1
|
Wu J, Zhang J, Huang G, Zhong Y, Yang Y, Deng P. Evidence from mendelian randomization identifies several causal relationships between primary membranous nephropathy and gut microbiota. Ren Fail 2024; 46:2349136. [PMID: 38770992 PMCID: PMC11110878 DOI: 10.1080/0886022x.2024.2349136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Research has showcased a correlation between disruptions in gut microbiota and primary membranous nephropathy (pMN), giving rise to the concept of the 'gut-kidney axis'. However, the precise relationship between gut microbiota and pMN remains elusive. Hence, this study endeavors to investigate whether a causal relationship exists between gut microbiota and pMN utilizing Mendelian randomization (MR) analysis. METHODS The primary method employed for MR analysis is the inverse variance weighting method, supplemented by MR-Egger and the weighted median method, to infer causality. This approach was validated within the pMN cohort across two distinct populations. RESULTS At the species level, the abundance of Bifidobacterium bifidum and Alistipes indistinctus was negatively correlated with the risk of pMN. Conversely, pMN was positively associated with Bacilli abundance at the class level, Lachnospiraceae abundance at the family level, and Dialister abundance at the genus level. Specifically, at the species level, pMN was positively correlated with the abundance of Ruminococcus lactaris, Dialister invisus, and Coprococcus_sp_ART55_1. CONCLUSION These findings lay the groundwork for future research exploring the interplay between pMN and the gut microbiota, with substantial implications for the prevention and treatment of pMN and its associated complications.
Collapse
Affiliation(s)
- Jianwei Wu
- Department of Medical Technology, Gannan Healthcare Vocational College, Ganzhou, China
| | - Jing Zhang
- Department of Medical Technology, Gannan Healthcare Vocational College, Ganzhou, China
| | - Gang Huang
- Department of Laboratory, GanZhou Cancer Hospital, Ganzhou, China
| | - Yinglian Zhong
- Department of Blood Transfusion, Ganzhou Fifth People’s Hospital, Ganzhou, China
| | - Yi Yang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Deng
- Department of Endocrinology, Department of Nephrology, Ganzhou Fifth People’s Hospital, Ganzhou, China
| |
Collapse
|
2
|
Lim X, Ooi L, Ding U, Wu HHL, Chinnadurai R. Gut Microbiota in Patients Receiving Dialysis: A Review. Pathogens 2024; 13:801. [PMID: 39338992 PMCID: PMC11434973 DOI: 10.3390/pathogens13090801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The human gut microbiota constitutes a complex community of microorganisms residing within the gastrointestinal tract, encompassing a vast array of species that play crucial roles in health and disease. The disease processes involved in chronic kidney disease (CKD) and end-stage kidney disease (ESKD) are now increasingly established to result in dysregulation of gut microbiota composition and function. Gut microbiota dysbiosis has been associated with poor clinical outcomes and all-cause mortality in patients with ESKD, particularly individuals receiving dialysis. Prior studies highlighted various factors that affect gut microbiota dysbiosis in CKD and ESKD. These include, but are not limited to, uraemic toxin accumulation, chronic inflammation, immune dysfunction, medications, and dietary restrictions and nutritional status. There is a lack of studies at present that focus on the evaluation of gut microbiota dysbiosis in the context of dialysis. Knowledge on gut microbiota changes in this context is important for determining their impact on dialysis-specific and overall outcomes for this patient cohort. More importantly, evaluating gut microbiota composition can provide information into potential targets for therapeutic intervention. Identification of specific microbial signatures may result in further development of personalised treatments to improve patient outcomes and mitigate complications during dialysis. Optimising gut microbiota through various therapeutic approaches, including dietary adjustments, probiotics, prebiotics, medications, and faecal transplantation, have previously demonstrated potential in multiple medical conditions. It remains to be seen whether these therapeutic approaches are effective within the dialysis setting. Our review aims to evaluate evidence relating to alterations in the gut microbiota of patients undergoing dialysis. A growing body of evidence pointing to the complex yet significant relationship which surrounds gut microbiota and kidney health emphasises the importance of gut microbial balance to improve outcomes for individuals receiving dialysis.
