1
|
Xu R, Zhang Y, Wu T, Liu H, Peng J, Wang Z, Ba T, Zhang B, Li Z, Wei Y. Traffic-related air pollution (TRAP) exposure, lung function, airway inflammation and expiratory microbiota: A randomized crossover study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117545. [PMID: 39788033 DOI: 10.1016/j.ecoenv.2024.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/24/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
Traffic-related air pollution (TRAP) has been linked with numerous respiratory diseases. Recently, lung microbiome is proposed to be characterized with development and progression of respiratory diseases. However, the underlying effects of TRAP exposure on lung microbiome are rarely explored. We conducted a randomized, crossover study among 35 healthy adults, who participated in 2-h exposure treatments in the road or park scenario alternately, to investigate the impact of short-term TRAP exposure on expiratory health. Particle matters (PMs), nitrogen dioxide (NO2), carbon monoxide (CO) and volatile organic compounds (VOCs), lung function, fractional exhaled nitric oxide (FeNO) and lung microbiota were measured. We applied linear mixed-effect models to explore the associations. TRAP including NO2 and CO in the road were about 1.5 times higher than that in the park except for PMs, and total VOCs also showed higher concentrations. We observed elevated difference in FeNO was associated with high TRAP exposure in the road session, but didn't find obvious changes in lung function. The abundance of Lentilactobacillus and Haepmophilus were distinct in the two groups, with significant correlations with changes to PEF and FeNO, respectively. Enrichment pathways related to transcription, amino acid and carbohydrate metabolism were altered following high TRAP exposure, suggesting TRAP contributed to the respiratory disease by changing metabolism of lung microbes. Our findings reveal VOCs in the road are another key air pollutant and provide novel mechanism for the respiratory effects of TRAP from the perspective of microbiome.
Collapse
Affiliation(s)
- Rongrong Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanping Zhang
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Science
| | - Tingting Wu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianhao Peng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Te Ba
- Department of Stomatology, Aviation General Hospital, Beijing, China
| | - Baorong Zhang
- Department of Stomatology, Aviation General Hospital, Beijing, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yongjie Wei
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Jacobs A, Prete MC, Lesch A, Sebio AA, Teixeira Tarley CR, Swain GM. Measurement of Human and Bovine Exhaled Breath Condensate pH Using Polyaniline-Modified Flexible Inkjet-Printed Nanocarbon Electrodes. ACS OMEGA 2024; 9:40841-40856. [PMID: 39371969 PMCID: PMC11447749 DOI: 10.1021/acsomega.4c05800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024]
Abstract
The collection, processing, and electrochemical analysis of exhaled breath condensate (EBC) from healthy human and animal subjects is reported on. EBC is a biospecimen potentially rich in biomarkers of respiratory disease. The EBC pH was analyzed potentiometrically using a disposable polyaniline (PANI)-modified inkjet-printed (IJP) carbon electrode. Comparison measurements were performed using a commercial screen-printed carbon (SPC) electrode. The PANI-modified electrodes exhibited reproducible and near-Nernstian responses for pH values between 2 and 9 with slopes from -50 to -60 mV/dec. The PANI-modified IJP carbon electrode exhibited a faster response time and superior reproducibility to the modified SPC electrode. In proof-of-concept studies, the healthy human EBC pH was found to be 6.57 ± 0.09 and the healthy bovine EBC pH was 5.9 ± 0.2. All pH determined using the PANI-modified electrodes were in good agreement with the pH determined using a micro glass pH electrode. An RTube device was used to collect EBC from humans while a modified device was used to collect EBC from calves in the field. EBC volumes of 0.5-2 mL for 5-6 min of tidal breathing were collected from healthy animals. The pH of EBC from healthy calves (17 animals) depends on their age from 1 to 9 weeks with values ranging from 5.3 to 7.2. A distinct alkaline shift was observed for many animals around 20 days of age. The bovine EBC pH also depends on the ambient temperature and humidity at the time of collection. The results indicate that the PANI-modified IJP carbon electrodes outperform commercial SPC and provide reproducible and accurate measurement of pH across various biospecimen types.
