.); (S.A.)
| | - Ahmed Saleh Alshehri
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Jeddah 21423, Saudi Arabia; (F.M.S.); dr.hassan-@hotmail.com (H.O.); (A.S.A.); (S.A.)
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Jeddah 21423, Saudi Arabia
| | - Omar S. Aldibasi
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia; (K.A.); (F.A.); (M.A.); (A.A.); (M.A.A.); (F.S.); (A.A.); (O.S.A.); (A.S.A.S.)
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
| | - Samah Alrehaily
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Jeddah 21423, Saudi Arabia; (F.M.S.); dr.hassan-@hotmail.com (H.O.); (A.S.A.); (S.A.)
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Jeddah 21423, Saudi Arabia
| | - Abdullah S. Al Saleh
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia; (K.A.); (F.A.); (M.A.); (A.A.); (M.A.A.); (F.S.); (A.A.); (O.S.A.); (A.S.A.S.)
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
| |
Collapse
|
9
|
Abdelhamid A, Tuminello S, Ivic-Pavlicic T, Flores R, Taioli E. Antibiotic treatment and survival in non-small cell lung cancer patients receiving immunotherapy: a systematic review and meta-analysis. Transl Lung Cancer Res 2023; 12:2427-2439. [PMID: 38205205 PMCID: PMC10775008 DOI: 10.21037/tlcr-23-597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Background In patients with non-small cell lung cancer (NSCLC), immune checkpoint inhibitors (ICIs) are an effective mode of treatment. Despite their efficacy, responses to ICIs have been shown to differ based on several factors; for example, antibiotic use prior to and/or during immunotherapy has been associated with lower survival in NSCLC patients. The objective of this study is to provide an updated review of the literature and to fill in important knowledge gaps by accounting for potential confounding in the relationship between ICIs and survival. Methods We performed a systematic review and meta-analysis on peer-reviewed studies that examined the effects of antibiotic use on overall survival (OS) and progression-free survival (PFS) in NSCLC patients treated with ICIs. We searched MEDLINE for studies published up to June 30th, 2023 that included NSCLC patients treated with anti-programmed cell death protein 1 (PD-1) or programmed death-ligand 1 (PD-L1) agents, who received antibiotics before and/or during immunotherapy, and included a control group who did not receive antibiotics and had available data on the associations between antibiotics and OS and PFS. We calculated aggregated crude OS and PFS for all studies, and only for studies that reported multivariable hazard ratios (HRs). Risk of bias was assessed using a funnel plot. All results were synthesized and displayed using the metaphor statistical package in R, version 4.2.1. Results Nineteen studies, conducted between 2017 and 2022, met the inclusion criteria, and included 2,932 patients with advanced and/or metastatic NSCLC. Compared to those who did not receive antibiotics, immunotherapy patients who did had a significantly reduced PFS (HR: 1.22, 95% CI: 1.03-1.44) and OS (HR: 1.56, 95% CI: 1.23-1.99). Adjusted HRs were even more pronounced (OS HRadj: 1.67, 95% CI: 1.23-2.27, PFS HRadj: 1.64, 95% CI: 1.16-2.32). Conclusions NSCLC patients treated with antibiotics have significantly lowered survival compared with patients not treated with antibiotics. These results support the hypothesis that antibiotic use in conjunction with ICI among NSCLC patients lowers survival. Limitations of this analysis include the use of studies available only on a single database, limiting the literature search to NSCLC patients, which may impact the generalizability of results to other cancer patient populations, and the inability to account for and adjust the estimates for the same variables (e.g., age, sex) across all studies. Nevertheless, our findings underscore the importance of taking antibiotic use into consideration when using ICIs to treat NSCLC and suggest that confounders should be taken into account when designing future similar studies.
Collapse
Affiliation(s)
- Arwa Abdelhamid
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie Tuminello
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Tara Ivic-Pavlicic
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raja Flores
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emanuela Taioli
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Zhang H, Xu Z. Gut-lung axis: role of the gut microbiota in non-small cell lung cancer immunotherapy. Front Oncol 2023; 13:1257515. [PMID: 38074650 PMCID: PMC10701269 DOI: 10.3389/fonc.2023.1257515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/03/2023] [Indexed: 11/02/2024] Open
Abstract
Immunotherapy for non-small cell lung cancer (NSCLC) has advanced considerably over the past two decades. In particular, immune checkpoint inhibitors are widely used for treating NSCLC. However, the overall cure and survival rates of patients with NSCLC remain low. Therefore, continuous investigation into complementary treatments is necessary to expand the clinical advantages of immunotherapy to a larger cohort of patients with NSCLC. Recently, the distinctive role of the gut microbiota (GM) in the initiation, progression, and dissemination of cancer has attracted increasing attention. Emerging evidence indicates a close relationship between the gut and lungs, known as the gut-lung axis (GLA). In this review, we aim to provide a comprehensive summary of the current knowledge regarding the connection between the GM and the outcomes of immunotherapy in NSCLC, with particular focus on the recent understanding of GLA. Overall, promising GM-based therapeutic strategies have been observed to improve the effectiveness or reduce the toxicity of immunotherapy in patients with NSCLC, thus advancing the utilization of microbiota precision medicine.