Collapse
Affiliation(s)
- Xintian Lim
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
| | - Lijin Ooi
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
| | - Uzhe Ding
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
| | - Henry H L Wu
- Renal Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, NSW 2065, Australia
| | - Rajkumar Chinnadurai
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M1 7HR, UK
| |
Collapse
|
3
|
Li J, Shen Y, Yan K, Wang S, Jiao J, Chi H, Zhong JC, Dong Y, Wang P. The compositional and functional imbalance of the gut microbiota in CKD linked to disease patterns. J Transl Med 2024; 22:773. [PMID: 39152439 PMCID: PMC11328458 DOI: 10.1186/s12967-024-05578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND The prevalence of chronic kidney disease (CKD) is on the rise, posing a significant public health challenge. Although gut microbiome dysbiosis has been implicated in the impairment of kidney functions, the existence of pathological subtypes-linked differences remains largely unknown. We aimed to characterize the intestinal microbiota in patients with membranous nephropathy (MN), IgA nephropathy (IgAN), minimal change disease (MCD), and ischemic renal injury (IRI) in order to investigate the intricate relationship between intestinal microbiota and CKD across different subtypes. METHODS We conducted a cross-sectional study involving 94 patients with various pathological patterns of CKD and 54 healthy controls (HCs). The clinical parameters were collected, and stool samples were obtained from each participant. Gut microbial features were analyzed using 16S rRNA sequencing and taxon annotation to compare the HC, CKD, MN, IgAN, MCD, and IRI groups. RESULTS The CKD subjects exhibited significantly reduced alpha diversity, modified community structures, and disrupted microbial composition and potential functions compared to the control group. The opportunistic pathogen Klebsiella exhibited a significant enrichment in patients with CKD, whereas Akkermansia showed higher abundance in HCs. The study further revealed the presence of heterogeneity in intestinal microbial signatures across diverse CKD pathological types, including MN, IgAN, MCD, and IRI. The depression of the family Lachnospiraceae and the genus Bilophila was prominently observed exclusively in patients with MN, while suppressed Streptococcus was detected only in individuals with MCD, and a remarkable expansion of the genus Escherichia was uniquely found in cases of IRI. The study also encompassed the development of classifiers employing gut microbial diagnostic markers to accurately discriminate between distinct subtypes of CKD. CONCLUSIONS The dysregulation of gut microbiome was strongly correlated with CKD, exhibiting further specificity towards distinct pathological patterns. Our study emphasizes the significance of considering disease subtypes when assessing the impact of intestinal microbiota on the development, diagnosis, and treatment of CKD.
Collapse
Affiliation(s)
- Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yang Shen
- Department of Nephrology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Kaixin Yan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Siyuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jie Jiao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hongjie Chi
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Pan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Mavrogeorgis E, Valkenburg S, Siwy J, Latosinska A, Glorieux G, Mischak H, Jankowski J. Integration of Urinary Peptidome and Fecal Microbiome to Explore Patient Clustering in Chronic Kidney Disease. Proteomes 2024; 12:11. [PMID: 38651370 PMCID: PMC11036268 DOI: 10.3390/proteomes12020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Millions of people worldwide currently suffer from chronic kidney disease (CKD), requiring kidney replacement therapy at the end stage. Endeavors to better understand CKD pathophysiology from an omics perspective have revealed major molecular players in several sample sources. Focusing on non-invasive sources, gut microbial communities appear to be disturbed in CKD, while numerous human urinary peptides are also dysregulated. Nevertheless, studies often focus on isolated omics techniques, thus potentially missing the complementary pathophysiological information that multidisciplinary approaches could provide. To this end, human urinary peptidome was analyzed and integrated with clinical and fecal microbiome (16S sequencing) data collected from 110 Non-CKD or CKD individuals (Early, Moderate, or Advanced CKD stage) that were not undergoing dialysis. Participants were visualized in a three-dimensional space using different combinations of clinical and molecular data. The most impactful clinical variables to discriminate patient groups in the reduced dataspace were, among others, serum urea, haemoglobin, total blood protein, urinary albumin, urinary erythrocytes, blood pressure, cholesterol measures, body mass index, Bristol stool score, and smoking; relevant variables were also microbial taxa, including Roseburia, Butyricicoccus, Flavonifractor, Burkholderiales, Holdemania, Synergistaceae, Enterorhabdus, and Senegalimassilia; urinary peptidome fragments were predominantly derived from proteins of collagen origin; among the non-collagen parental proteins were FXYD2, MGP, FGA, APOA1, and CD99. The urinary peptidome appeared to capture substantial variation in the CKD context. Integrating clinical and molecular data contributed to an improved cohort separation compared to clinical data alone, indicating, once again, the added value of this combined information in clinical practice.
Collapse
Affiliation(s)
- Emmanouil Mavrogeorgis
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (E.M.); (J.S.); (A.L.); (H.M.)