Collapse
Affiliation(s)
- Aaron
I. Jacobs
- Department
of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Maiyara C. Prete
- Department
of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
- Department
of Chemistry, State University of Londrina
(UEL), Londrina, Paraná 86051-990, Brazil
| | - Andreas Lesch
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Angel Abuelo Sebio
- Department
of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, Michigan 48824, United States
| | | | - Greg M. Swain
- Department
of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
Karimzadeh Z, Jouyban A, Khoubnasabjafari M, Jouyban-Gharamaleki V, Rahimpour E. Quantification of morphine in exhaled breath condensate using a double network polymeric hybrid hydrogel functionalized with AuNPs. BMC Chem 2024; 18:175. [PMID: 39294637 PMCID: PMC11411791 DOI: 10.1186/s13065-024-01299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Morphine serves as a foundation for creating other opioid derivatives, such as hydro/oxymorphine and heroin, which possess enhanced pain-relieving properties but are also prone to addiction and abuse. In cases of morphine overdose, it not only affects multiple immune functions but can also cause severe health complications. Given these concerns and the widespread use of morphine, it is crucial to develop efficient, uncomplicated, and precise methods for accurately detecting morphine in various biological and pharmaceutical samples. RESULTS In this investigation, a novel gold nanoparticle (AuNPs)-based double network hydrogel (DNH) nanoprobe has been fabricated for sensitive quantification of morphine in exhaled breath condensate samples. For that, gelatin/agarose DNH was fabricated through a one-step heating-cooling method in the presence of AuNPs, providing not only chemical stability but also prevent the AuNPs aggregation during synthesis process. In this method, the absorbance intensity of the nanoprobe gradually decreased with increasing morphine concentration due to the interaction morphine with AuNPs surface plasmon. The aggregation of AuNPs by addition of morphine was verified by UV-Vis spectrophotometry. The sensor displayed high sensitivity with detection limit of 0.006 µg.mL-1 in the linear range from 0.01 to 1.0 µg.mL-1. A reliable performance was attained for the spectrophotometric method for determination of morphine in the real samples.
Collapse
Affiliation(s)
- Zahra Karimzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Jouyban-Gharamaleki
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Guzmán M, Araneda OF, Castro C, Acevedo K, Pacheco C, Morán C, Quezada C. H 2O 2 Concentration in Exhaled Breath Condensate Increases After Phonotrauma: A Promise of Noninvasive Monitoring? J Voice 2024; 38:1186-1192. [PMID: 35351329 DOI: 10.1016/j.jvoice.2022.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE The present study was designed to observe the concentration of hydrogen peroxide (H2O2) in exhaled breath condensate (EBC) after induced phonotrauma. METHODS Thirty-five participants were randomly assigned to one of two conditions (1) Vocal demand and (2) Control. Participants in the experimental group (vocal demand) were asked to read aloud some texts during 1 hour, at 85-90 dB. Inflammation (H2O2 from exhaled breath condensate), acoustic, aerodynamic, and subjective measures were obtained at four time points: before vocal demand (baseline), immediately after baseline, 4-hour after baseline, and 24 hours after baseline. The same acquisition process was implemented for subjects in control group, except that they were not asked to engage in any vocal demand tasks at all. RESULTS As for biological samples, a significant effect for group was observed. Higher values were found for participants in experimental condition. Significant differences were observed for within contrasts in the experimental group, namely 4 hours against baseline, 4 hours against immediately post, and 24 hours against 4 hours. Instrumental outcomes did not show significant differences across the different conditions at any time points. Self-reported measures (vocal fatigue and sensation of muscle tension) showed a significant main effect for group and main effect for condition. CONCLUSIONS Intense vocal demand causes an increase in the concentration of H2O2 obtained from EBC at four hours after baseline, which is compatible with the generation of an inflammatory process in the vocal folds (phonotrauma). Moreover, the increase in the sensation of vocal fatigue and muscle tension after demand tasks seems to be an immediate reaction that did not match in time with the increment of H2O2 concentration.
Collapse
Affiliation(s)
- Marco Guzmán
- Department of Communication Sciences and Disorders, Universidad de los Andes, Chile. Santiago, Chile.
| | - Oscar F Araneda
- Faculty of Medicine, Universidad de los Andes, Chile. Santiago, Chile
| | - Christian Castro
- Department of Communication Sciences and Disorders, Universidad de Valparaiso, Valparaiso, Chile
| | - Karol Acevedo
- Department of Communication Sciences and Disorders, Universidad San Sebastian, Santiago, Chile
| | | | | | - Camilo Quezada
- Departamento de Fonoaudiología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Soccio P, Quarato CMI, Tondo P, Lacedonia D, Hoxhallari A, Foschino Barbaro MP, Scioscia G. Breath and Sputum Analyses in Asthmatic Patients: An Overview. Cells 2024; 13:1355. [PMID: 39195245 DOI: 10.3390/cells13161355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Recent advancements in asthma management include non-invasive methodologies such as sputum analysis, exhaled breath condensate (EBC), and fractional exhaled nitric oxide (FeNO). These techniques offer a means to assess airway inflammation, a critical feature of asthma, without invasive procedures. Sputum analysis provides detailed insights into airway inflammation patterns and cellular composition, guiding personalized treatment strategies. EBC collection, reflecting bronchoalveolar lining fluid composition, provides a non-invasive window into airway physiology. FeNO emerges as a pivotal biomarker, offering insights into eosinophilic airway inflammation and aiding in asthma diagnosis, treatment monitoring, and the prediction of exacerbation risks. Despite inherent limitations, each method offers valuable tools for a more comprehensive assessment of asthma. Combining these techniques with traditional methods like spirometry may lead to more personalized treatment plans and improved patient outcomes. Future research is crucial to refine protocols, validate biomarkers, and establish comprehensive guidelines in order to enhance asthma management with tailored therapeutic strategies and improved patient outcomes.
