1
|
Srinath S, Jishnu PV, Varghese VK, Shukla V, Adiga D, Mallya S, Chakrabarty S, Sharan K, Pandey D, Chatterjee A, Kabekkodu SP. Regulation and tumor-suppressive function of the miR-379/miR-656 (C14MC) cluster in cervical cancer. Mol Oncol 2024; 18:1608-1630. [PMID: 38400534 PMCID: PMC11161731 DOI: 10.1002/1878-0261.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/05/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Cervical cancer (CC) is a key contributor to cancer-related mortality in several countries. The identification of molecular markers and the underlying mechanism may help improve CC management. We studied the regulation and biological function of the chromosome 14 microRNA cluster (C14MC; miR-379/miR-656) in CC. Most C14MC members exhibited considerably lower expression in CC tissues and cell lines in The Cancer Genome Atlas (TCGA) cervical squamous cell carcinoma and endocervical adenocarcinoma patient cohorts. Bisulfite Sanger sequencing revealed hypermethylation of the C14MC promoter in CC tissues and cell lines. 5-aza-2 deoxy cytidine treatment reactivated expression of the C14MC members. We demonstrated that C14MC is a methylation-regulated miRNA cluster via artificial methylation and luciferase reporter assays. C14MC downregulation correlated with poor overall survival and may promote metastasis. C14MC activation via the lentiviral-based CRISPRa approach inhibited growth, proliferation, migration, and invasion; enhanced G2/M arrest; and induced senescence. Post-transcriptional regulatory network analysis of C14MC transcriptomic data revealed enrichment of key cancer-related pathways, such as metabolism, the cell cycle, and phosphatidylinositol 3-kinase (PI3K)-AKT signaling. Reduced cell proliferation, growth, migration, invasion, and senescence correlated with the downregulation of active AKT, MYC, and cyclin E1 (CCNE1) and the overexpression of p16, p21, and p27. We showed that C14MC miRNA activation increases reactive oxygen species (ROS) levels, intracellular Ca2+ levels, and lipid peroxidation rates, and inhibits epithelial-mesenchymal transition (EMT). C14MC targets pyruvate dehydrogenase kinase-3 (PDK3) according to the luciferase reporter assay. PDK3 is overexpressed in CC and is inversely correlated with C14MC. Both miR-494-mimic transfection and C14MC activation inhibited PDK3 expression. Reduced glucose uptake and lactate production, and upregulation of PDK3 upon C14MC activation suggest the potential role of these proteins in metabolic reprogramming. Finally, we showed that C14MC activation may inhibit EMT signaling. Thus, C14MC is a tumor-suppressive and methylation-regulated miRNA cluster in CC. Reactivation of C14MC can be useful in the management of CC.
Collapse
Grants
- Fund for Improvement of S&T Infrastructure (FIST), Department of Science and Technology, Government of India
- Karnataka Fund for Infrastructure Strengthening in Science and Technology (K-FIST), the Government of Karnataka
- MTR/2021/000182 Department of Science and Technology, Ministry of Science and Technology, India
- EMR/2016/002314 Science and Engineering Research Board (SERB)
- Manipal Academy of Higher Education, Manipal
- IA/I/22/1/506240 DBT-Wellcome Trust India Alliance
- SPARC/2019-2020/P2297/SL SPARC
- IA/I/22/1/506240 Wellcome Trust DBT India Alliance, Government of India
- Builder Grant, Department of Biotechnology, Government of India
- Technology Information Forecasting and Assessment Council (TIFAC) Core in Pharmacogenomics at MAHE, the Manipal
- Wellcome Trust
- Science and Engineering Research Board (SERB)
- Department of Science and Technology, Ministry of Science and Technology, India
- SPARC
- Technology Information Forecasting and Assessment Council (TIFAC) Core in Pharmacogenomics at MAHE, the Manipal
Collapse
Affiliation(s)
- Sriharikrishnaa Srinath
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Vinay Koshy Varghese
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
- Center for DNA Repair and Genome Stability (CDRGS)Manipal Academy of Higher EducationIndia
| | - Krishna Sharan
- Department of Radiotherapy OncologyKasturba Medical CollegeManipalIndia
| | - Deeksha Pandey
- Department of Obstetrics & GynecologyKasturba Medical CollegeManipalIndia
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
- Center for DNA Repair and Genome Stability (CDRGS)Manipal Academy of Higher EducationIndia
| |
Collapse
|
2
|
Zhang C, Sun C, Zhao Y, Wang Q, Guo J, Ye B, Yu G. Overview of MicroRNAs as Diagnostic and Prognostic Biomarkers for High-Incidence Cancers in 2021. Int J Mol Sci 2022; 23:ijms231911389. [PMID: 36232692 PMCID: PMC9570028 DOI: 10.3390/ijms231911389] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) about 22 nucleotides in size, which play an important role in gene regulation and are involved in almost all major cellular physiological processes. In recent years, the abnormal expression of miRNAs has been shown to be associated with human diseases including cancer. In the past ten years, the link between miRNAs and various cancers has been extensively studied, and the abnormal expression of miRNAs has been reported in various malignant tumors, such as lung cancer, gastric cancer, colorectal cancer, liver cancer, breast cancer, and prostate cancer. Due to the high malignancy grade of these cancers, it is more necessary to develop the related diagnostic and prognostic methods. According to the study of miRNAs, many potential cancer biomarkers have been proposed for the diagnosis and prognosis of diseases, especially cancer, thus providing a new theoretical basis and perspective for cancer screening. The use of miRNAs as biomarkers for diagnosis or prognosis of cancer has the advantages of being less invasive to patients, with better accuracy and lower price. In view of the important clinical significance of miRNAs in human cancer research, this article reviewed the research status of miRNAs in the above-mentioned cancers in 2021, especially in terms of diagnosis and prognosis, and provided some new perspectives and theoretical basis for the diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
| | - Caifang Sun
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yabin Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Qiwen Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
| | - Jianlin Guo
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
| | - Bingyu Ye
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: (B.Y.); (G.Y.)
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: (B.Y.); (G.Y.)
| |
Collapse
|