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Sophie Valkenburg
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (S.V.); (G.G.)
| | - Justyna Siwy
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (E.M.); (J.S.); (A.L.); (H.M.)
| | - Agnieszka Latosinska
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (E.M.); (J.S.); (A.L.); (H.M.)
| | - Griet Glorieux
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (S.V.); (G.G.)
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (E.M.); (J.S.); (A.L.); (H.M.)
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, 6229 Maastricht, The Netherlands
| |
Collapse
|
5
|
Ramanathan K, Padmanabhan G, Gulilat H, Malik T. Salivary microbiome in kidney diseases: A narrative review. Cell Biochem Funct 2023; 41:988-995. [PMID: 37795946 DOI: 10.1002/cbf.3864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Many research has been conducted since the microbiota's discovery that have focused on the role it plays in health and disease. Microbiota can be divided into categories like intestinal, oral, respiratory, and skin microbiota based on the specific localized areas. To maintain homeostasis and control immunological response, the microbial populations live in symbiosis with the host. On the other hand, dysbiosis of the microbiota can cause diseases including kidney diseases and the deregulation of body functioning. We discuss the current understanding of how various kidney diseases are caused by the salivary microbiome (SM) in this overview. First, we review the studies on the salivary microbiota in diverse clinical situations. The importance of the SM in diabetic kidney disease, chronic kidney disease, membranous nephropathy, and IgA nephropathy is next highlighted. We conclude that the characteristics of the SM of patients with various kidney diseases have revealed the potential of salivary microbial markers as noninvasive tool for the detection of various kidney diseases.
Collapse
Affiliation(s)
- Kumaresan Ramanathan
- Department of Biomedical Sciences, Institute of Health, Faculty of Medical Sciences, Jimma University, Jimma, Ethiopia
| | | | - Henok Gulilat
- Department of Biomedical Sciences, Institute of Health, Faculty of Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Faculty of Medical Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
6
|
Voroneanu L, Burlacu A, Brinza C, Covic A, Balan GG, Nistor I, Popa C, Hogas S, Covic A. Gut Microbiota in Chronic Kidney Disease: From Composition to Modulation towards Better Outcomes-A Systematic Review. J Clin Med 2023; 12:jcm12051948. [PMID: 36902734 PMCID: PMC10003930 DOI: 10.3390/jcm12051948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND A bidirectional kidney-gut axis was described in patients with chronic kidney disease (CKD). On the one hand, gut dysbiosis could promote CKD progression, but on the other hand, studies reported specific gut microbiota alterations linked to CKD. Therefore, we aimed to systematically review the literature on gut microbiota composition in CKD patients, including those with advanced CKD stages and end-stage kidney disease (ESKD), possibilities to shift gut microbiota, and its impact on clinical outcomes. MATERIALS AND METHODS We performed a literature search in MEDLINE, Embase, Scopus, and Cochrane databases to find eligible studies using pre-specified keywords. Additionally, key inclusion and exclusion criteria were pre-defined to guide the eligibility assessment. RESULTS We retrieved 69 eligible studies which met all inclusion criteria and were analyzed in the present systematic review. Microbiota diversity was decreased in CKD patients as compared to healthy individuals. Ruminococcus and Roseburia had good power to discriminate between CKD patients and healthy controls (AUC = 0.771 and AUC = 0.803, respectively). Roseburia abundance was consistently decreased in CKD patients, especially in those with ESKD (p < 0.001). A model based on 25 microbiota dissimilarities had an excellent predictive power for diabetic nephropathy (AUC = 0.972). Several microbiota patterns were observed in deceased ESKD patients as compared to the survivor group (increased Lactobacillus, Yersinia, and decreased Bacteroides and Phascolarctobacterium levels). Additionally, gut dysbiosis was associated with peritonitis and enhanced inflammatory activity. In addition, some studies documented a beneficial effect on gut flora composition attributed to synbiotic and probiotic therapies. Large randomized clinical trials are required to investigate the impact of different microbiota modulation strategies on gut microflora composition and subsequent clinical outcomes. CONCLUSIONS Patients with CKD had an altered gut microbiome profile, even at early disease stages. Different abundance at genera and species levels could be used in clinical models to discriminate between healthy individuals and patients with CKD. ESKD patients with an increased mortality risk could be identified through gut microbiota analysis. Modulation therapy studies are warranted.