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ziyuan Xu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Ueta R, Imai H, Saijo K, Kawamura Y, Kodera S, Komine K, Ouchi K, Kasahara Y, Taniguchi S, Yoshida Y, Sasaki K, Shirota H, Takahashi M, Ishioka C. Antibiotics May Interfere with Nivolumab Efficacy in Patients with Head and Neck Squamous Cell Carcinoma. Oncology 2023; 102:252-259. [PMID: 37708868 DOI: 10.1159/000533860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Patients with the head and neck squamous cell carcinoma (SCC) are often treated with immune checkpoint inhibitors (ICIs). Recently, antibiotic intake was reported to lower the efficacy of ICIs in patients with several types of cancers. However, it is unclear if antibiotics affect the efficacy of ICIs in patients with head and neck SCC. We retrospectively assessed the influence of antibiotics on the treatment efficacy of nivolumab, an ICI, in patients with head and neck SCC. METHODS We reviewed the medical records of patients with head and neck SCC treated with nivolumab at the Department of Medical Oncology, Tohoku University Hospital, between 2017 and 2021. Patients who received oral or intravenous antibiotics from a month before the day of nivolumab initiation to the day of the first imaging evaluation of ICI efficacy were assigned to the antibiotic-treated group. The remaining patients were assigned to the antibiotic-untreated group. The response rate (RR), progression-free survival (PFS), and overall survival time (OS) of both groups were compared. RESULTS Forty-five patients were assigned to the antibiotic-treated group and 19 to the antibiotic-untreated group. The RR, median PFS, and median OS of the antibiotic-treated group were 23.7%, 3.2 months (95% confidential interval [CI]: 2.0-4.1), and 8.4 months (95% CI: 5.3-15.1) and those of the antibiotic-untreated group were 42.1%, 5.8 months (95% CI: 2.3-16.7), and 18.4 months (95% CI: 6.2-23.1), respectively. The PFS of the antibiotic-untreated group was significantly longer than that of the antibiotic-treated group. CONCLUSION Our findings indicate that antibiotic treatment significantly shortens the PFS with nivolumab therapy in patients with head and neck SCC.
Collapse
Affiliation(s)
- Reio Ueta
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroo Imai
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan,
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan,
| | - Ken Saijo
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshifumi Kawamura
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuto Kodera
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keigo Komine
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Ouchi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Kasahara
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sakura Taniguchi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuya Yoshida
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiju Sasaki
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hidekazu Shirota
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masanobu Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chikashi Ishioka
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
12
|
Kudura K, Ritz N, Templeton AJ, Kutzker T, Foerster R, Antwi K, Kreissl MC, Hoffmann MHK. Predictive Value of Total Metabolic Tumor Burden Prior to Treatment in NSCLC Patients Treated with Immune Checkpoint Inhibition. J Clin Med 2023; 12:jcm12113725. [PMID: 37297920 DOI: 10.3390/jcm12113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVES We aimed to assess the predictive value of the total metabolic tumor burden prior to treatment in patients with advanced non-small-cell lung cancer (NSCLC) receiving immune checkpoint inhibitors (ICIs). METHODS Pre-treatment 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (PET/CT) scans performed in two consecutive years for staging in adult patients with confirmed NSCLC were considered. Volume, maximum/mean standardized uptake value (SUVmax/SUVmean), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were assessed per delineated malignant lesion (including primary tumor, regional lymph nodes and distant metastases) in addition to the morphology of the primary tumor and clinical data. Total metabolic tumor burden was captured by totalMTV and totalTLG. Overall survival (OS), progression-free survival (PFS) and clinical benefit (CB) were used as endpoints for response to treatment. RESULTS A total of 125 NSCLC patients were included. Osseous metastases were the most frequent distant metastases (n = 17), followed by thoracal distant metastases (pulmonal = 14 and pleural = 13). Total metabolic tumor burden prior to treatment was significantly higher in patients treated with ICIs (mean totalMTV ± standard deviation (SD) 72.2 ± 78.7; mean totalTLG ± SD 462.2 ± 538.9) compared to those without ICI treatment (mean totalMTV ± SD 58.1 ± 233.8; mean totalTLG ± SD 290.0 ± 784.2). Among the patients who received ICIs, a solid morphology of the primary tumor on imaging prior to treatment was the strongest outcome predictor for OS (Hazard ratio HR 28.04, p < 0.01), PFS (HR 30.89, p < 0.01) and CB (parameter estimation PE 3.46, p < 0.01), followed by the metabolic features of the primary tumor. Interestingly, total metabolic tumor burden prior to immunotherapy showed a negligible impact on OS (p = 0.04) and PFS (p = 0.01) after treatment given the hazard ratios of 1.00, but also on CB (p = 0.01) given the PE < 0.01. Overall, biomarkers on pre-treatment PET/CT scans showed greater predictive power in patients receiving ICIs, compared to patients without ICI treatment. CONCLUSIONS Morphological and metabolic properties of the primary tumors prior to treatment in advanced NSCLC patients treated with ICI showed great outcome prediction performances, as opposed to the pre-treatment total metabolic tumor burdens, captured by totalMTV and totalTLG, both with negligible impact on OS, PFS and CB. However, the outcome prediction performance of the total metabolic tumor burden might be influenced by the value itself (e.g., poorer prediction performance at very high or very low values of total metabolic tumor burden). Further studies including subgroup analysis with regards to different values of total metabolic tumor burden and their respective outcome prediction performances might be needed.
