1
|
Zhang M, Tao M, Cao Q, Cai Y, Ding L, Li Z, Chen W, Gao P, Liu L. Identification of crucial genes and possible molecular pathways associated with active vitamin D intervention in diabetic kidney disease. Heliyon 2024; 10:e38334. [PMID: 39398062 PMCID: PMC11470520 DOI: 10.1016/j.heliyon.2024.e38334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Background A significant cause of advanced renal failure is diabetic nephropathy (DKD), with few treatment options available. Calcitriol shows potential in addressing fibrosis related to DKD, though its molecular mechanisms remain poorly understood. This research seeks to pinpoint the crucial genes and pathways influenced by calcitriol within the scope of DKD-related fibrosis. Methods Single-cell gene expression profiling of calcitriol treated DKD rat kidney tissue and screening of fibrosis-associated cell subsets. Mendelian randomization and enrichment analyses (CIBERSORT, GSVA, GSEA, Motif Enrichment) were used to explore gene-immune cell interactions and signaling pathways. Key findings were validated using independent datasets and protein expression data from the Human Protein Atlas. Results Calcitriol treatment reduced proliferative cell populations and highlighted the FoxO signaling pathway's role in DKD. SUMO3 and CD74 were identified as key markers linked to immune infiltration and renal function. These genes were significantly associated with creatinine levels and eGFR, indicating their potential role in DKD progression. Conclusion Our results suggest that calcitriol modulates DKD fibrosis through the FoxO pathway, with SUMO3 and CD74 serving as potential biomarkers for kidney protection. These results provide fresh insights into strategies for treating DKD.
Collapse
Affiliation(s)
- MingXia Zhang
- Department of Nephrology, Minda Hospital Affiliated to Hubei Minzu University, Hubei Clinical Research Center for Kidney Disease, Enshi, China
| | - Mi Tao
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Quan Cao
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yousheng Cai
- Department of Nephrology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lin Ding
- Department of Nephrology, Minda Hospital Affiliated to Hubei Minzu University, Hubei Clinical Research Center for Kidney Disease, Enshi, China
| | - Zhenni Li
- Department of Nephrology, Minda Hospital Affiliated to Hubei Minzu University, Hubei Clinical Research Center for Kidney Disease, Enshi, China
| | - Wen Chen
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Ping Gao
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lunzhi Liu
- Department of Nephrology, Minda Hospital Affiliated to Hubei Minzu University, Hubei Clinical Research Center for Kidney Disease, Enshi, China
| |
Collapse
|
2
|
Shan S, Alanazi AH, Han Y, Zhang D, Liu Y, Narayanan SP, Somanath PR. Pro-Inflammatory Characteristics of Extracellular Vesicles in the Vitreous of Type 2 Diabetic Patients. Biomedicines 2024; 12:2053. [PMID: 39335566 PMCID: PMC11428929 DOI: 10.3390/biomedicines12092053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness, yet its molecular mechanisms are unclear. Extracellular vesicles (EVs) contribute to dysfunction in DR, but the characteristics and functions of vitreous EVs are unclear. This study investigated the inflammatory properties of type 2 diabetic (db) vitreous EVs. EVs isolated from the vitreous of db and non-db donors were used for nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), immunogold staining, Western blotting, and proteomic analysis by mass spectrometry. Intracellular uptake of vitreous EVs by differentiated macrophages was evaluated using ExoGlow membrane labeling, and the impact of EVs on macrophage (THP-1) activation was assessed by cytokine levels using RT-qPCR. NTA and TEM analysis of db and non-db vitreous EVs showed non-aggregated EVs with a heterogeneous size range below 200 nm. Western blot detected EV markers (Alix, Annexin V, HSP70, and Flotillin 1) and an upregulation of Cldn5 in db EVs. While the db EVs were incorporated into macrophages, treatment of THP-1 cells with db EVs significantly increased mRNA levels of TNFα and IL-1β compared to non-db EVs. Proteomic and gene enrichment analysis indicated pro-inflammatory characteristics of db EVs. Our results suggest a potential involvement of EC-derived Cldn5+ EVs in triggering inflammation, offering a novel mechanism involved and presenting a possible therapeutic avenue for DR.