Collapse
Affiliation(s)
- Luminita Voroneanu
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Alexandru Burlacu
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Department of Interventional Cardiology, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, 700503 Iasi, Romania
| | - Crischentian Brinza
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Department of Interventional Cardiology, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, 700503 Iasi, Romania
| | - Andreea Covic
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Correspondence:
| | - Gheorghe G. Balan
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, St. 1 Spiridon Emergency County Hospital, 700111 Iasi, Romania
| | - Ionut Nistor
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Cristina Popa
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Simona Hogas
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Adrian Covic
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| |
Collapse
|
7
|
Chen TH, Cheng CY, Huang CK, Ho YH, Lin JC. Exploring the Relevance between Gut Microbiota-Metabolites Profile and Chronic Kidney Disease with Distinct Pathogenic Factor. Microbiol Spectr 2023; 11:e0280522. [PMID: 36475922 PMCID: PMC9927243 DOI: 10.1128/spectrum.02805-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
The intimate correlation of chronic kidney disease (CKD) with structural alteration in gut microbiota or metabolite profile has been documented in a growing body of studies. Nevertheless, a paucity of demonstrated knowledge regarding the impact and underlying mechanism of gut microbiota or metabolite on occurrence or progression of CKD is unclarified thus far. In this study, a liquid chromatography coupled-mass spectrometry and long-read sequencing were applied to identify gut metabolites and microbiome with statistically-discriminative abundance in diabetic CKD patients (n = 39), hypertensive CKD patients (n = 26), or CKD patients without comorbidity (n = 40) compared to those of healthy participants (n = 60). The association between CKD-related species and metabolite was evaluated by using zero-inflated negative binomial (ZINB) regression. The predictive utility of identified operational taxonomic units (OTUs), metabolite, or species-metabolite association toward the diagnosis of incident chronic kidney disease with distinct pathogenic factor was assessed using the random forest regression model and the receiver operating characteristic (ROC) curve. The results of statistical analyses indicated alterations in the relative abundances of 26 OTUs and 41 metabolites that were specifically relevant to each CKD-patient group. The random forest regression model with only species, metabolites, or its association differentially distinguished the hypertensive, diabetic CKD patients, or enrolled CKD patients without comorbidity from the healthy participants. IMPORTANCE Gut dysbiosis-altered metabolite association exhibits specific and convincing utility to differentiate CKD associated with distinct pathogenic factor. These results present the validity of pathogenesis-associated markers across healthy participants and high-risk population toward the early screening, prevention, diagnosis, or personalized treatment of CKD.
Collapse
Affiliation(s)
- Tso-Hsiao Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney (RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Yi Cheng
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney (RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Kai Huang
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsien Ho
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Han B, Zhang X, Wang L, Yuan W. Dysbiosis of Gut Microbiota Contributes to Uremic Cardiomyopathy via Induction of IFNγ-Producing CD4 + T Cells Expansion. Microbiol Spectr 2023; 11:e0310122. [PMID: 36788674 PMCID: PMC9927280 DOI: 10.1128/spectrum.03101-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Uremic cardiomyopathy (UCM) correlates with chronic kidney disease (CKD)-induced morbidity and mortality. Gut microbiota has been involved in the pathogenesis of certain cardiovascular disease, but the role of gut microbiota in the pathogenesis of UCM remains unknown. Here, we performed a case-control study to compare the gut microbiota of patients with CKD and healthy controls by 16S rRNA (rRNA) gene sequencing. To test the causative relationship between gut microbiota and UCM, we performed fecal microbiota transplantation (FMT) in 5/6th nephrectomy model of CKD. We found that opportunistic pathogens, particularly Klebsiella pneumoniae (K. pneumoniae), are markedly enriched in patients with CKD. FMT from CKD patients aggravated diastolic dysfunction in the mouse model. The diastolic dysfunction was associated with microbiome-dependent increases in heart-infiltrating IFNγ+ CD4+ T cells. Monocolonization with K. pneumoniae increased cardiac IFNγ+ CD4+ T cells infiltration and promoted UCM development of the mouse model. A probiotic Bifidobacterium animalis decreased the relative abundance of K. pneumoniae, reduced levels of cardiac IFNγ+ CD4+ T cells and ameliorated the severity of diastolic dysfunction in the mice. Thus, the aberrant gut microbiota in CKD patients, especially K. pneumoniae, contributed to UCM pathogenesis through the induction of heart-infiltrating IFNγ+ CD4+ T cells expansion, proposing that a Gut Microbiota-Gut-Kidney-Heart axis could play a critical role in elucidating the etiology of UCM, and suggesting that modulation of the gut bacteria may serve as a promising target for the amelioration of UCM. IMPORTANCE Uremic cardiomyopathy (UCM) correlates tightly with increased mortality in patients with chronic kidney disease (CKD), yet the pathogenesis of UCM remains incompletely understood, limiting therapeutic approaches. Our study proposed that a Gut Microbiota-Gut-Kidney-Heart axis could play a critical role in understanding etiology of UCM. There is a major need in future clinical trials of patients with CKD to explore if modulation of gut microbiota by fecal microbiota transplantation (FMT), probiotics or antibiotics can alleviate cardiac dysfunction, reduce mortality, and improve life quality.