Collapse
Affiliation(s)
- Ken Kudura
- Department of Nuclear Medicine, Sankt Clara Hospital, 4058 Basel, Switzerland
- Department of Radiology, Sankt Clara Hospital, 4058 Basel, Switzerland
- Sankt Clara Research, 4002 Basel, Switzerland
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Nando Ritz
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Arnoud J Templeton
- Sankt Clara Research, 4002 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Tim Kutzker
- Faculty of Applied Statistics, Humboldt University, 10117 Berlin, Germany
| | - Robert Foerster
- Department of Radiooncology, Cantonal Hospital Winterthur, 8400 Winterthur, Switzerland
| | - Kwadwo Antwi
- Department of Nuclear Medicine, Sankt Clara Hospital, 4058 Basel, Switzerland
- Department of Radiology, Sankt Clara Hospital, 4058 Basel, Switzerland
| | - Michael C Kreissl
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Martin H K Hoffmann
- Department of Nuclear Medicine, Sankt Clara Hospital, 4058 Basel, Switzerland
- Department of Radiology, Sankt Clara Hospital, 4058 Basel, Switzerland
| |
Collapse
|
13
|
Stein-Thoeringer CK, Saini NY, Zamir E, Blumenberg V, Schubert ML, Mor U, Fante MA, Schmidt S, Hayase E, Hayase T, Rohrbach R, Chang CC, McDaniel L, Flores I, Gaiser R, Edinger M, Wolff D, Heidenreich M, Strati P, Nair R, Chihara D, Fayad LE, Ahmed S, Iyer SP, Steiner RE, Jain P, Nastoupil LJ, Westin J, Arora R, Wang ML, Turner J, Menges M, Hidalgo-Vargas M, Reid K, Dreger P, Schmitt A, Müller-Tidow C, Locke FL, Davila ML, Champlin RE, Flowers CR, Shpall EJ, Poeck H, Neelapu SS, Schmitt M, Subklewe M, Jain MD, Jenq RR, Elinav E. A non-antibiotic-disrupted gut microbiome is associated with clinical responses to CD19-CAR-T cell cancer immunotherapy. Nat Med 2023; 29:906-916. [PMID: 36914893 PMCID: PMC10121864 DOI: 10.1038/s41591-023-02234-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/25/2023] [Indexed: 03/14/2023]
Abstract
Increasing evidence suggests that the gut microbiome may modulate the efficacy of cancer immunotherapy. In a B cell lymphoma patient cohort from five centers in Germany and the United States (Germany, n = 66; United States, n = 106; total, n = 172), we demonstrate that wide-spectrum antibiotics treatment ('high-risk antibiotics') prior to CD19-targeted chimeric antigen receptor (CAR)-T cell therapy is associated with adverse outcomes, but this effect is likely to be confounded by an increased pretreatment tumor burden and systemic inflammation in patients pretreated with high-risk antibiotics. To resolve this confounding effect and gain insights into antibiotics-masked microbiome signals impacting CAR-T efficacy, we focused on the high-risk antibiotics non-exposed patient population. Indeed, in these patients, significant correlations were noted between pre-CAR-T infusion Bifidobacterium longum and microbiome-encoded peptidoglycan biosynthesis, and CAR-T treatment-associated 6-month survival or lymphoma progression. Furthermore, predictive pre-CAR-T treatment microbiome-based machine learning algorithms trained on the high-risk antibiotics non-exposed German cohort and validated by the respective US cohort robustly segregated long-term responders from non-responders. Bacteroides, Ruminococcus, Eubacterium and Akkermansia were most important in determining CAR-T responsiveness, with Akkermansia also being associated with pre-infusion peripheral T cell levels in these patients. Collectively, we identify conserved microbiome features across clinical and geographical variations, which may enable cross-cohort microbiome-based predictions of outcomes in CAR-T cell immunotherapy.
Collapse
Affiliation(s)
- Christoph K Stein-Thoeringer
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Internal Medicine I, University Clinic Tuebingen, Tuebingen, Germany
| | - Neeraj Y Saini
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, USA.
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA.
| | - Eli Zamir
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Viktoria Blumenberg
- Medizinische Klinik III, LMU Klinikum, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany
| | - Maria-Luisa Schubert
- Department of Hematology, Oncology and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Uria Mor
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias A Fante
- Department of Internal Medicine III, University Clinic Regensburg, Regensburg, Germany
| | - Sabine Schmidt
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eiko Hayase
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Tomo Hayase
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Roman Rohrbach
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chia-Chi Chang
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren McDaniel
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Ivonne Flores
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Rogier Gaiser
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Edinger
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany
- Department of Internal Medicine III, University Clinic Regensburg, Regensburg, Germany
- Leibnitz Institut für Immuntherapie (LIT), Regensburg, Germany
| | - Daniel Wolff
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany
- Department of Internal Medicine III, University Clinic Regensburg, Regensburg, Germany
- Leibnitz Institut für Immuntherapie (LIT), Regensburg, Germany
| | - Martin Heidenreich
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany
- Leibnitz Institut für Immuntherapie (LIT), Regensburg, Germany
| | - Paolo Strati
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Ranjit Nair
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Dai Chihara
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Luis E Fayad
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Swaminathan P Iyer
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Raphael E Steiner
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Loretta J Nastoupil
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Westin
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Reetakshi Arora
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Michael L Wang
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Joel Turner
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - Meghan Menges
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Kayla Reid
- Department of Clinical Science, Moffitt Cancer Center, Tampa, FL, USA
| | - Peter Dreger
- Department of Hematology, Oncology and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Anita Schmitt
- Department of Hematology, Oncology and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Frederick L Locke
- Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center and Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Marco L Davila
- Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center and Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Hendrik Poeck
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany
- Department of Internal Medicine III, University Clinic Regensburg, Regensburg, Germany
- Leibnitz Institut für Immuntherapie (LIT), Regensburg, Germany
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Schmitt
- Department of Hematology, Oncology and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Marion Subklewe
- Medizinische Klinik III, LMU Klinikum, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF), partner site Munich, Munich, Germany
| | - Michael D Jain
- Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center and Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Robert R Jenq
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA.