Collapse
Affiliation(s)
- Shengshuai Shan
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Abdulaziz H. Alanazi
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Department of Clinical Practice, College of Pharmacy, Northern Border University, Rafha 76313, Saudi Arabia
| | - Yohan Han
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Duo Zhang
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
| | - Yutao Liu
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
3
|
Rhode H, Tautkus B, Weigel F, Schitke J, Metzing O, Boeckhaus J, Kiess W, Gross O, Dost A, John-Kroegel U. Preclinical Detection of Early Glomerular Injury in Children with Kidney Diseases-Independently of Usual Markers of Kidney Impairment and Inflammation. Int J Mol Sci 2024; 25:9320. [PMID: 39273271 PMCID: PMC11395411 DOI: 10.3390/ijms25179320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Glomerular kidney diseases typically begin insidiously and can progress to end stage kidney failure. Early onset of therapy can slow down disease progression. Early diagnosis is required to ensure such timely therapy. The goal of our study was to evaluate protein biomarkers (BMs) for common nephropathies that have been described for children with Alport syndrome. Nineteen candidate BMs were determined by commercial ELISA in children with congenital anomalies of the kidneys and urogenital tract, inflammatory kidney injury, or diabetes mellitus. It is particularly essential to search for kidney disease BMs in children because they are a crucial target group that likely exhibits early disease stages and in which misleading diseases unrelated to the kidney are rare. Only minor differences in blood between affected individuals and controls were found. However, in urine, several biomarker candidates alone or in combination seemed to be promising indicators of renal injury in early disease stages. The BMs of highest sensitivity and specificity were collagen type XIII, hyaluronan-binding protein 2, and complement C4-binding protein. These proteins are unrelated to inflammation markers or to risk factors for and signs of renal failure. In conclusion, our study evaluated several strong candidates for screening for early stages of kidney diseases and can help to establish early nephroprotective regimens.
Collapse
Grants
- German Federal Ministry of Education and Research (01KG1104), German Research Foundation (GR1852/6-1), Thuringian Ministry for Education, Science, and Culture, and the EFRE-fund (2013 FE 9075), and XLifeSciences (X-Kidneys, DD 0290-20). German Federal Ministry of Education and Research (01KG1104), German Research Foundation (GR1852/6-1), Thuringian Ministry for Education, Science, and Culture, and the EFRE-fund (2013 FE 9075), and XLifeSciences (X-Kidneys, DD 0290-20).
Collapse
Affiliation(s)
- Heidrun Rhode
- Jena University Hospital, Institute of Biochemistry I, Nonnenplan 2-4, 07743 Jena, Germany
| | - Baerbel Tautkus
- Jena University Hospital, Institute of Biochemistry I, Nonnenplan 2-4, 07743 Jena, Germany
| | - Friederike Weigel
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| | - Julia Schitke
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| | - Oliver Metzing
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| | - Jan Boeckhaus
- Clinics for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Wieland Kiess
- Hospital for Children and Adolescents, University of Leipzig, Liebigstr. 20a, 04103 Leipzig, Germany
| | - Oliver Gross
- Clinics for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Axel Dost
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| | - Ulrike John-Kroegel
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
4
|
Das S, Devi Rajeswari V, Venkatraman G, Elumalai R, Dhanasekaran S, Ramanathan G. Current updates on metabolites and its interlinked pathways as biomarkers for diabetic kidney disease: A systematic review. Transl Res 2024; 265:71-87. [PMID: 37952771 DOI: 10.1016/j.trsl.2023.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes mellitus (DM) that poses a serious risk as it can lead to end-stage renal disease (ESRD). DKD is linked to changes in the diversity, composition, and functionality of the microbiota present in the gastrointestinal tract. The interplay between the gut microbiota and the host organism is primarily facilitated by metabolites generated by microbial metabolic processes from both dietary substrates and endogenous host compounds. The production of numerous metabolites by the gut microbiota is a crucial factor in the pathogenesis of DKD. However, a comprehensive understanding of the precise mechanisms by which gut microbiota and its metabolites contribute to the onset and progression of DKD remains incomplete. This review will provide a summary of the current scenario of metabolites in DKD and the impact of these metabolites on DKD progression. We will discuss in detail the primary and gut-derived metabolites in DKD, and the mechanisms of the metabolites involved in DKD progression. Further, we will address the importance of metabolomics in helping identify potential DKD markers. Furthermore, the possible therapeutic interventions and research gaps will be highlighted.
