1
|
Leone F, Gori A, Cinicola BL, Brindisi G, Maglione V, Anania C, Zicari AM. Extra X, extra questions: Trisomy X syndrome and IgA deficiency - a case report. Front Immunol 2024; 15:1518076. [PMID: 39712011 PMCID: PMC11659227 DOI: 10.3389/fimmu.2024.1518076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
While Trisomy X syndrome is typically characterized by developmental and cognitive variations, it is not commonly associated with immunodeficiencies. We report the unique case of a 6-year-old girl with Trisomy X presenting with selective IgA deficiency, challenging the conventional understanding of this chromosomal condition. The patient exhibited recurrent respiratory infections and gastrointestinal symptoms, evaluated in the context of her genetic background of Trisomy X and significantly low levels of IgA (0.03 g/L), yet normal IgG and IgM levels. Immunological assessment revealed a poor response to vaccination to HBV, necessitating an adapted vaccination strategy. Gastrointestinal investigations indicated paradoxical diarrhea secondary to chronic constipation, managed with dietary interventions. The presence of an extra X chromosome raises questions about the potential over-expression of genes that escape X-chromosome inactivation, such as FOXP3, which is crucial for the regulation of regulatory T cells. An abnormal expression of FOXP3 could lead to either heightened immune regulation, increasing susceptibility to infections, or to immune dysregulation. Although Trisomy X is not typically associated with immunodeficiencies, this case, paralleled by another patient with Trisomy X and CVID, suggests a need for further speculative research into possible genetic links. Moreover, a 1969 study reported lower IgA levels in women with an extra X chromosome. In conclusion, this case aims to underscore the necessity for a deeper genetic and immunological evaluation in chromosomal anomalies like Trisomy X to fully understand their speculative impact on immune function.
Collapse
Affiliation(s)
- Fabrizio Leone
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Gori
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Brindisi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Vittorio Maglione
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Caterina Anania
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Zicari
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Marks J, Sridhar A, Ai A, Kiel L, Kaufman R, Abioye O, Mantz C, Florez N. Precision Immuno-Oncology in NSCLC through Gender Equity Lenses. Cancers (Basel) 2024; 16:1413. [PMID: 38611091 PMCID: PMC11010825 DOI: 10.3390/cancers16071413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Precision immuno-oncology involves the development of personalized cancer treatments that are influenced by the unique nature of an individual's DNA, immune cells, and their tumor's molecular characterization. Biological sex influences immunity; females typically mount stronger innate and adaptive immune responses than males. Though more research is warranted, we continue to observe an enhanced benefit for females with lung cancer when treated with combination chemoimmunotherapy in contrast to the preferred approach of utilizing immunotherapy alone in men. Despite the observed sex differences in response to treatments, women remain underrepresented in oncology clinical trials, largely as a result of gender-biased misconceptions. Such exclusion has resulted in the development of less efficacious treatment guidelines and clinical recommendations and has created a knowledge gap in regard to immunotherapy-related survivorship issues such as fertility. To develop a more precise approach to care and overcome the exclusion of women from clinical trials, flexible trial schedules, multilingual communication strategies, financial, and transportation assistance for participants should be adopted. The impact of intersectionality and other determinants of health that affect the diagnosis, treatment, and outcomes in women must also be considered in order to develop a comprehensive understanding of the unique impact of immunotherapy in all women with lung cancer.
Collapse
Affiliation(s)
- Jennifer Marks
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| | | | - Angela Ai
- Olive View-UCLA Medical Center, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Lauren Kiel
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.K.); (R.K.); (O.A.); (C.M.)
| | - Rebekah Kaufman
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.K.); (R.K.); (O.A.); (C.M.)
| | - Oyepeju Abioye
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.K.); (R.K.); (O.A.); (C.M.)
| | - Courtney Mantz
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.K.); (R.K.); (O.A.); (C.M.)
| | - Narjust Florez
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.K.); (R.K.); (O.A.); (C.M.)