- CPRIT Scholar in Cancer Research, University of Texas, Houston, USA.
| | - Eran Elinav
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Knisely A, Seo YD, Wargo JA, Chelvanambi M. Monitoring and Modulating Diet and Gut Microbes to Enhance Response and Reduce Toxicity to Cancer Treatment. Cancers (Basel) 2023; 15:777. [PMID: 36765735 PMCID: PMC9913233 DOI: 10.3390/cancers15030777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/28/2023] Open
Abstract
The gut microbiome comprises a diverse array of microbial species that have been shown to dynamically modulate host immunity both locally and systemically, as well as contribute to tumorigenesis. In this review, we discuss the scientific evidence on the role that gut microbes and diet play in response and toxicity to cancer treatment. We highlight studies across multiple cancer cohorts that have shown an association between particular gut microbiome signatures and an improved response to immune checkpoint blockade, chemotherapy, and adoptive cell therapies, as well as the role of particular microbes in driving treatment-related toxicity and how the microbiome can be modulated through strategies, such as fecal transplant. We also summarize the current literature that implicate high fiber and ketogenic diets in improved response rates to immunotherapy and chemotherapy, respectively. Finally, we discuss the relevance of these findings in the context of patient care, advocate for a holistic approach to cancer treatment, and comment on the next frontier of targeted gut and tumor microbiome modulation through novel therapeutics, dietary intervention, and precision-medicine approaches.
Collapse
Affiliation(s)
- Anne Knisely
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongwoo David Seo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A. Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Manoj Chelvanambi
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
15
|
Wang G, He X, Wang Q. Intratumoral bacteria are an important "accomplice" in tumor development and metastasis. Biochim Biophys Acta Rev Cancer 2023; 1878:188846. [PMID: 36496095 DOI: 10.1016/j.bbcan.2022.188846] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/09/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
As emerging tumor components, intratumoral bacteria have been found in many solid tumors. Several studies have demonstrated that different cancer subtypes have distinct microbial compositions, and mechanistic studies have shown that intratumoral bacteria may promote cancer initiation and progression through DNA damage, epigenetic modification, inflammatory responses, modulation of host immunity and activation of oncogenes or oncogenic pathways. Moreover, intratumoral bacteria have been shown to modulate tumor metastasis and chemotherapy response. A better understanding of the tumor microenvironment and its associated microbiota will facilitate the design of new metabolically engineered species, opening up a new era of intratumoral bacteria-based cancer therapy. However, many questions remain to be resolved, such as where intratumoral bacteria originate and whether there is a direct causal relationship between intratumoral bacteria and tumor susceptibility. In addition, suitable preclinical models and more advanced detection techniques are crucial for studying the biological functions of intratumoral bacteria. In this review, we summarize the complicated role of intratumoral bacteria in the regulation of cancer development and metastasis and discuss their carcinogenic mechanisms and potential therapeutic aspects.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China; Department of General Surgery, The 74th Group Army Hospital, Guangzhou 510318, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Qian Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
16
|
Crespin A, Le Bescop C, de Gunzburg J, Vitry F, Zalcman G, Cervesi J, Bandinelli PA. A systematic review and meta-analysis evaluating the impact of antibiotic use on the clinical outcomes of cancer patients treated with immune checkpoint inhibitors. Front Oncol 2023; 13:1075593. [PMID: 36937417 PMCID: PMC10019357 DOI: 10.3389/fonc.2023.1075593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have considerably improved patient outcomes in various cancer types, but their efficacy remains poorly predictable among patients. The intestinal microbiome, whose balance and composition can be significantly altered by antibiotic use, has recently emerged as a factor that may modulate ICI efficacy. The objective of this systematic review and meta-analysis is to investigate the impact of antibiotics on the clinical outcomes of cancer patients treated with ICIs. Methods PubMed and major oncology conference proceedings were systematically searched to identify all studies reporting associations between antibiotic use and at least one of the following endpoints: Overall Survival (OS), Progression-Free Survival (PFS), Objective Response Rate (ORR) and Progressive Disease (PD) Rate. Pooled Hazard Ratios (HRs) for OS and PFS, and pooled Odds Ratios (ORs) for ORR and PD were calculated. Subgroup analyses on survival outcomes were also performed to investigate the potential differential effect of antibiotics according to cancer types and antibiotic exposure time windows. Results 107 articles reporting data for 123 independent cohorts were included, representing a total of 41,663 patients among whom 11,785 (28%) received antibiotics around ICI initiation. The pooled HRs for OS and PFS were respectively of 1.61 [95% Confidence Interval (CI) 1.48-1.76] and 1.45 [95% CI 1.32-1.60], confirming that antibiotic use was significantly associated with shorter survival. This negative association was observed consistently across all cancer types for OS and depending on the cancer type for PFS. The loss of survival was particularly strong when antibiotics were received shortly before or after ICI initiation. The pooled ORs for ORR and PD were respectively of 0.59 [95% CI 0.47-0.76] and 1.86 [95% CI 1.41-2.46], suggesting that antibiotic use was significantly associated with worse treatment-related outcomes. Conclusion As it is not ethically feasible to conduct interventional, randomized, controlled trials in which antibiotics would be administered to cancer patients treated with ICIs to demonstrate their deleterious impact versus control, prospective observational studies and interventional trials involving microbiome modifiers are crucially needed to uncover the role of microbiome and improve patient outcomes. Such studies will reduce the existing publication bias by allowing analyses on more homogeneous populations, especially in terms of treatments received, which is not possible at this stage given the current state of the field. In the meantime, antibiotic prescription should be cautiously considered in cancer patients receiving ICIs. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42019145675.