Collapse
Affiliation(s)
- Soumik Das
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - V Devi Rajeswari
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ganesh Venkatraman
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ramprasad Elumalai
- Department of Nephrology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Sivaraman Dhanasekaran
- School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat 382426, India
| | - Gnanasambandan Ramanathan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
5
|
Saenz-Pipaon G, Dichek DA. Targeting and delivery of microRNA-targeting antisense oligonucleotides in cardiovascular diseases. Atherosclerosis 2023; 374:44-54. [PMID: 36577600 PMCID: PMC10277317 DOI: 10.1016/j.atherosclerosis.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Discovered three decades ago, microRNAs (miRNAs) are now recognized as key players in the pathophysiology of multiple human diseases, including those affecting the cardiovascular system. As such, miRNAs have emerged as promising therapeutic targets for preventing the onset and/or progression of several cardiovascular diseases. Anti-miRNA antisense oligonucleotides or "antagomirs" precisely block the activity of specific miRNAs and are therefore a promising therapeutic strategy to repress pathological miRNAs. In this review, we describe advancements in antisense oligonucleotide chemistry that have significantly improved efficacy and safety. Moreover, we summarize recent approaches for the targeted delivery of antagomirs to cardiovascular tissues, highlighting major advantages as well as limitations of viral (i.e., adenovirus, adeno-associated virus, and lentivirus) and non-viral (i.e., liposomes, extracellular vesicles, and polymer nanoparticles) delivery systems. We discuss recent preclinical studies that use targeted antagomir delivery systems to treat three major cardiovascular diseases (atherosclerosis, myocardial infarction, and cardiac hypertrophy, including hypertrophy caused by hypertension), highlighting therapeutic results and discussing challenges that limit clinical applicability.
Collapse
Affiliation(s)
- Goren Saenz-Pipaon
- Department of Medicine, University of Washington School of Medicine, Seattle, USA
| | - David A Dichek
- Department of Medicine, University of Washington School of Medicine, Seattle, USA.
| |
Collapse
|
6
|
Gervasini G. Recent Advances and Remaining Challenges in the Management of Diabetic Kidney Disease. J Clin Med 2023; 12:jcm12082759. [PMID: 37109096 PMCID: PMC10142336 DOI: 10.3390/jcm12082759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetic kidney disease (DKD), which refers to pathologic structural and functional changes observed in the kidneys of patients with diabetes mellitus (DM), is the greatest contributor to CKD and the most common cause of end-stage kidney disease (ESKD) worldwide [...].
Collapse
Affiliation(s)
- Guillermo Gervasini
- Department of Medical and Surgical Therapeutics, Medical School, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06005 Badajoz, Spain
| |
Collapse
|
7
|
Yunusova NV, Popova NO, Udintseva IN, Klyushina TS, Kazantseva DV, Smirnova LP. The Role of Intravesicular Proteins and the Protein Corona of Extracellular Vesicles in the Development of Drug-Induced Polyneuropathy. Curr Issues Mol Biol 2023; 45:3302-3314. [PMID: 37185740 PMCID: PMC10136474 DOI: 10.3390/cimb45040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Extracellular vesicles (EVs) as membrane structures of cellular origin participating in intercellular communication are involved in the molecular mechanisms of the development of various variants of polyneuropathy. Taking into account the increasing role of the protein corona of EVs and protein-protein interactions on the surface of EVs in the pathogenesis of various diseases, we focused our attention in this review on the role of intravesicular proteins and the protein corona of EVs in the development of chemotherapy-induced polyneuropathy (CIPN). It has been shown that EVs are effectively internalized by the mechanisms of endocytosis and macropinocytosis by neurocytes and glial cells, carry markers of insulin resistance, functionally active proteins (receptors, cytokines, enzymes), and may be involved in the pathogenesis of CIPN. The mechanisms of CIPN associated with the EVs protein corona can be related with the accumulation of heavy chains of circulating IgG in it. G-class immunoglobulins in EVs are likely to have myelin hydrolyzing, superoxide dismutase, and oxidoreductase enzymatic activities. Moreover, circulating IgG-loaded EVs are a place for complement activation that can lead to membrane attack complex deposition in neuroglia and neurons. The mechanisms of CIPN development that are not associated with IgG in the EVs protein corona are somehow related to the fact that many anticancer drugs induce apoptosis of tumor cells, neurons, and neuroglial cells by various mechanisms. This process may be accompanied by the secretion of EVs with modified cargo (HSPs, 20S proteasomes, miRNAs).