Collapse
Affiliation(s)
- Piera Soccio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | | | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Anela Hoxhallari
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Maria Pia Foschino Barbaro
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| |
Collapse
|
6
|
Kita K, Gawinowska M, Chełmińska M, Niedoszytko M. The Role of Exhaled Breath Condensate in Chronic Inflammatory and Neoplastic Diseases of the Respiratory Tract. Int J Mol Sci 2024; 25:7395. [PMID: 39000502 PMCID: PMC11242091 DOI: 10.3390/ijms25137395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are among the most common chronic respiratory diseases. Chronic inflammation of the airways leads to an increased production of inflammatory markers by the effector cells of the respiratory tract and lung tissue. These biomarkers allow the assessment of physiological and pathological processes and responses to therapeutic interventions. Lung cancer, which is characterized by high mortality, is one of the most frequently diagnosed cancers worldwide. Current screening methods and tissue biopsies have limitations that highlight the need for rapid diagnosis, patient differentiation, and effective management and monitoring. One promising non-invasive diagnostic method for respiratory diseases is the assessment of exhaled breath condensate (EBC). EBC contains a mixture of volatile and non-volatile biomarkers such as cytokines, leukotrienes, oxidative stress markers, and molecular biomarkers, providing significant information about inflammatory and neoplastic states in the lungs. This article summarizes the research on the application and development of EBC assessment in diagnosing and monitoring respiratory diseases, focusing on asthma, COPD, and lung cancer. The process of collecting condensate, potential issues, and selected groups of markers for detailed disease assessment in the future are discussed. Further research may contribute to the development of more precise and personalized diagnostic and treatment methods.
Collapse
Affiliation(s)
- Karolina Kita
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marika Gawinowska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marta Chełmińska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
7
|
Cai SH, Wang B, Zhang J, Guo J, Hu B. Wearable sampling of proteins from human exhaled aerosols for nano-liquid chromatography-tandem mass spectrometry analysis: A pilot study. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9737. [PMID: 38533583 DOI: 10.1002/rcm.9737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
RATIONALE Human exhaled breath usually contains unique proteins that may provide clues to characterize individual physiological activities and many diseases. However, the concentration of exhaled proteins in exhaled breath is extremely low and usually does not reach the detection limits of all online breath mass spectrometry instruments. Therefore, developing a new breath sampler for collecting and characterizing exhaled proteins is important. METHODS In this study, a new mask-based wearable sampler was developed by fixing metal materials into the inner surface of the KN95 mask. Human exhaled proteins could be directly adsorbed onto the metal material while wearing the mask. After sampling, the collected proteins were eluted, digested, and identified using nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS). RESULTS The adsorption of exhaled proteins was evaluated, showing that modified gold foil is an effective material for collecting exhaled proteins. Various endogenous proteins were successfully identified from exhaled breath, many of which can be potential biomarkers for disease diagnosis. CONCLUSIONS By coupling the newly developed mask sampler with nano-LC-MS/MS, human exhaled proteins were successfully collected and identified. Our results show that the mask sampler is wearable, simple, and convenient, and the method is noninvasive for investigating disease diagnosis and human health.
Collapse
Affiliation(s)
- Shen-Hui Cai
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| | - Baixue Wang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| | - Jianfeng Zhang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| | - Jiubiao Guo
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Roe T, Silveira S, Luo Z, Osborne EL, Senthil Murugan G, Grocott MPW, Postle AD, Dushianthan A. Particles in Exhaled Air (PExA): Clinical Uses and Future Implications. Diagnostics (Basel) 2024; 14:972. [PMID: 38786270 PMCID: PMC11119244 DOI: 10.3390/diagnostics14100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Access to distal airway samples to assess respiratory diseases is not straightforward and requires invasive procedures such as bronchoscopy and bronchoalveolar lavage. The particles in exhaled air (PExA) device provides a non-invasive means of assessing small airways; it captures distal airway particles (PEx) sized around 0.5-7 μm and contains particles of respiratory tract lining fluid (RTLF) that originate during airway closure and opening. The PExA device can count particles and measure particle mass according to their size. The PEx particles can be analysed for metabolites on various analytical platforms to quantitatively measure targeted and untargeted lung specific markers of inflammation. As such, the measurement of distal airway components may help to evaluate acute and chronic inflammatory conditions such as asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome, and more recently, acute viral infections such as COVID-19. PExA may provide an alternative to traditional methods of airway sampling, such as induced sputum, tracheal aspirate, or bronchoalveolar lavage. The measurement of specific biomarkers of airway inflammation obtained directly from the RTLF by PExA enables a more accurate and comprehensive understanding of pathophysiological changes at the molecular level in patients with acute and chronic lung diseases.
