1
|
Slika B, Dornaika F, Merdji H, Hammoudi K. Lung pneumonia severity scoring in chest X-ray images using transformers. Med Biol Eng Comput 2024; 62:2389-2407. [PMID: 38589723 PMCID: PMC11289055 DOI: 10.1007/s11517-024-03066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/24/2024] [Indexed: 04/10/2024]
Abstract
To create robust and adaptable methods for lung pneumonia diagnosis and the assessment of its severity using chest X-rays (CXR), access to well-curated, extensive datasets is crucial. Many current severity quantification approaches require resource-intensive training for optimal results. Healthcare practitioners require efficient computational tools to swiftly identify COVID-19 cases and predict the severity of the condition. In this research, we introduce a novel image augmentation scheme as well as a neural network model founded on Vision Transformers (ViT) with a small number of trainable parameters for quantifying COVID-19 severity and other lung diseases. Our method, named Vision Transformer Regressor Infection Prediction (ViTReg-IP), leverages a ViT architecture and a regression head. To assess the model's adaptability, we evaluate its performance on diverse chest radiograph datasets from various open sources. We conduct a comparative analysis against several competing deep learning methods. Our results achieved a minimum Mean Absolute Error (MAE) of 0.569 and 0.512 and a maximum Pearson Correlation Coefficient (PC) of 0.923 and 0.855 for the geographic extent score and the lung opacity score, respectively, when the CXRs from the RALO dataset were used in training. The experimental results reveal that our model delivers exceptional performance in severity quantification while maintaining robust generalizability, all with relatively modest computational requirements. The source codes used in our work are publicly available at https://github.com/bouthainas/ViTReg-IP .
Collapse
Affiliation(s)
- Bouthaina Slika
- University of the Basque Country UPV/EHU, San Sebastian, Spain
- Lebanese International University, Beirut, Lebanon
- Beirut International University, Beirut, Lebanon
| | - Fadi Dornaika
- University of the Basque Country UPV/EHU, San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Hamid Merdji
- INSERM, UMR 1260, Regenerative Nanomedicine (RNM), CRBS, University of Strasbourg, Strasbourg, France
- Hôpital Universitaire de Strasbourg, Strasbourg, France
| | - Karim Hammoudi
- Université de Haute-Alsace IRIMAS, Mulhouse, France
- University of Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Luo N, Zhong X, Su L, Cheng Z, Ma W, Hao P. Artificial intelligence-assisted dermatology diagnosis: From unimodal to multimodal. Comput Biol Med 2023; 165:107413. [PMID: 37703714 DOI: 10.1016/j.compbiomed.2023.107413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
Artificial Intelligence (AI) is progressively permeating medicine, notably in the realm of assisted diagnosis. However, the traditional unimodal AI models, reliant on large volumes of accurately labeled data and single data type usage, prove insufficient to assist dermatological diagnosis. Augmenting these models with text data from patient narratives, laboratory reports, and image data from skin lesions, dermoscopy, and pathologies could significantly enhance their diagnostic capacity. Large-scale pre-training multimodal models offer a promising solution, exploiting the burgeoning reservoir of clinical data and amalgamating various data types. This paper delves into unimodal models' methodologies, applications, and shortcomings while exploring how multimodal models can enhance accuracy and reliability. Furthermore, integrating cutting-edge technologies like federated learning and multi-party privacy computing with AI can substantially mitigate patient privacy concerns in dermatological datasets and further fosters a move towards high-precision self-diagnosis. Diagnostic systems underpinned by large-scale pre-training multimodal models can facilitate dermatology physicians in formulating effective diagnostic and treatment strategies and herald a transformative era in healthcare.
Collapse
Affiliation(s)
- Nan Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610075, Sichuan, China.
| | - Xiaojing Zhong
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610075, Sichuan, China.
| | - Luxin Su
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610075, Sichuan, China.
| | - Zilin Cheng
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610075, Sichuan, China.
| | - Wenyi Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610075, Sichuan, China.