Collapse
Affiliation(s)
- Natalia V Yunusova
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
- Department of Biochemistry and Molecular Biology, Siberian State Medical University, Tomsk 634050, Russia
| | - Natalia O Popova
- Department of Chemotherapy, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
| | - Irina N Udintseva
- Department of Chemotherapy, Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
| | - Tatyana S Klyushina
- Department of Biochemistry and Molecular Biology, Siberian State Medical University, Tomsk 634050, Russia
| | - Daria V Kazantseva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
| | - Liudmila P Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center, Tomsk 634009, Russia
| |
Collapse
|
8
|
Mighty J, Rubio-Navarro A, Shi C, Zhou J, Flores-Bellver M, Heissel S, Onwumere O, Einbond L, Gharbaran R, Casper DS, Benito-Martin A, Redenti S. Extracellular vesicles of human diabetic retinopathy retinal tissue and urine of diabetic retinopathy patients are enriched for the junction plakoglo bin protein. Front Endocrinol (Lausanne) 2023; 13:1077644. [PMID: 36686464 PMCID: PMC9854122 DOI: 10.3389/fendo.2022.1077644] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Diabetic Retinopathy (DR) is a potentially blinding retinal disorder that develops through the pathogenesis of diabetes. The lack of disease predictors implies a poor prognosis with frequent irreversible retinal damage and vision loss. Extracellular Vesicles (EVs) present a novel opportunity for pre-symptomatic disease diagnosis and prognosis, both severely limited in DR. All biological fluids contain EVs, which are currently being studied as disease biomarkers. EV proteins derived from urine have emerged as potential noninvasive biomarkers. Methods In this study, we isolated EVs from DR retinal tissue explants and from DR patients' urine, and characterized the vesicles, finding differences in particle number and size. Next, we performed proteomic analysis on human explanted DR retinal tissue conditioned media, DR retinal EVs and DR urinary EVs and compared to normal human retinal tissue, retinal EVs, and urinary EVs, respectively. Results Our system biology analysis of DR tissue and EV expression profiles revealed biological pathways related to cell-to-cell junctions, vesicle biology, and degranulation processes. Junction Plakoglobin (JUP), detected in DR tissue-derived EVs and DR urinary EVs, but not in controls, was revealed to be a central node in many identified pathogenic pathways. Proteomic results were validated by western blot. Urinary EVs obtained from healthy donors and diabetic patient without DR did not contain JUP. Conclusion The absence of JUP in healthy urinary EVs provide the basis for development of a novel Diabetic Retinopathy biomarker, potentially facilitating diagnosis.
Collapse
Affiliation(s)
- Jason Mighty
- Lehman College, City University of New York, Bronx, NY, United States
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, NY, United States
| | - Alfonso Rubio-Navarro
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Instituto de Investigación Biosanitaria ibs GRANADA, University Hospitals of Granada-University of Granada, Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Granada, Spain
| | - Cui Shi
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, NY, United States
| | - Jing Zhou
- Lehman College, City University of New York, Bronx, NY, United States
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, NY, United States
| | - Miguel Flores-Bellver
- CellSight Ocular Stem Cell and Regeneration Program, Department of Ophthalmology, Sue Anschutz- Rodgers Eye Center, University of Colorado, Aurora, CO, United States
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, United States
| | - Onyekwere Onwumere
- Lehman College, City University of New York, Bronx, NY, United States
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, NY, United States
| | - Linda Einbond
- Lehman College, City University of New York, Bronx, NY, United States
| | | | - Daniel S. Casper
- Department of Ophthalmology, Columbia University Vagelos College of Physicians & Surgeons Naomi Berrie Diabetes Center, New York, NY, United States
| | - Alberto Benito-Martin
- Lehman College, City University of New York, Bronx, NY, United States
- Universidad Alfonso X El Sabio, Facultad de Medicina. Unidad de Investigación Biomédica, Madrid, Spain
| | - Stephen Redenti
- Lehman College, City University of New York, Bronx, NY, United States
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, New York, NY, United States
- Department of Ophthalmology, Columbia University Vagelos College of Physicians & Surgeons Naomi Berrie Diabetes Center, New York, NY, United States
| |
Collapse
|
9
|
Kanakalakshmi ST, Swaminathan SM, Basthi Mohan P, Nagaraju SP, Bhojaraja MV, Koulmane Laxminarayana SL. Microparticles in Diabetic Kidney Disease. Clin Chim Acta 2022; 531:418-425. [PMID: 35568209 DOI: 10.1016/j.cca.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022]
Abstract
Diabetickidneydisease(DKD)isthemostcommoncauseofrenal failure and a major contributor to the socioeconomic burden in chronic kidney disease (CKD) patients worldwide. The pathogenesis of DKD involves all the structures in the nephron, and it is indicated by proteinuria, hypertension, and progressive decline in renal function, leading tosubstantialmorbidityandmortality. Due to the limitations of currently available standard markers (albuminuria and glomerular filtration rate) in the diagnosis and clinical grading of DKD, it's time to have novel biomarkers for early detection, targeted and effective therapy to prevent the progression. Microparticles (MPs) are extracellular vesicles measuring 0.1 to 1 micron derived by cytoskeletal reorganization in the form of cytoplasmic blebs which alters the phospholipid cytochemistry of the cell membrane. They are shed during cell activation and apoptosis as well as plays an important role in cell-to-cell communication. Over the last few decades, both plasma and urinary MPs have been investigated, validated and the preliminary research looks promising. With alterations in their number and composition documented in clinical situations involving both Type1 and 2 diabetes mellitus, microparticles assay appears to be promising in early diagnosis and prognostication of DKD. WecoverthebasicsofmicroparticlesandtheirinvolvementinDKDinthisreviewarticle.