Collapse
Affiliation(s)
- Thomas Roe
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Siona Silveira
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Zixing Luo
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Eleanor L Osborne
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | | | - Michael P W Grocott
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anthony D Postle
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Ahilanandan Dushianthan
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
9
|
Dubey AK, Kaur I, Madaan R, Raheja S, Bala R, Garg M, Kumar S, Lather V, Mittal V, Pandita D, Gundamaraju R, Singla RK, Sharma R. Unlocking the potential of oncology biomarkers: advancements in clinical theranostics. Drug Metab Pers Ther 2024; 39:5-20. [PMID: 38469723 DOI: 10.1515/dmpt-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Cancer biomarkers have revolutionized the field of oncology by providing valuable insights into tumor changes and aiding in screening, diagnosis, prognosis, treatment prediction, and risk assessment. The emergence of "omic" technologies has enabled biomarkers to become reliable and accurate predictors of outcomes during cancer treatment. CONTENT In this review, we highlight the clinical utility of biomarkers in cancer identification and motivate researchers to establish a personalized/precision approach in oncology. By extending a multidisciplinary technology-based approach, biomarkers offer an alternative to traditional techniques, fulfilling the goal of cancer therapeutics to find a needle in a haystack. SUMMARY AND OUTLOOK We target different forms of cancer to establish a dynamic role of biomarkers in understanding the spectrum of malignancies and their biochemical and molecular characterization, emphasizing their prospective contribution to cancer screening. Biomarkers offer a promising avenue for the early detection of human cancers and the exploration of novel technologies to predict disease severity, facilitating maximum survival and minimum mortality rates. This review provides a comprehensive overview of the potential of biomarkers in oncology and highlights their prospects in advancing cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, 34753 Sichuan University , Chengdu, P.R. China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, 154025 Chitkara University Punjab , Rajpura, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, 154025 Chitkara University Punjab , Rajpura, India
| | - Shikha Raheja
- Jan Nayak Ch. Devi Lal Memorial College of Pharmacy, Sirsa, Haryana, India
| | - Rajni Bala
- Chitkara College of Pharmacy, 154025 Chitkara University Punjab , Rajpura, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine & Stem Cell Research, 77282 Amity University, Sector-125 , Noida, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, 429174 Punjabi University Patiala , Patiala, India
| | - Viney Lather
- Amity Institute of Pharmacy, 77282 Amity University , Noida, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, 29062 Maharshi Dayanand University , Rohtak, Haryana, India
| | - Deepti Pandita
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, PushpVihar, 633274 Govt. of NCT of Delhi , New Delhi, India
- Centre for Advanced Formulation and Technology (CAFT), Delhi Pharmaceutical Sciences and Research University, PushpVihar, Govt. of NCT of Delhi, New Delhi, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, 8785 University of Tasmania , Launceston, Tasmania, Australia
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, 34753 Sichuan University , Chengdu, P.R. China
- School of Pharmaceutical Sciences, 34753 Lovely Professional University , Phagwara, Punjab, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, 80095 Banaras Hindu University , Varanasi, Uttar Pradesh, India
| |
Collapse
|
10
|
de Freitas Santi T, Barbosa B, Weber SH, Michelotto PV. Exhaled breath condensate analysis in horses: A scoping review. Res Vet Sci 2024; 168:105160. [PMID: 38278027 DOI: 10.1016/j.rvsc.2024.105160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Exhaled breath condensate (EBC) collection is a non-invasive sampling method that provides valuable information regarding the health status of the respiratory system by measuring inflammatory mediators, such as pH, hydrogen peroxide, and leukotriene B4. This scoping review aimed to provide an update on the collection and analysis of EBC in horses. A systematic search of three electronic databases, PubMed, Google Scholar, Science Direct, identified 40,978 articles, of which 1590 duplicates were excluded. Moreover, 39,388 articles were excluded because of irrelevance to this review, such as studies on other species, studies on respiratory exhalation, reviews, and theses. Finally, we evaluated 14 articles in this review. Our review revealed significant differences in the collection, storage, and processing of EBC samples, emphasizing the need for standardizing the technique and using specific equipment to improve the interpretation of the results.
Collapse
Affiliation(s)
- Thasla de Freitas Santi
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Prado Velho, 80215-901 Curitiba, PR, Brazil
| | - Bianca Barbosa
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Prado Velho, 80215-901 Curitiba, PR, Brazil
| | - Saulo Henrique Weber
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Prado Velho, 80215-901 Curitiba, PR, Brazil
| | - Pedro Vicente Michelotto
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Prado Velho, 80215-901 Curitiba, PR, Brazil.
