1
|
Roberts SH, Zaghloul MS, Ismail U, Rowe RA, Engel C, Meade R, Elizondo-Benedetto S, Genin GM, Zayed MA. In Vivo Porcine Model of Acute Iliocaval Deep Vein Thrombosis. J Endovasc Ther 2024:15266028241231513. [PMID: 38357736 DOI: 10.1177/15266028241231513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
CLINICAL IMPACT The study establishes a rapid, technically straightforward, and reproducible porcine large animal model for acute iliocaval deep vein thrombosis (DVT). The procedure can be performed with basic endovascular skillsets. With its procedural efficiency and consistency, the platform is promising for comparative in vivo testing of venous thrombectomy devices in a living host, and for future verification and validation studies to determine efficacy of novel thrombectomy devices relative to predicates.
Collapse
Affiliation(s)
- Sophia H Roberts
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Cardiovascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Mohamed S Zaghloul
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Cardiovascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | | | - Connor Engel
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Cardiovascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Rodrigo Meade
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Cardiovascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Santiago Elizondo-Benedetto
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Cardiovascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Guy M Genin
- Cardiovascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Caeli Vascular, Inc., St. Louis, MO, USA
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
- NSF Science and Technology Center for Engineering Mechanobiology, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Mohamed A Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Cardiovascular Research Innovation in Surgery and Engineering Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Caeli Vascular, Inc., St. Louis, MO, USA
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Division of Molecular Cell Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Mazur U, Lepiarczyk E, Janikiewicz P, Łopieńska-Biernat E, Majewski MK, Bossowska A. Distribution and Chemistry of Phoenixin-14, a Newly Discovered Sensory Transmission Molecule in Porcine Afferent Neurons. Int J Mol Sci 2023; 24:16647. [PMID: 38068975 PMCID: PMC10706208 DOI: 10.3390/ijms242316647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Phoenixin-14 (PNX), initially discovered in the rat hypothalamus, was also detected in dorsal root ganglion (DRG) cells, where its involvement in the regulation of pain and/or itch sensation was suggested. However, there is a lack of data not only on its distribution in DRGs along individual segments of the spinal cord, but also on the pattern(s) of its co-occurrence with other sensory neurotransmitters. To fill the above-mentioned gap and expand our knowledge about the occurrence of PNX in mammalian species other than rodents, this study examined (i) the pattern(s) of PNX occurrence in DRG neurons of subsequent neuromeres along the porcine spinal cord, (ii) their intraganglionic distribution and (iii) the pattern(s) of PNX co-occurrence with other biologically active agents. PNX was found in approximately 20% of all nerve cells of each DRG examined; the largest subpopulation of PNX-positive (PNX+) cells were small-diameter neurons, accounting for 74% of all PNX-positive neurons found. PNX+ neurons also co-contained calcitonin gene-related peptide (CGRP; 96.1%), substance P (SP; 88.5%), nitric oxide synthase (nNOS; 52.1%), galanin (GAL; 20.7%), calretinin (CRT; 10%), pituitary adenylate cyclase-activating polypeptide (PACAP; 7.4%), cocaine and amphetamine related transcript (CART; 5.1%) or somatostatin (SOM; 4.7%). Although the exact function of PNX in DRGs is not yet known, the high degree of co-localization of this peptide with the main nociceptive transmitters SP and CGRP may suggests its function in modulation of pain transmission.