Collapse
Affiliation(s)
- Sushma Thimmaiah Kanakalakshmi
- Department of Anaesthesiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shilna Muttickal Swaminathan
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Pooja Basthi Mohan
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Mohan V Bhojaraja
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | |
Collapse
|
10
|
Han Z, Ma K, Tao H, Liu H, Zhang J, Sai X, Li Y, Chi M, Nian Q, Song L, Liu C. A Deep Insight Into Regulatory T Cell Metabolism in Renal Disease: Facts and Perspectives. Front Immunol 2022; 13:826732. [PMID: 35251009 PMCID: PMC8892604 DOI: 10.3389/fimmu.2022.826732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Kidney disease encompasses a complex set of diseases that can aggravate or start systemic pathophysiological processes through their complex metabolic mechanisms and effects on body homoeostasis. The prevalence of kidney disease has increased dramatically over the last two decades. CD4+CD25+ regulatory T (Treg) cells that express the transcription factor forkhead box protein 3 (Foxp3) are critical for maintaining immune homeostasis and preventing autoimmune disease and tissue damage caused by excessive or unnecessary immune activation, including autoimmune kidney diseases. Recent studies have highlighted the critical role of metabolic reprogramming in controlling the plasticity, stability, and function of Treg cells. They are also likely to play a vital role in limiting kidney transplant rejection and potentially promoting transplant tolerance. Metabolic pathways, such as mitochondrial function, glycolysis, lipid synthesis, glutaminolysis, and mammalian target of rapamycin (mTOR) activation, are involved in the development of renal diseases by modulating the function and proliferation of Treg cells. Targeting metabolic pathways to alter Treg cells can offer a promising method for renal disease therapy. In this review, we provide a new perspective on the role of Treg cell metabolism in renal diseases by presenting the renal microenvironment、relevant metabolites of Treg cell metabolism, and the role of Treg cell metabolism in various kidney diseases.
Collapse
Affiliation(s)
- Zhongyu Han
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hongxia Tao
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongli Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiyalatu Sai
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Yunlong Li
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Blood Transfusion Sicuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
11
|
Dehghanbanadaki H, Forouzanfar K, Kakaei A, Zeidi S, Salehi N, Arjmand B, Razi F, Hashemi E. The role of CDH2 and MCP-1 mRNAs of blood extracellular vesicles in predicting early-stage diabetic nephropathy. PLoS One 2022; 17:e0265619. [PMID: 35363774 PMCID: PMC8975111 DOI: 10.1371/journal.pone.0265619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Extracellular vesicles (EVs), including exosomes and microvesicles, are involved in intercellular communication by transferring biomolecules such as mRNA, which has been shown to be as essential biomarkers for many physiological and pathological conditions such as diabetic nephropathy (DN). This study aimed to investigate the expression of CDH1, CDH2, MCP-1, and PAI-1 mRNAs in blood EVs of DN patients and to determine their accuracy in predicting early-stage DN. Methods We recruited 196 participants, including 35 overt DN patients, 53 incipient DN patients, 62 diabetic patients (DM), and 46 healthy individuals. Quantification of the mRNA profile of blood EVs was performed using the qRT-PCR method. The diagnostic performance of mRNA was evaluated using receiver operating characteristic analysis. Results The mRNA expression of CDH2 and MCP-1 was downregulated in overt DN group (0.22-fold change and 0.15-fold change, respectively) and incipient DN group (0.60-fold change and 0.43-fold change, respectively) compared to DM group (1.72-fold change and 2.77-fold change, respectively), while PAI-1 mRNA expression decreased in incipient DN group (0.70-fold change) and DM group (0.58-fold change) compared to control. However, the expression level of CDH1 mRNA was not significantly different among the four groups (p = 0.408). Moreover, CDH2 and MCP-1 mRNAs inversely correlated with creatinine (r = -0.370 and r = -0.361, p<0.001) and Alb/Cr ratio (r = -0.355 and r = -0.297, p<0.001). 1/CDH2 mRNA also predicted overt DN with an accuracy of 0.75 (95%CI: 0.65–0.85) and incipient DN with an accuracy of 0.61 (95%CI: 0.50–0.71) while 1/MCP-1 mRNA had an accuracy of 0.66 (95%CI: 0.55–0.77) for overt DN prediction and an accuracy of 0.61 (95%CI: 0.51–0.71) for incipient DN prediction. Conclusion CDH2 and MCP-1 mRNAs expression in blood EVs was decreased with the development of DN, suggesting the renoprotective effect of these mRNAs in diabetic individuals. Moreover, their quantifications could serve as diagnostic biomarkers for early-stage DN.