| |
Collapse
|
11
|
Choi YJ, Lee MJ, Byun MK, Park S, Park J, Park D, Kim SH, Kim Y, Lim SY, Yoo KH, Jung KS, Park HJ. Roles of Inflammatory Biomarkers in Exhaled Breath Condensates in Respiratory Clinical Fields. Tuberc Respir Dis (Seoul) 2024; 87:65-79. [PMID: 37822233 PMCID: PMC10758305 DOI: 10.4046/trd.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/12/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Exhaled condensates contain inflammatory biomarkers; however, their roles in the clinical field have been under-investigated. METHODS We prospectively enrolled subjects admitted to pulmonology clinics. We collected exhaled breath condensates (EBC) and analysed the levels of six and 12 biomarkers using conventional and multiplex enzyme-linked immunosorbent assay, respectively. RESULTS Among the 123 subjects, healthy controls constituted the largest group (81 participants; 65.9%), followed by the preserved ratio impaired spirometry group (21 patients; 17.1%) and the chronic obstructive pulmonary disease (COPD) group (21 patients; 17.1%). In COPD patients, platelet derived growth factor-AA exhibited strong positive correlations with COPD assessment test (ρ=0.5926, p=0.0423) and COPD-specific version of St. George's Respiratory Questionnaire (SGRQ-C) score (total, ρ=0.6725, p=0.0166; activity, ρ=0.7176, p=0.0086; and impacts, ρ=0.6151, p=0.0333). Granzyme B showed strong positive correlations with SGRQ-C score (symptoms, ρ=0.6078, p=0.0360; and impacts, ρ=0.6007, p=0.0389). Interleukin 6 exhibited a strong positive correlation with SGRQ-C score (activity, ρ=0.4671, p=0.0378). The absolute serum eosinophil and basophil counts showed positive correlations with pro-collagen I alpha 1 (ρ=0.6735, p=0.0164 and ρ=0.6295, p=0.0283, respectively). In healthy subjects, forced expiratory volume in 1 second (FEV1)/forced vital capacity demonstrated significant correlation with CC chemokine ligand 3 (CCL3)/macrophage inflammatory protein 1 alpha (ρ=0.3897 and p=0.0068). FEV1 exhibited significant correlation with CCL11/eotaxin (ρ=0.4445 and p=0.0017). CONCLUSION Inflammatory biomarkers in EBC might be useful to predict quality of life concerning respiratory symptoms and serologic markers. Further studies are needed.
Collapse
Affiliation(s)
- Yong Jun Choi
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Jae Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kwang Byun
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangho Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jimyung Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dongil Park
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sang-Hoon Kim
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Republic of Korea
| | - Youngsam Kim
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong Yong Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kwang Ha Yoo
- Division of Pulmonary and Allergy, Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Ki Suck Jung
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Republic of Korea
| | - Hye Jung Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Czarnecka-Chrebelska KH, Kordiak J, Brzeziańska-Lasota E, Pastuszak-Lewandoska D. Respiratory Tract Oncobiome in Lung Carcinogenesis: Where Are We Now? Cancers (Basel) 2023; 15:4935. [PMID: 37894302 PMCID: PMC10605430 DOI: 10.3390/cancers15204935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The importance of microbiota in developing and treating diseases, including lung cancer (LC), is becoming increasingly recognized. Studies have shown differences in microorganism populations in the upper and lower respiratory tracts of patients with lung cancer compared to healthy individuals, indicating a link between dysbiosis and lung cancer. However, it is not only important to identify "which bacteria are present" but also to understand "how" they affect lung carcinogenesis. The interactions between the host and lung microbiota are complex, and our knowledge of this relationship is limited. This review presents research findings on the bacterial lung microbiota and discusses the mechanisms by which lung-dwelling microorganisms may directly or indirectly contribute to the development of lung cancer. These mechanisms include influences on the host immune system regulation and the local immune microenvironment, the regulation of oncogenic signaling pathways in epithelial cells (causing cell cycle disorders, mutagenesis, and DNA damage), and lastly, the MAMPs-mediated path involving the effects of bacteriocins, TLRs signaling induction, and TNF release. A better understanding of lung microbiota's role in lung tumor pathology could lead to identifying new diagnostic and therapeutic biomarkers and developing personalized therapeutic management for lung cancer patients.
Collapse
Affiliation(s)
| | - Jacek Kordiak
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, 90-151 Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Dorota Pastuszak-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Pomorska 251, 90-151 Lodz, Poland;
| |
Collapse
|
13
|
Seyfinejad B, Nemutlu E, Taghizadieh A, Khoubnasabjafari M, Ozkan SA, Jouyban A. Biomarkers in exhaled breath condensate as fingerprints of asthma, chronic obstructive pulmonary disease and asthma-chronic obstructive pulmonary disease overlap: a critical review. Biomark Med 2023; 17:811-837. [PMID: 38179966 DOI: 10.2217/bmm-2023-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Asthma, chronic obstructive pulmonary disease (COPD) and asthma-COPD overlap are the third leading cause of mortality around the world. They share some common features, which can lead to misdiagnosis. To properly manage these conditions, reliable markers for early and accurate diagnosis are needed. Over the past 20 years, many molecules have been investigated in the exhaled breath condensate to better understand inflammation pathways and mechanisms related to these disorders. Recently, more advanced techniques, such as sensitive metabolomic and proteomic profiling, have been used to obtain a more comprehensive understanding. This article reviews the use of targeted and untargeted metabolomic methodology to study asthma, COPD and asthma-COPD overlap.