Collapse
Affiliation(s)
- Athéna Crespin
- Da Volterra, Paris, France
- *Correspondence: Athéna Crespin,
| | | | | | | | - Gérard Zalcman
- Department of Thoracic Oncology and CIC1425, Institut du Cancer AP-HP, Nord, Hôpital Bichat-Claude Bernard, AP-HP, Université de Paris, Paris, France
- U830 Institut National de la Santé et de la Recherche Médicale (INSERM) “Cancer, Heterogeneity, Instability and Plasticity” Curie Institute, Paris, France
| | | | | |
Collapse
|
17
|
Kudura K, Ritz N, Kutzker T, Hoffmann MHK, Templeton AJ, Foerster R, Kreissl MC, Antwi K. Predictive Value of Baseline FDG-PET/CT for the Durable Response to Immune Checkpoint Inhibition in NSCLC Patients Using the Morphological and Metabolic Features of Primary Tumors. Cancers (Basel) 2022; 14:6095. [PMID: 36551581 PMCID: PMC9776660 DOI: 10.3390/cancers14246095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Objectives: We aimed to investigate the predictive value of baseline 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (FDG-PET/CT) for durable responses to immune checkpoint inhibitors (ICIs) by linking the morphological and metabolic features of primary tumors (PTs) in nonsmall cell lung cancer (NSCLC) patients. Methods: For the purpose of this single-center study, the imaging data of the patients with a first diagnosis of NSCLC and an available baseline FDG-PET/CT between 2020 and 2021 were retrospectively assessed. The baseline characteristics were collected based on clinical reports and interdisciplinary tumor board documentation. The metabolic (such as standardized uptake value SUV maximum and mean (SUVmax, SUV mean), metabolic tumor volume (MTV), total lesion glycolysis (TLG)) and morphological (such as volume, morphology, margin, and presence of lymphangiosis through imaging) features of all the PTs were retrospectively assessed using FDG-PET/CT. Overall survival (OS), progression-free survival (PFS), clinical benefit (CB) and mortality rate were used as endpoints to define the long-term response to therapy. A backward, stepwise logistic regression analysis was performed in order to define the best model for predicting lasting responses to treatment. Statistical significance was assumed at p < 0.05. Results: A total of 125 patients (median age ± standard deviation (SD) 72.0 ± 9.5 years) were enrolled: 64 men (51.2%) and 61 women (48.8%). Adenocarcinoma was by far the most common histological subtype of NSCLC (47.2%). At the initial diagnosis, the vast majority of all the included patients showed either locally advanced disease (34.4%) or metastatic disease (36.8%). Fifty patients were treated with ICIs either as a first-line (20%) or second-line (20%) therapy, while 75 patients did not receive ICIs. The median values ± SD of PT SUVmax, mean, MTV, and TLG were respectively 10.1 ± 6.0, 6.1 ± 3.5, 13.5 ± 30.7, and 71.4 ± 247.7. The median volume of PT ± SD was 13.7 ± 30.7 cm3. The PTs were most frequently solid (86.4%) with irregular margins (76.8%). Furthermore, in one out of five cases, the morphological evidence of lymphangiosis was seen through imaging (n = 25). The median follow-up ± SD was 18.93 ± 6.98 months. The median values ± SD of OS and PFS were, respectively, 14.80 ± 8.68 months and 14.03 ± 9.02 months. Age, PT volume, SUVmax, TLG, the presence of lymphangiosis features through imaging, and clinical stage IV were very strong long-term outcome predictors of patients treated with ICIs, while no significant outcome predictors could be found for the cohort with no ICI treatment. The optimal cut-off values were determined for PT volume (26.94 cm3) and SUVmax (15.05). Finally, 58% of NSCLC patients treated with ICIs had a CB vs. 78.7% of patients in the cohort with no ICI treatment. However, almost all patients treated with ICIs and with disease progression over time died (mortality in the case of disease progression 95% vs. 62.5% in the cohort without ICIs). Conclusion: Baseline FDG-PET/CT could be used to predict a durable response to ICIs in NSCLC patients. Age, clinical stage IV, lymphangiosis features through imaging, PT volume (thus PT MTV due to a previously demonstrated linear correlation), PT SUVmax, and TLG were very strong long-term outcome predictors. Our results highlight the importance of linking clinical data, as much as morphological features, to the metabolic parameters of primary tumors in a multivariate outcome-predicting model using baseline FDG-PET/CT.