Collapse
Affiliation(s)
- Bin Han
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqian Zhang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Wang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weijie Yuan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Therapeutic Potential of Photobiomodulation for Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23148043. [PMID: 35887386 PMCID: PMC9320354 DOI: 10.3390/ijms23148043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic kidney disease (CKD) is a growing global public health problem. The implementation of evidence-based clinical practices only defers the development of kidney failure. Death, transplantation, or dialysis are the consequences of kidney failure, resulting in a significant burden on the health system. Hence, innovative therapeutic strategies are urgently needed due to the limitations of current interventions. Photobiomodulation (PBM), a form of non-thermal light therapy, effectively mitigates mitochondrial dysfunction, reactive oxidative stress, inflammation, and gut microbiota dysbiosis, all of which are inherent in CKD. Preliminary studies suggest the benefits of PBM in multiple diseases, including CKD. Hence, this review will provide a concise summary of the underlying action mechanisms of PBM and its potential therapeutic effects on CKD. Based on the findings, PBM may represent a novel, non-invasive and non-pharmacological therapy for CKD, although more studies are necessary before PBM can be widely recommended.
Collapse
|
10
|
Abstract
Chronic kidney disease (CKD) is a worldwide public health issue and has ultimately progressed to an end-stage renal disease that requires life-long dialysis or renal transplantation. However, the underlying molecular mechanism of these pathological development and progression remains to be fully understood. The human gut microbiota is made up of approximately 100 trillion microbial cells including anaerobic and aerobic species. In recent years, more and more evidence has indicated a clear association between dysbiosis of gut microbiota and CKD including immunoglobulin A (IgA) nephropathy, diabetic kidney disease, membranous nephropathy, chronic renal failure and end-stage renal disease. The current review describes gut microbial dysbiosis and metabolites in patients with CKD thus helping to understand human disease. Treatment with prebiotics, probiotics and natural products can attenuate CKD through improving dysbiosis of gut microbiota, indicating a novel intervention strategy in patients with CKD. This review also discusses therapeutic options, such as prebiotics, probiotics and natural products, for targeting dysbiosis of gut microbiota in patients to provide more specific concept-driven therapy strategy for CKD treatment.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an 710069, Shaanxi, China
| |
Collapse
|
11
|
Bian J, Liebert A, Bicknell B, Chen XM, Huang C, Pollock CA. Faecal Microbiota Transplantation and Chronic Kidney Disease. Nutrients 2022; 14:nu14122528. [PMID: 35745257 PMCID: PMC9228952 DOI: 10.3390/nu14122528] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Faecal microbiota transplantation (FMT) has attracted increasing attention as an intervention in many clinical conditions, including autoimmune, enteroendocrine, gastroenterological, and neurological diseases. For years, FMT has been an effective second-line treatment for Clostridium difficile infection (CDI) with beneficial outcomes. FMT is also promising in improving bowel diseases, such as ulcerative colitis (UC). Pre-clinical and clinical studies suggest that this microbiota-based intervention may influence the development and progression of chronic kidney disease (CKD) via modifying a dysregulated gut–kidney axis. Despite the high morbidity and mortality due to CKD, there are limited options for treatment until end-stage kidney disease occurs, which results in death, dialysis, or kidney transplantation. This imposes a significant financial and health burden on the individual, their families and careers, and the health system. Recent studies have suggested that strategies to reverse gut dysbiosis using FMT are a promising therapy in CKD. This review summarises the preclinical and clinical evidence and postulates the potential therapeutic effect of FMT in the management of CKD.
Collapse
Affiliation(s)
- Ji Bian
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
| | - Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Brian Bicknell
- College of Health and Medicine, Australian National University, Deacon, ACT 2600, Australia;
| | - Xin-Ming Chen
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
| | - Chunling Huang
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
- Correspondence: (C.H.); (C.A.P.); Tel.: +61-2-9926-4784 (C.H.); +61-2-9926-4652 (C.A.P.)
| | - Carol A. Pollock
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
- Correspondence: (C.H.); (C.A.P.); Tel.: +61-2-9926-4784 (C.H.); +61-2-9926-4652 (C.A.P.)
| |
Collapse
|