Collapse
Affiliation(s)
- Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkiye
| | - Ali Taghizadieh
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Internal Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anesthesiology & Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, 06560, Turkiye
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, PO Box 99138 Nicosia, North Cyprus, Mersin 10, Turkiye
| |
Collapse
|
14
|
Bhide A, Eldeeb MA, Pali M, Muthukumar S, Prasad S. MEASURE: Multiplex Exhaled Breath Condensate - Scanning Using Rapid Electro-Analytics. ACS Sens 2023; 8:3408-3416. [PMID: 37643348 DOI: 10.1021/acssensors.3c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Exhaled breath condensate is an emerging source of inflammatory biomarkers suitable for the noninvasive detection of respiratory disorders. Current gold standard methods are highly invasive and pose challenges in sample collection during airway inflammation monitoring. Cytokine biomarkers are detectable in EBC at increased or decreased concentrations. IL-6, IL-1β, IL-8, and hs-CRP are characteristic biomarkers identified in respiratory disorders. We have demonstrated the promising outcomes of a 16-plexed electrochemical platform - READ 2.0 for the multiplexed detection of characteristic biomarkers in EBC. The sensor demonstrates dynamic ranges of 1-243 pg/mL with a lower detection limit of 1 pg/mL for IL-6 and IL-1β, while the detection range and limit of detection for IL-8 and hs-CRP is 1-150 pg/mL and 3 pg/mL, respectively. The detection accuracies for the biomarkers are in the range of ∼85 ± 15% to ∼100 ± 10%. The sensor shows a nonspecific response to similar cross-reacting biomarkers. Analytical validation of the sensor with ELISA as the standard reference generated a correlation of R2 > 0.96 and mean biases of 10.9, 3.5, 17.4, and 3.9 pg/mL between the two methods for IL-6, IL-1β, IL-8, and hs-CRP, respectively. The precision of the sensor in detecting low biomarker concentrations yields a %CV of <7%. The variation in the sensor's response on repeat EBC sample measurements and within a 6 h duration is less than 10%. The READ 2.0 platform shows a promise that EBC-based biomarker detection can prove to be vital in predicting the severity and survival rates of respiratory disorders and serve as a reference point for monitoring EBC-based biomarkers.
Collapse
Affiliation(s)
- Ashlesha Bhide
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mohammed A Eldeeb
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Madhavi Pali
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sriram Muthukumar
- EnLiSense LLC, 1813 Audubon Pond Way, Allen, Texas 75013, United States
| | - Shalini Prasad
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
15
|
Escalona J, Soto D, Oviedo V, Rivas E, Severino N, Kattan E, Andresen M, Bravo S, Basoalto R, Bachmann MC, Wong KY, Pavez N, Bruhn A, Bugedo G, Retamal J. Beta-Lactam Antibiotics Can Be Measured in the Exhaled Breath Condensate in Mechanically Ventilated Patients: A Pilot Study. J Pers Med 2023; 13:1146. [PMID: 37511759 PMCID: PMC10381781 DOI: 10.3390/jpm13071146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Different techniques have been proposed to measure antibiotic levels within the lung parenchyma; however, their use is limited because they are invasive and associated with adverse effects. We explore whether beta-lactam antibiotics could be measured in exhaled breath condensate collected from heat and moisture exchange filters (HMEFs) and correlated with the concentration of antibiotics measured from bronchoalveolar lavage (BAL). We designed an observational study in patients undergoing mechanical ventilation, which required a BAL to confirm or discard the diagnosis of pneumonia. We measured and correlated the concentration of beta-lactam antibiotics in plasma, epithelial lining fluid (ELF), and exhaled breath condensate collected from HMEFs. We studied 12 patients, and we detected the presence of antibiotics in plasma, ELF, and HMEFs from every patient studied. The concentrations of antibiotics were very heterogeneous over the population studied. The mean antibiotic concentration was 293.5 (715) ng/mL in plasma, 12.3 (31) ng/mL in ELF, and 0.5 (0.9) ng/mL in HMEF. We found no significant correlation between the concentration of antibiotics in plasma and ELF (R2 = 0.02, p = 0.64), between plasma and HMEF (R2 = 0.02, p = 0.63), or between ELF and HMEF (R2 = 0.02, p = 0.66). We conclude that beta-lactam antibiotics can be detected and measured from the exhaled breath condensate accumulated in the HMEF from mechanically ventilated patients. However, no correlations were observed between the antibiotic concentrations in HMEF with either plasma or ELF.