Collapse
Affiliation(s)
- Hojat Dehghanbanadaki
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoon Forouzanfar
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Kakaei
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Zeidi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Negar Salehi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Babak Arjmand
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail: (FR); (EH)
| | - Ehsan Hashemi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
- * E-mail: (FR); (EH)
| |
Collapse
|
12
|
Yunusova NV, Dandarova EE, Svarovsky DA, Denisov NS, Kostromitsky DN, Patysheva MR, Cheremisina OV, Spirina LV. [Production and internalization of extracellular vesicules in normal and under conditions of hyperglycemia and insulin resistance]. BIOMEDITSINSKAIA KHIMIIA 2021; 67:465-474. [PMID: 34964440 DOI: 10.18097/pbmc20216706465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extracellular vesicles (EVs) are spherical structures of cell membrane origin, ranging in the size from 40 nm to 5000 nm. They are involved in the horizontal transfer of many proteins and microRNAs. The mechanisms EV internalization include clathrin-dependent endocytosis, caveolin-dependent endocytosis, raft-mediated endocytosis, and macropinocytosis. Type 2 diabetes mellitus (T2DM) is a common group of metabolic disorders in adults; the incidence and prevalence increase in parallel with the obesity epidemic. Since adipose tissue plays a crucial role in the development of insulin resistance, EVs secreted by adipose tissue can be a kind of information transmitter in this process. EVs of adipocytic origin are predominantly absorbed by tissue macrophages, adipocytes themselves, hepatocytes, and skeletal muscles. This contributes to the M1 polarization of macrophages, a decrease in glucose uptake by hepatocytes and myocytes due to the transfer of functionally active microRNAs by these EVs, which affect carbohydrate and lipid metabolism. Patients with T2DM and impaired glucose tolerance have significantly higher levels of CD235a-positive (erythrocyte) EVs, as well as a tendency to increase CD68-positive (leukocyte) and CD62p-positive (platelets/endothelial cells) EVs. The levels of CD31+/CD146-positive BB (endothelial cells) were comparable between diabetic and euglycemic patients. EVs from diabetic patients were preferably internalized by monocytes (mainly classical and intermediate monocyte fractions and to a lesser extent by non-classical monocyte fractions) and B cells compared to euglycemic patients. Internalization of EVs from patients with T2DM by monocytes leads to decreased apoptosis, changes in differentiation, and suppression of reactions controlling oxidative stress in monocytes. Thus, insulin resistance increases secretion of EVs, which are preferentially internalized by monocytes and influence their function. EVs are considered as sources of promising clinical markers of insulin resistance, complications of diabetes mellitus (endothelial dysfunction, retinopathy, nephropathy, neuropathy), and markers of EVs can also be used to monitor the effectiveness of therapy for these complications.
Collapse
Affiliation(s)
- N V Yunusova
- Siberian State Medical University, Tomsk, Russia; Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | | | | | - N S Denisov
- Siberian State Medical University, Tomsk, Russia
| | - D N Kostromitsky
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - M R Patysheva
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - O V Cheremisina
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - L V Spirina
- Siberian State Medical University, Tomsk, Russia; Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| |
Collapse
|