Collapse
Affiliation(s)
- Urszula Mazur
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Paweł Janikiewicz
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| | - Agnieszka Bossowska
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| |
Collapse
|
3
|
Ayyoub S, Orriols R, Oliver E, Ceide OT. Thrombosis Models: An Overview of Common In Vivo and In Vitro Models of Thrombosis. Int J Mol Sci 2023; 24:2569. [PMID: 36768891 PMCID: PMC9917341 DOI: 10.3390/ijms24032569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/03/2023] Open
Abstract
Occlusions in the blood vessels caused by blood clots, referred to as thrombosis, and the subsequent outcomes are leading causes of morbidity and mortality worldwide. In vitro and in vivo models of thrombosis have advanced our understanding of the complex pathways involved in its development and allowed the evaluation of different therapeutic approaches for its management. This review summarizes different commonly used approaches to induce thrombosis in vivo and in vitro, without detailing the protocols for each technique or the mechanism of thrombus development. For ease of flow, a schematic illustration of the models mentioned in the review is shown below. Considering the number of available approaches, we emphasize the importance of standardizing thrombosis models in research per study aim and application, as different pathophysiological mechanisms are involved in each model, and they exert varying responses to the same carried tests. For the time being, the selection of the appropriate model depends on several factors, including the available settings and research facilities, the aim of the research and its application, and the researchers' experience and ability to perform surgical interventions if needed.
Collapse
Affiliation(s)
- Sana Ayyoub
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Ramon Orriols
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Eduardo Oliver
- Centro de Investigaciones Biologicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Olga Tura Ceide
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and the Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
4
|
Gromadziński L, Paukszto Ł, Lepiarczyk E, Skowrońska A, Lipka A, Makowczenko KG, Łopieńska-Biernat E, Jastrzębski JP, Holak P, Smoliński M, Majewska M. Pulmonary artery embolism: comprehensive transcriptomic analysis in understanding the pathogenic mechanisms of the disease. BMC Genomics 2023; 24:10. [PMID: 36624378 PMCID: PMC9830730 DOI: 10.1186/s12864-023-09110-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Pulmonary embolism (PE) is a severe disease that usually originates from deep vein thrombosis (DVT) of the lower extremities. This study set out to investigate the changes in the transcriptome of the pulmonary artery (PA) in the course of the PE in the porcine model. METHODS The study was performed on 11 male pigs: a thrombus was formed in each right femoral vein in six animals, and then was released to induce PE, the remaining five animals served as a control group. In the experimental animals total RNA was isolated from the PA where the blood clot lodged, and in the control group, from the corresponding PA segments. High-throughput RNA sequencing was used to analyse the global changes in the transcriptome of PA with induced PE (PA-E). RESULTS Applied multistep bioinformatics revealed 473 differentially expressed genes (DEGs): 198 upregulated and 275 downregulated. Functional Gene Ontology annotated 347 DEGs into 27 biological processes, 324 to the 11 cellular components and 346 to the 2 molecular functions categories. In the signaling pathway analysis, KEGG 'protein processing in endoplasmic reticulum' was identified for the mRNAs modulated during PE. The same KEGG pathway was also exposed by 8 differentially alternative splicing genes. Within single nucleotide variants, the 61 allele-specific expression variants were localised in the vicinity of the genes that belong to the cellular components of the 'endoplasmic reticulum'. The discovered allele-specific genes were also classified as signatures of the cardiovascular system. CONCLUSIONS The findings of this research provide the first thorough investigation of the changes in the gene expression profile of PA affected by an embolus. Evidence from this study suggests that the disturbed homeostasis in the biosynthesis of proteins in the endoplasmic reticulum plays a major role in the pathogenesis of PE.