Collapse
Affiliation(s)
- José Escalona
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Unidad de Paciente Crítico, Hospital El Salvador, Santiago 8331150, Chile
| | - Dagoberto Soto
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Vanessa Oviedo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Elizabeth Rivas
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Nicolás Severino
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Programa de Farmacología y Toxicología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Eduardo Kattan
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Max Andresen
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Sebastián Bravo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Roque Basoalto
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Programa de Medicina Física y Rehabilitación, Red Salud UC-CHRISTUS, Santiago 8331150, Chile
| | - María Consuelo Bachmann
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
| | - Nicolás Pavez
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de Concepción, Concepción 4030000, Chile
| | - Alejandro Bruhn
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Guillermo Bugedo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jaime Retamal
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
16
|
Yu S, Xu K, Wang Z, Zhang Z, Zhang Z. Bibliometric and visualized analysis of metal-organic frameworks in biomedical application. Front Bioeng Biotechnol 2023; 11:1190654. [PMID: 37234479 PMCID: PMC10206306 DOI: 10.3389/fbioe.2023.1190654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Metal-organic frameworks (MOFs) are hybrid materials composed of metal ions or clusters and organic ligands that spontaneously assemble via coordination bonds to create intramolecular pores, which have recently been widely used in biomedicine due to their porosity, structural, and functional diversity. They are used in biomedical applications, including biosensing, drug delivery, bioimaging, and antimicrobial activities. Our study aims to provide scholars with a comprehensive overview of the research situations, trends, and hotspots in biomedical applications of MOFs through a bibliometric analysis of publications from 2002 to 2022. Methods: On 19 January 2023, the Web of Science Core Collection was searched to review and analyze MOFs applications in the biomedical field. A total of 3,408 studies published between 2002 and 2022 were retrieved and examined, with information such as publication year, country/region, institution, author, journal, references, and keywords. Research hotspots were extracted and analyzed using the Bibliometrix R-package, VOSviewer, and CiteSpace. Results: We showed that researchers from 72 countries published articles on MOFs in biomedical applications, with China producing the most publications. The Chinese Academy of Science was the most prolific contributor to these publications among 2,209 institutions that made contributions. Reference co-citation analysis classifies references into 8 clusters: synergistic cancer therapy, efficient photodynamic therapy, metal-organic framework encapsulation, selective fluorescence, luminescent probes, drug delivery, enhanced photodynamic therapy, and metal-organic framework-based nanozymes. Keyword co-occurrence analysis divided keywords into 6 clusters: biosensors, photodynamic therapy, drug delivery, cancer therapy and bioimaging, nanoparticles, and antibacterial applications. Research frontier keywords were represented by chemodynamic therapy (2020-2022) and hydrogen peroxide (2020-2022). Conclusion: Using bibliometric methods and manual review, this review provides a systematic overview of research on MOFs in biomedical applications, filling an existing gap. The burst keyword analysis revealed that chemodynamic therapy and hydrogen peroxide are the prominent research frontiers and hot spots. MOFs can catalyze Fenton or Fenton-like reactions to generate hydroxyl radicals, making them promising materials for chemodynamic therapy. MOF-based biosensors can detect hydrogen peroxide in various biological samples for diagnosing diseases. MOFs have a wide range of research prospects for biomedical applications.
Collapse
Affiliation(s)
- Sanyang Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Kaihao Xu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhenhua Wang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Zhichang Zhang
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Zhongti Zhang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
17
|
A non-invasive method for the detection of glucose in human exhaled breath by condensation collection coupled with ion chromatography. J Chromatogr A 2022; 1685:463564. [DOI: 10.1016/j.chroma.2022.463564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022]
|
18
|
Xu F, Zhou J, Yang H, Chen L, Zhong J, Peng Y, Wu K, Wang Y, Fan H, Yang X, Zhao Y. Recent advances in exhaled breath sample preparation technologies for drug of abuse detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Revelsky AI, Kozyr’ AS, Samokhin AS, Anaev EK, Revelsky IA. Lyophilization with Subsequent Derivatization vs Microextraction by Packed Sorbent (MEPS) in the Analysis of Exhaled Breath Condensate by Gas Chromatography–Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Riccò M, Zaniboni A, Satta E, Ranzieri S, Marchesi F. Potential Use of Exhaled Breath Condensate for Diagnosis of SARS-CoV-2 Infections: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:diagnostics12092245. [PMID: 36140647 PMCID: PMC9497929 DOI: 10.3390/diagnostics12092245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background. Reverse-transcriptase polymerase chain reaction (RT-qPCR) assays performed on respiratory samples collected through nasal swabs still represent the gold standard for COVID-19 diagnosis. Alternative methods to this invasive and time-consuming options are still being inquired, including the collection of airways lining fluids through exhaled breath condensate (EBC). Materials and Methods. We performed a systematic review and meta-analysis in order to explore the reliability of EBC as a way to collect respiratory specimens for RT-qPCR for diagnosis of COVID-19. Results. A total of 4 studies (205 specimens), were ultimately collected, with a pooled sensitivity of 69.5% (95%CI 26.8–93.4), and a pooled specificity of 98.3% (95%CI 87.8–99.8), associated with high heterogeneity and scarce diagnostic agreement with the gold standard represented by nasal swabs (Cohen’s kappa = 0.585). Discussion. Even though non-invasive options for diagnosis of COVID-19 are still necessary, EBC-based RT-qPCR showed scarce diagnostic performances, ultimately impairing its implementation in real-world settings. However, as few studies have been carried out to date, and the studies included in the present review are characterized by low numbers and low sample power, further research are requested to fully characterize the actual reliability of EBC-based RT-qPCR in the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Matteo Riccò
- Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), AUSL-IRCCS di Reggio Emilia, Via Amendola n.2, I-42122 Reggio Emilia, Italy
- Correspondence: ; Tel.: +39-339-2994-343
| | - Alessandro Zaniboni
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| | - Elia Satta
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| | - Silvia Ranzieri
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy
| |
Collapse
|
21
|
Ghelli F, Panizzolo M, Garzaro G, Squillacioti G, Bellisario V, Colombi N, Bergamaschi E, Guseva Canu I, Bono R. Inflammatory Biomarkers in Exhaled Breath Condensate: A Systematic Review. Int J Mol Sci 2022; 23:ijms23179820. [PMID: 36077213 PMCID: PMC9456215 DOI: 10.3390/ijms23179820] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 01/08/2023] Open
Abstract
Inflammation is a comprehensive set of physiological processes that an organism undertakes in response to a wide variety of foreign stimuli, such as viruses, bacteria, and inorganic particles. A key role is played by cytokines, protein-based chemical mediators produced by a broad range of cells, including the immune cells recruited in the inflammation site. The aim of this systematic review is to compare baseline values of pro/anti-inflammatory biomarkers measured in Exhaled Breath Condensate (EBC) in healthy, non-smoking adults to provide a summary of the concentrations reported in the literature. We focused on: interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-10, tumour necrosis factor-alpha (TNF-α), and C reactive protein (CRP). Eligible articles were identified in PubMed, Embase, and Cochrane CENTRAL. Due to the wide differences in methodologies employed in the included articles concerning EBC sampling, storage, and analyses, research protocols were assessed specifically to test their adherence to the ATS/ERS Task Force guidelines on EBC. The development of reference intervals for these biomarkers can result in their introduction and use in both research and clinical settings, not only for monitoring purposes but also, in the perspective of future longitudinal studies, as predictive parameters for the onset and development of chronic diseases with inflammatory aetiology.