Collapse
Affiliation(s)
- Ken Kudura
- Department of Nuclear Medicine, Sankt Clara Hospital, 4058 Basel, Switzerland
| | - Nando Ritz
- Faculty of Medicine, University of Basel, 4058 Basel, Switzerland
| | - Tim Kutzker
- Faculty of Applied Statistics, Humboldt University, 10 117 Berlin, Germany
| | | | - Arnoud J. Templeton
- Faculty of Medicine, University of Basel, 4058 Basel, Switzerland
- Sankt Clara Research, 4002 Basel, Switzerland
| | - Robert Foerster
- Department of Radiooncology, Cantonal Hospital Winterthur, 8400 Winterthur, Switzerland
| | - Michael C. Kreissl
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Kwadwo Antwi
- Department of Nuclear Medicine, Sankt Clara Hospital, 4058 Basel, Switzerland
| |
Collapse
|
18
|
Ling T, Zhang L, Peng R, Yue C, Huang L. Prognostic value of 18F-FDG PET/CT in patients with advanced or metastatic non-small-cell lung cancer treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Front Immunol 2022; 13:1014063. [PMID: 36466905 PMCID: PMC9713836 DOI: 10.3389/fimmu.2022.1014063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/20/2022] [Indexed: 08/30/2023] Open
Abstract
PURPOSE This study aimed to investigate the value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in predicting early immunotherapy response of immune checkpoint inhibitors (ICIs) in patients with advanced or metastatic non-small-cell lung cancer (NSCLC). METHODS A comprehensive search of PubMed, Web of science, Embase and the Cochrane library was performed to examine the prognostic value of 18F-FDG PET/CT in predicting early immunotherapy response of ICIs in patients with NSCLC. The main outcomes for evaluation were overall survival (OS) and progression-free survival (PFS). Detailed data from each study were extracted and analyzed using STATA 14.0 software. RESULTS 13 eligible articles were included in this systematic review. Compared to baseline 18F-FDG PET/CT imaging, the pooled hazard ratios (HR) of maximum and mean standardized uptake values SUVmax, SUVmean, MTV and TLG for OS were 0.88 (95% CI: 0.69-1.12), 0.79 (95% CI: 0.50-1.27), 2.10 (95% CI: 1.57-2.82) and 1.58 (95% CI: 1.03-2.44), respectively. The pooled HR of SUVmax, SUVmean, MTV and TLG for PFS were 1.06 (95% CI: 0.68-1.65), 0.66 (95% CI: 0.48-0.90), 1.50 (95% CI: 1.26-1.79), 1.27 (95% CI: 0.92-1.77), respectively. Subgroup analysis showed that high MTV group had shorter OS than low MTV group in both first line group (HR: 1.97, 95% CI: 1.39-2.79) and undefined line group (HR: 2.11, 95% CI: 1.61-2.77). High MTV group also showed a shorter PFS in first line group (HR: 1.85, 95% CI: 1.28-2.68), and low TLG group had a longer OS in undefined group (HR: 1.37, 95% CI: 1.00-1.86). No significant differences were in other subgroup analysis. CONCLUSION Baseline MTV and TLG may have predictive value and should be prospectively studied in clinical trials. Baseline SUVmax and SUVmean may not be appropriate prognostic markers in advanced or metastatic NSCLC patients treated with ICIs. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=323906, identifier CRD42022323906.
Collapse
Affiliation(s)
- Tao Ling
- Department of Pharmacy, Suqian First Hospital, Suqian, China
| | - Lianghui Zhang
- Department of Oncology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Rui Peng
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Yue
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Lingli Huang
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Yu J, Yin Y, Yu Y, Cheng M, Zhang S, Jiang S, Dong M. Effect of concomitant antibiotics use on patient outcomes and adverse effects in patients treated with ICIs. Immunopharmacol Immunotoxicol 2022; 45:386-394. [PMID: 36382735 DOI: 10.1080/08923973.2022.2145966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jiuhang Yu
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yichuang Yin
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Yu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengfei Cheng
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuo Zhang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuai Jiang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mei Dong
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
20
|
Zhu K, Su D, Wang J, Cheng Z, Chin Y, Chen L, Chan C, Zhang R, Gao T, Ben X, Jing C. Predictive value of baseline metabolic tumor volume for non-small-cell lung cancer patients treated with immune checkpoint inhibitors: A meta-analysis. Front Oncol 2022; 12:951557. [PMID: 36147904 PMCID: PMC9487526 DOI: 10.3389/fonc.2022.951557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have emerged as a promising treatment option for advanced non-small-cell lung cancer (NSCLC) patients, highlighting the need for biomarkers to identify responders and predict the outcome of ICIs. The purpose of this study was to evaluate the predictive value of baseline standardized uptake value (SUV), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) derived from 18F-FDG-PET/CT in advanced NSCLC patients receiving ICIs. Methods PubMed and Web of Science databases were searched from January 1st, 2011 to July 18th, 2022, utilizing the search terms “non-small-cell lung cancer”, “PET/CT”, “standardized uptake value”, “metabolic tumor volume”, “ total lesion glycolysis”, and “immune checkpoint inhibitors”. Studies that analyzed the association between PET/CT parameters and objective response, immune-related adverse events (irAEs) and prognosis of NSCLC patients treated with ICIs were included. We extracted the hazard ratio (HR) with a 95% confidence interval (CI) for progression-free survival (PFS) and overall survival (OS). We performed a meta-analysis of HR using Review Manager v.5.4.1. Results Sixteen studies were included for review and thirteen for meta-analysis covering 770 patients. As for objective response and irAEs after ICIs, more studies with consistent assessment methods are needed to determine their relationship with MTV. In the meta-analysis, low SUVmax corresponded to poor PFS with a pooled HR of 0.74 (95% CI, 0.57-0.96, P=0.02). And a high level of baseline MTV level was related to shorter PFS (HR=1.45, 95% CI, 1.11-1.89, P<0.01) and OS (HR, 2.72; 95% CI, 1.97-3.73, P<0.01) especially when the cut-off value was set between 50-100 cm3. SUVmean and TLG were not associated with the prognosis of NSCLC patients receiving ICIs. Conclusions High level of baseline MTV corresponded to shorter PFS and OS, especially when the cut-off value was set between 50-100 cm3. MTV is a potential predictive value for the outcome of ICIs in NSCLC patients.