Collapse
Affiliation(s)
- Leszek Gromadziński
- grid.412607.60000 0001 2149 6795Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland
| | - Łukasz Paukszto
- grid.412607.60000 0001 2149 6795Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Ewa Lepiarczyk
- grid.412607.60000 0001 2149 6795Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland
| | - Agnieszka Skowrońska
- grid.412607.60000 0001 2149 6795Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland
| | - Aleksandra Lipka
- grid.412607.60000 0001 2149 6795Department of Gynecology, and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Żołnierska Str 18, 10-561 Olsztyn, Poland
| | - Karol G. Makowczenko
- grid.412607.60000 0001 2149 6795Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Elżbieta Łopieńska-Biernat
- grid.412607.60000 0001 2149 6795Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn, Poland
| | - Jan P. Jastrzębski
- grid.412607.60000 0001 2149 6795Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 1A, 10-719 Olsztyn-Kortowo, Poland
| | - Piotr Holak
- grid.412607.60000 0001 2149 6795Department of Surgery and Radiology With Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str 14, 10-719 Olsztyn, Poland
| | - Michał Smoliński
- grid.460107.4Clinic of Cardiology and Internal Diseases, University Clinical Hospital in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland
| | - Marta Majewska
- grid.412607.60000 0001 2149 6795Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str 30, 10-082 Olsztyn, Poland
| |
Collapse
|
5
|
Suker SEJ, Al-Meen AAH, Khawwam AA. Assessment of knowledge and practice of venous thromboembolism (VTE) prophylaxis after cesarean section among gynecologists and obstetricians in Al-Najaf hospitals. J Med Life 2022; 14:690-694. [PMID: 35027972 PMCID: PMC8742894 DOI: 10.25122/jml-2021-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Venous Thromboembolism (VTE) is associated with high morbidity and mortality rates after cesarean sections. VTE is likely four-time greater following cesarean section than normal vaginal delivery. Despite a large number of published studies and the availability of well-evidenced guideline recommendations for VTE prevention, it is evident that these guidelines are poorly implemented with suboptimal use of a prophylactic thrombotic agent. The objective of our study was to assess the knowledge and practice of gynecologists and obstetricians about guidelines of VTE prophylaxis after cesarean section. An observational study included 57 gynecologists and obstetricians from all hospitals in Al-Najaf province. The study used a validated questionnaire consisting of 40 items where the correct response scored 1, giving an overall total score of 40. The total overall knowledge and practice score was calculated for participants, and the knowledge and practice levels were evaluated. Only 57 participants out of 67 completed the study giving a response rate of 85%. The mean overall score of practice and adherence was 0.51±0.09. This study showed inadequate practice towards VTE and poor adherence to prophylaxis guidelines because of many barriers, mainly the cost, poor patient adherence, and inconvenience to use guidelines in our patients.
Collapse
|
6
|
Gromadziński L, Paukszto Ł, Skowrońska A, Holak P, Smoliński M, Łopieńska-Biernat E, Lepiarczyk E, Lipka A, Jastrzębski JP, Majewska M. Transcriptomic Profiling of Femoral Veins in Deep Vein Thrombosis in a Porcine Model. Cells 2021; 10:1576. [PMID: 34206566 PMCID: PMC8304794 DOI: 10.3390/cells10071576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
Deep vein thrombosis (DVT) is a severe disease affecting the human venous system, accompanied by high morbidity and mortality rates caused by early and late complications. The study aimed at analyzing the changes in the transcriptome of the femoral vein caused by DVT in the porcine model based on the formation of the thrombus in vivo. The study was performed on 11 castrated male pigs: A thrombus was formed in each left femoral vein in six animals; the remaining five served as a control group. Total RNA was isolated from the left femoral veins of the experimental and control animals. High-throughput RNA sequencing was used to analyze the global changes in the transcriptome of veins with induced DVT. Applied multistep bioinformatics revealed 1474 differentially expressed genes (DEGs): 1019 upregulated and 455 downregulated. Functional Gene Ontology annotated 1220 of DEGs into 225 biological processes, 30 molecular functions and 40 cellular components categories. KEGG analysis disclosed TNF, NF-κB and apoptosis pathways' overexpression in DVT samples. A thorough analysis of the detected DEGs indicated that a dysregulated inflammatory response and disturbed balance between clotting and anti-clotting factors play a crucial role in the process of DVT.
Collapse
Affiliation(s)
- Leszek Gromadziński
- Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Agnieszka Skowrońska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.S.); (E.L.)
| | - Piotr Holak
- Department of Surgery and Radiology with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Michał Smoliński
- Clinic of Cardiology and Internal Diseases, University Clinical Hospital in Olsztyn, 10-082 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.S.); (E.L.)
| | - Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland;
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.S.); (E.L.)
| |
Collapse
|