Collapse
Affiliation(s)
- Federica Ghelli
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Marco Panizzolo
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Giacomo Garzaro
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Valeria Bellisario
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Nicoletta Colombi
- Federated Library of Medicine “F. Rossi”, University of Turin, 10126 Turin, Italy
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
- Correspondence:
| | - Irina Guseva Canu
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066 Lausanne, Switzerland
| | - Roberto Bono
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| |
Collapse
|
22
|
Porpodis K, Tsiouprou I, Apostolopoulos A, Ntontsi P, Fouka E, Papakosta D, Vliagoftis H, Domvri K. Eosinophilic Asthma, Phenotypes-Endotypes and Current Biomarkers of Choice. J Pers Med 2022; 12:jpm12071093. [PMID: 35887589 PMCID: PMC9316404 DOI: 10.3390/jpm12071093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/16/2022] Open
Abstract
Asthma phenotyping and endotyping are constantly evolving. Currently, several biologic agents have been developed towards a personalized approach to asthma management. This review will focus on different eosinophilic phenotypes and Th2-associated endotypes with eosinophilic inflammation. Additionally, airway remodeling is analyzed as a key feature of asthmatic eosinophilic endotypes. In addition, evidence of biomarkers is examined with a predictive value to identify patients with severe, uncontrolled asthma who may benefit from new treatment options. Finally, there will be a discussion on the results from clinical trials regarding severe eosinophilic asthma and how the inhibition of the eosinophilic pathway by targeted treatments has led to the reduction of recurrent exacerbations.
Collapse
Affiliation(s)
- Konstantinos Porpodis
- Pulmonary Department, Aristotle University of Thessaloniki, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (K.P.); (I.T.); (A.A.); (E.F.); (D.P.)
| | - Ioanna Tsiouprou
- Pulmonary Department, Aristotle University of Thessaloniki, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (K.P.); (I.T.); (A.A.); (E.F.); (D.P.)
| | - Apostolos Apostolopoulos
- Pulmonary Department, Aristotle University of Thessaloniki, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (K.P.); (I.T.); (A.A.); (E.F.); (D.P.)
| | - Polyxeni Ntontsi
- 2nd University Department of Respiratory Medicine, Attikon Hospital, 12462 Athens, Greece;
| | - Evangelia Fouka
- Pulmonary Department, Aristotle University of Thessaloniki, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (K.P.); (I.T.); (A.A.); (E.F.); (D.P.)
| | - Despoina Papakosta
- Pulmonary Department, Aristotle University of Thessaloniki, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (K.P.); (I.T.); (A.A.); (E.F.); (D.P.)
| | - Harissios Vliagoftis
- Department of Medicine, University of Alberta, 567 HMRC, Edmonton, AB T6G 2S2, Canada;
| | - Kalliopi Domvri
- Pulmonary Department, Aristotle University of Thessaloniki, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (K.P.); (I.T.); (A.A.); (E.F.); (D.P.)
- Laboratory of Histology-Embryology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-2313307258
| |
Collapse
|
23
|
Ryan DJ, Toomey S, Smyth R, Madden SF, Workman J, Cummins R, Sheehan K, Fay J, Naidoo J, Breathnach OS, Morris PG, Grogan L, O'Brien ME, Sulaiman I, Hennessy BT, Morgan RK. Exhaled Breath Condensate (EBC) analysis of circulating tumour DNA (ctDNA) using a lung cancer specific UltraSEEK oncogene panel. Lung Cancer 2022; 168:67-73. [DOI: 10.1016/j.lungcan.2022.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
|