| | - Pingsheng Hao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
3
|
Sailunaz K, Özyer T, Rokne J, Alhajj R. A survey of machine learning-based methods for COVID-19 medical image analysis. Med Biol Eng Comput 2023; 61:1257-1297. [PMID: 36707488 PMCID: PMC9883138 DOI: 10.1007/s11517-022-02758-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/22/2022] [Indexed: 01/29/2023]
Abstract
The ongoing COVID-19 pandemic caused by the SARS-CoV-2 virus has already resulted in 6.6 million deaths with more than 637 million people infected after only 30 months since the first occurrences of the disease in December 2019. Hence, rapid and accurate detection and diagnosis of the disease is the first priority all over the world. Researchers have been working on various methods for COVID-19 detection and as the disease infects lungs, lung image analysis has become a popular research area for detecting the presence of the disease. Medical images from chest X-rays (CXR), computed tomography (CT) images, and lung ultrasound images have been used by automated image analysis systems in artificial intelligence (AI)- and machine learning (ML)-based approaches. Various existing and novel ML, deep learning (DL), transfer learning (TL), and hybrid models have been applied for detecting and classifying COVID-19, segmentation of infected regions, assessing the severity, and tracking patient progress from medical images of COVID-19 patients. In this paper, a comprehensive review of some recent approaches on COVID-19-based image analyses is provided surveying the contributions of existing research efforts, the available image datasets, and the performance metrics used in recent works. The challenges and future research scopes to address the progress of the fight against COVID-19 from the AI perspective are also discussed. The main objective of this paper is therefore to provide a summary of the research works done in COVID detection and analysis from medical image datasets using ML, DL, and TL models by analyzing their novelty and efficiency while mentioning other COVID-19-based review/survey researches to deliver a brief overview on the maximum amount of information on COVID-19-based existing researches.
Collapse
Affiliation(s)
- Kashfia Sailunaz
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - Tansel Özyer
- Department of Computer Engineering, Ankara Medipol University, Ankara, Turkey
| | - Jon Rokne
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - Reda Alhajj
- Department of Computer Science, University of Calgary, Calgary, AB, Canada.
- Department of Computer Engineering, Istanbul Medipol University, Istanbul, Turkey.
- Department of Health Informatics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
4
|
Interactive framework for Covid-19 detection and segmentation with feedback facility for dynamically improved accuracy and trust. PLoS One 2022; 17:e0278487. [PMID: 36548288 PMCID: PMC9778629 DOI: 10.1371/journal.pone.0278487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Due to the severity and speed of spread of the ongoing Covid-19 pandemic, fast but accurate diagnosis of Covid-19 patients has become a crucial task. Achievements in this respect might enlighten future efforts for the containment of other possible pandemics. Researchers from various fields have been trying to provide novel ideas for models or systems to identify Covid-19 patients from different medical and non-medical data. AI-based researchers have also been trying to contribute to this area by mostly providing novel approaches of automated systems using convolutional neural network (CNN) and deep neural network (DNN) for Covid-19 detection and diagnosis. Due to the efficiency of deep learning (DL) and transfer learning (TL) models in classification and segmentation tasks, most of the recent AI-based researches proposed various DL and TL models for Covid-19 detection and infected region segmentation from chest medical images like X-rays or CT images. This paper describes a web-based application framework for Covid-19 lung infection detection and segmentation. The proposed framework is characterized by a feedback mechanism for self learning and tuning. It uses variations of three popular DL models, namely Mask R-CNN, U-Net, and U-Net++. The models were trained, evaluated and tested using CT images of Covid patients which were collected from two different sources. The web application provide a simple user friendly interface to process the CT images from various resources using the chosen models, thresholds and other parameters to generate the decisions on detection and segmentation. The models achieve high performance scores for Dice similarity, Jaccard similarity, accuracy, loss, and precision values. The U-Net model outperformed the other models with more than 98% accuracy.
Collapse
|
5
|
Ramírez-del Real T, Martínez-García M, Márquez MF, López-Trejo L, Gutiérrez-Esparza G, Hernández-Lemus E. Individual Factors Associated With COVID-19 Infection: A Machine Learning Study. Front Public Health 2022; 10:912099. [PMID: 35844896 PMCID: PMC9279686 DOI: 10.3389/fpubh.2022.912099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The fast, exponential increase of COVID-19 infections and their catastrophic effects on patients' health have required the development of tools that support health systems in the quick and efficient diagnosis and prognosis of this disease. In this context, the present study aims to identify the potential factors associated with COVID-19 infections, applying machine learning techniques, particularly random forest, chi-squared, xgboost, and rpart for feature selection; ROSE and SMOTE were used as resampling methods due to the existence of class imbalance. Similarly, machine and deep learning algorithms such as support vector machines, C4.5, random forest, rpart, and deep neural networks were explored during the train/test phase to select the best prediction model. The dataset used in this study contains clinical data, anthropometric measurements, and other health parameters related to smoking habits, alcohol consumption, quality of sleep, physical activity, and health status during confinement due to the pandemic associated with COVID-19. The results showed that the XGBoost model got the best features associated with COVID-19 infection, and random forest approximated the best predictive model with a balanced accuracy of 90.41% using SMOTE as a resampling technique. The model with the best performance provides a tool to help prevent contracting SARS-CoV-2 since the variables with the highest risk factor are detected, and some of them are, to a certain extent controllable.