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Danqian Su
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Jianing Wang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Zhouen Cheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Yiqiao Chin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Luyin Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Chingtin Chan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Rongcai Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Tianyu Gao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaosong Ben
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Xiaosong Ben, ; Chunxia Jing,
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
- *Correspondence: Xiaosong Ben, ; Chunxia Jing,
| |
Collapse
|
21
|
Saadani H, Aalbersberg EA, Schats W, Hoekstra OS, Stokkel MPM, de Vet HCW. Comparing [18F]FDG PET/CT response criteria in melanoma and lung cancer patients treated with immunotherapy: a systematic review. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Zhou J, Huang G, Wong WC, Hu DH, Zhu JW, Li R, Zhou H. The impact of antibiotic use on clinical features and survival outcomes of cancer patients treated with immune checkpoint inhibitors. Front Immunol 2022; 13:968729. [PMID: 35967438 PMCID: PMC9367677 DOI: 10.3389/fimmu.2022.968729] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Background Nowadays, immune checkpoint inhibitors (ICIs) have become one of the essential immunotherapies for cancer patients. However, the impact of antibiotic (ATB) use on cancer patients treated with ICIs remains controversial. Methods Our research included retrospective studies and a randomized clinical trial (RCT) with cancer patients treated with ICIs and ATB, from the public database of PubMed, Web of Science, Embase, Cochrane, clinical trials, and JAMA. The survival outcomes included progression-free survival (PFS) and overall survival (OS). Meanwhile, hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated, and subgroup analyses were performed to determine the concrete association between ATB use and the prognosis of cancer patients treated in ICIs. Results Our results revealed that ATB use was associated with poor survival outcomes, including OS (HR: 1.94, 95% CI: 1.68–2.25, p <0.001) and PFS (HR: 1.83, 95% CI: 1.53–2.19, p <0.001). The subgroup analysis learned about the association between ATB use and the prognosis of cancer patients with ICI treatment, including 5 cancer types, 3 kinds of ICI, 5 different ATP windows, broad-spectrum ATB class, and ECOG score. ATB treatment was associated with poor OS of non-small-cell lung cancer (NSCLC), renal cell carcinoma (RCC), esophageal cancer (EC), and melanoma (MEL) in patients treated in ICIs, while non-small-cell lung cancer (NSCLC) and renal cell carcinoma (RCC) were associated with poor PFS. Meanwhile, it was strongly related to the ICI type and ATB window. Furthermore, it is firstly mentioned that the use of broad-spectrum ATB class was strongly associated with poor PFS. Conclusion In conclusion, our meta-analysis indicated that ATB use was significantly associated with poor OS and PFS of cancer patients treated with ICI immunotherapy, especially for patients with ATB use in the period of (−60 days; +30 days) near the initiation of ICI treatment. Also, different cancer types and the ICI type can also impact the survival outcome. This first reveals the strong relationship between the broad-spectrum ATB class and poor PFS. Still, more studies are needed for further study.
Collapse
Affiliation(s)
- Jiaxin Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Guowei Huang
- Shunde Hospital Affiliated to Jinan University, Guangzhou, China
| | - Wan-Ching Wong
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Da-hai Hu
- International School, Jinan University, Guangzhou, China
| | - Jie-wen Zhu
- College of Science and Engineering, Jinan University, Guangzhou, China
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Ruiman Li, ; Hong Zhou,
| | - Hong Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Ruiman Li, ; Hong Zhou,
| |
Collapse
|
23
|
The gut microbiome, immune check point inhibition and immune-related adverse events in non-small cell lung cancer. Cancer Metastasis Rev 2022; 41:347-366. [PMID: 35876944 PMCID: PMC9388426 DOI: 10.1007/s10555-022-10039-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/07/2022] [Indexed: 11/04/2022]
Abstract
Systemic treatment options for patients with lung cancer have expanded in recent years, with a number of immunotherapeutic strategies now in our treatment armamentarium. Toxicity of and resistance to treatment hold a major stake in lung cancer morbidity and mortality. Herein, we summarise the background, current evidence and potential mechanisms underlying the role of the commensal gut microbiota in immunotherapy outcomes such as response and toxicity in patients with non-small cell lung cancer (NSCLC).