Collapse
Affiliation(s)
- Tania Ramírez-del Real
- Cátedras Conacyt, National Council on Science and Technology, Mexico City, Mexico
- Center for Research in Geospatial Information Sciences, Mexico City, Mexico
| | - Mireya Martínez-García
- Clinical Research Division, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico
| | - Manlio F. Márquez
- Clinical Research Division, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico
| | - Laura López-Trejo
- Institute for Security and Social Services of State Workers, Mexico City, Mexico
| | - Guadalupe Gutiérrez-Esparza
- Cátedras Conacyt, National Council on Science and Technology, Mexico City, Mexico
- Clinical Research Division, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Farghali H, Kutinová Canová N, Arora M. The potential applications of artificial intelligence in drug discovery and development. Physiol Res 2021. [DOI: 10.33549//physiolres.934765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Development of a new dug is a very lengthy and highly expensive process since only preclinical, pharmacokinetic, pharmacodynamic and toxicological studies include a multiple of in silico, in vitro, in vivo experimentations that traditionally last several years. In the present review, we briefly report some examples that demonstrate the power of the computer-assisted drug discovery process with some examples that are published and revealing the successful applications of artificial intelligence (AI) technology on this vivid area. Besides, we address the situation of drug repositioning (repurposing) in clinical applications. Yet few success stories in this regard that provide us with a clear evidence that AI will reveal its great potential in accelerating effective new drug finding. AI accelerates drug repurposing and AI approaches are altogether necessary and inevitable tools in new medicine development. In spite of the fact that AI in drug development is still in its infancy, the advancements in AI and machine-learning (ML) algorithms have an unprecedented potential. The AI/ML solutions driven by pharmaceutical scientists, computer scientists, statisticians, physicians and others are increasingly working together in the processes of drug development and are adopting AI-based technologies for the rapid discovery of medicines. AI approaches, coupled with big data, are expected to substantially improve the effectiveness of drug repurposing and finding new drugs for various complex human diseases.
Collapse
Affiliation(s)
| | - N Kutinová Canová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| | | |
Collapse
|
7
|
Hayashi H, Uemura N, Matsumura K, Zhao L, Sato H, Shiraishi Y, Yamashita YI, Baba H. Recent advances in artificial intelligence for pancreatic ductal adenocarcinoma. World J Gastroenterol 2021; 27:7480-7496. [PMID: 34887644 PMCID: PMC8613738 DOI: 10.3748/wjg.v27.i43.7480] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/02/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains the most lethal type of cancer. The 5-year survival rate for patients with early-stage diagnosis can be as high as 20%, suggesting that early diagnosis plays a pivotal role in the prognostic improvement of PDAC cases. In the medical field, the broad availability of biomedical data has led to the advent of the "big data" era. To overcome this deadly disease, how to fully exploit big data is a new challenge in the era of precision medicine. Artificial intelligence (AI) is the ability of a machine to learn and display intelligence to solve problems. AI can help to transform big data into clinically actionable insights more efficiently, reduce inevitable errors to improve diagnostic accuracy, and make real-time predictions. AI-based omics analyses will become the next alterative approach to overcome this poor-prognostic disease by discovering biomarkers for early detection, providing molecular/genomic subtyping, offering treatment guidance, and predicting recurrence and survival. Advances in AI may therefore improve PDAC survival outcomes in the near future. The present review mainly focuses on recent advances of AI in PDAC for clinicians. We believe that breakthroughs will soon emerge to fight this deadly disease using AI-navigated precision medicine.
Collapse
Affiliation(s)
- Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Norio Uemura
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazuki Matsumura
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Liu Zhao
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hiroki Sato
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuta Shiraishi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yo-ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
8
|
Liu Q, Wan J, Wang G. A survey on computational methods in discovering protein inhibitors of SARS-CoV-2. Brief Bioinform 2021; 23:6384382. [PMID: 34623382 PMCID: PMC8524468 DOI: 10.1093/bib/bbab416] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022] Open
Abstract
The outbreak of acute respiratory disease in 2019, namely Coronavirus Disease-2019 (COVID-19), has become an unprecedented healthcare crisis. To mitigate the pandemic, there are a lot of collective and multidisciplinary efforts in facilitating the rapid discovery of protein inhibitors or drugs against COVID-19. Although many computational methods to predict protein inhibitors have been developed [
1–
5], few systematic reviews on these methods have been published. Here, we provide a comprehensive overview of the existing methods to discover potential inhibitors of COVID-19 virus, so-called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). First, we briefly categorize and describe computational approaches by the basic algorithms involved in. Then we review the related biological datasets used in such predictions. Furthermore, we emphatically discuss current knowledge on SARS-CoV-2 inhibitors with the latest findings and development of computational methods in uncovering protein inhibitors against COVID-19.
Collapse
Affiliation(s)
- Qiaoming Liu
- Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150001, China
| | - Jun Wan
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guohua Wang
- Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150001, China.,Information and Computer Engineering College, Northeast Forestry University, Harbin, Heilongjiang 150001, China
| |
Collapse
|