Collapse
|
24
|
Li Y, Wang S, Lin M, Hou C, Li C, Li G. Analysis of interactions of immune checkpoint inhibitors with antibiotics in cancer therapy. Front Med 2022; 16:307-321. [PMID: 35648368 DOI: 10.1007/s11684-022-0927-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
Abstract
The discovery of immune checkpoint inhibitors, such as PD-1/PD-L1 and CTLA-4, has played an important role in the development of cancer immunotherapy. However, immune-related adverse events often occur because of the enhanced immune response enabled by these agents. Antibiotics are widely applied in clinical treatment, and they are inevitably used in combination with immune checkpoint inhibitors. Clinical practice has revealed that antibiotics can weaken the therapeutic response to immune checkpoint inhibitors. Studies have shown that the gut microbiota is essential for the interaction between immune checkpoint inhibitors and antibiotics, although the exact mechanisms remain unclear. This review focuses on the interactions between immune checkpoint inhibitors and antibiotics, with an in-depth discussion about the mechanisms and therapeutic potential of modulating gut microbiota, as well as other new combination strategies.
Collapse
Affiliation(s)
- Yingying Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shiyuan Wang
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Mengmeng Lin
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunying Hou
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunyu Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Guohui Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
25
|
Lopci E. Meditating on Cancer Management at the Time of Immunotherapy. J Clin Med 2022; 11:jcm11113025. [PMID: 35683412 PMCID: PMC9181255 DOI: 10.3390/jcm11113025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Egesta Lopci
- Nuclear Medicine, IRCCS-Humanitas Research Center, Via Manzoni 56, 20089 Rozzano, MI, Italy
| |
Collapse
|
26
|
Lopci E. Immunotherapy Monitoring with Immune Checkpoint Inhibitors Based on [ 18F]FDG PET/CT in Metastatic Melanomas and Lung Cancer. J Clin Med 2021; 10:jcm10215160. [PMID: 34768681 PMCID: PMC8584484 DOI: 10.3390/jcm10215160] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy with checkpoint inhibitors has prompted a major change not only in cancer treatment but also in medical imaging. In parallel with the implementation of new drugs modulating the immune system, new response criteria have been developed, aiming to overcome clinical drawbacks related to the new, unusual, patterns of response characterizing both solid tumors and lymphoma during the course of immunotherapy. The acknowledgement of pseudo-progression, hyper-progression, immune-dissociated response and so forth, has become mandatory for all imagers dealing with this clinical scenario. A long list of acronyms, i.e., irRC, iRECIST, irRECIST, imRECIST, PECRIT, PERCIMT, imPERCIST, iPERCIST, depicts the enormous effort made by radiology and nuclear medicine physicians in the last decade to optimize imaging parameters for better prediction of clinical benefit in immunotherapy regimens. Quite frequently, a combination of clinical-laboratory data with imaging findings has been tested, proving the ability to stratify patients into various risk groups. The next steps necessarily require a large scale validation of the most robust criteria, as well as the clinical implementation of immune-targeting tracers for immuno-PET or the exploitation of radiomics and artificial intelligence as complementary tools during the course of immunotherapy administration. For the present review article, a summary of PET/CT role for immunotherapy monitoring will be provided. By scrolling into various cancer types and applied response criteria, the reader will obtain necessary information for better understanding the potentials and limitations of the modality in the clinical setting.
Collapse
Affiliation(s)
- Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, MI, Italy
| |
Collapse
|
27
|
Patel P, Poudel A, Kafle S, Thapa Magar M, Cancarevic I. Influence of Microbiome and Antibiotics on the Efficacy of Immune Checkpoint Inhibitors. Cureus 2021; 13:e16829. [PMID: 34522484 PMCID: PMC8425062 DOI: 10.7759/cureus.16829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/02/2021] [Indexed: 01/15/2023] Open
Abstract
The human microbiome mainly consists of bacteria and interacts closely with the immune system. Immune checkpoint inhibitors (ICI) are used to treat several types of cancers. Recently, it has been identified that the gut microbiome plays a role in the effectiveness of immunotherapy. This study aims to analyze the effect of microbiome and antibiotics on the effectiveness of ICI in cancer patients and the measures to improve efficacy based on that. A detailed review was conducted on articles published in PubMed and Science Direct in the last five years i.e., 2016 to 2021. A total of 16 articles involving 1293 patients with cancer who were receiving immunotherapy, were deemed eligible to be included in the final review. Data were extracted from the eligible articles and were checked for quality appraisal. All 16 articles revealed the effect of either gut microbiome or antibiotics or both on ICI. Based on our findings, we found that the microbiome enriched in different microorganisms responded differently to the ICI and that antibiotics negatively impacted the effectiveness of ICI. The time at which patients receiving ICI were prescribed antibiotics influenced the effect of ICI. Antibiotics and different microbiome also affected progression-free survival (PFS) and overall survival (OS).
Collapse
Affiliation(s)
- Priyanka Patel
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Arisa Poudel
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Sunam Kafle
- Internal medicine, Neurology, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Manusha Thapa Magar
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| | - Ivan Cancarevic
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology (CIBNP), Fairfield, USA
| |
Collapse
|