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Qin X, Lam A, Zhang X, Sengupta S, Iorgulescu JB, Ni H, Das S, Rager M, Zhou Z, Zuo T, Meara GK, Floru AE, Kemet C, Veerapaneni D, Kashy D, Lin L, Lloyd K, Kwok L, Smith KS, Nagaraju RT, Meijers R, Ceol C, Liu CT, Alexandrescu S, Wu CJ, Keskin DB, George RE, Feng H. CKLF instigates a "cold" microenvironment to promote MYCN-mediated tumor aggressiveness. SCIENCE ADVANCES 2024; 10:eadh9547. [PMID: 38489372 PMCID: PMC10942121 DOI: 10.1126/sciadv.adh9547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Solid tumors, especially those with aberrant MYCN activation, often harbor an immunosuppressive microenvironment to fuel malignant growth and trigger treatment resistance. Despite this knowledge, there are no effective strategies to tackle this problem. We found that chemokine-like factor (CKLF) is highly expressed by various solid tumor cells and transcriptionally up-regulated by MYCN. Using the MYCN-driven high-risk neuroblastoma as a model system, we demonstrated that as early as the premalignant stage, tumor cells secrete CKLF to attract CCR4-expressing CD4+ cells, inducing immunosuppression and tumor aggression. Genetic depletion of CD4+ T regulatory cells abolishes the immunorestrictive and protumorigenic effects of CKLF. Our work supports that disrupting CKLF-mediated cross-talk between tumor and CD4+ suppressor cells represents a promising immunotherapeutic approach to battling MYCN-driven tumors.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Andrew Lam
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Xu Zhang
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Satyaki Sengupta
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - J. Bryan Iorgulescu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongru Ni
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sanjukta Das
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- School of Biotechnology, KIIT University, Bhubanesw, India
| | - Madison Rager
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Zhenwei Zhou
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Tao Zuo
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Grace K. Meara
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alexander E. Floru
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Chinyere Kemet
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Divya Veerapaneni
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Daniel Kashy
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Liang Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Lauren Kwok
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kaylee S. Smith
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Raghavendar T. Nagaraju
- Faculty of Biology, Medicine and Health, Division of Cancer Sciences, University of Manchester, Manchester, UK
- Colorectal and Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - Rob Meijers
- Institute for Protein Innovation, Boston, MA, USA
| | - Craig Ceol
- Department of Molecular, Cell and Cancer Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Derin B. Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rani E. George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
4
|
Chao Y, Huang W, Xu Z, Li P, Gu S. Effect of RUNX1/FOXP3 axis on apoptosis of T and B lymphocytes and immunosuppression in sepsis. Open Med (Wars) 2023; 18:20230728. [PMID: 37636994 PMCID: PMC10448307 DOI: 10.1515/med-2023-0728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 08/29/2023] Open
Abstract
Lymphocyte apoptosis is a latent factor for immunosuppression in sepsis. Forkhead box protein P3 (FOXP3) can interact with RUNX family transcription factor 1 (RUNX1) in regulatory T cells. Our research was to probe whether RUNX1/FOXP3 axis affects immunosuppression in the process of sepsis by modulating T and B lymphocyte apoptosis. We constructed sepsis model in mice and mouse CD4+ T and CD19+ B lymphocytes. RUNX1 and FOXP3 expressions and apoptosis in cells were assessed by western blot, quantitative real-time PCR, and flow cytometer. Inflammation of serum and pathological damage was assessed by ELISA and H&E staining. Relationship between RUNX1 and FOXP3 was assessed by co-immunoprecipitation. The findings showed that RUNX1 ameliorated the survival rate, pathological damage, and decreased inflammation-related factors, and inhibited apoptosis of CD4+ T and CD19+ B cells in cecal ligation and puncture mice. Furthermore, RUNX1 up-regulated the viability and down-regulated apoptotic rate with the changed expressions of apoptosis-related molecules in lipopolysaccharide (LPS)-mediated CD4+ T and CD19+ B cells. Additionally, FOXP3 interacted with RUNX1, and its silencing decreased RUNX1 expression and reversed the inhibitory effect of RUNX1 on apoptosis of LPS-mediated CD4+ T and CD19+ B cells. In summary, the RUNX1/FOXP3 axis alleviated immunosuppression in sepsis progression by weakening T and B lymphocyte apoptosis.
Collapse
Affiliation(s)
- Yangfa Chao
- Department of Surgical Area 4, Shenzhen Bao’an Traditional Chinese Medicine Hospital Group, Shenzhen, Guangdong Province, 518000, China
| | - Wenting Huang
- Department of Acupuncture, Luohu District Chronic Disease Prevention and Treatment Hospital, Shenzhen, China
| | - Zhiheng Xu
- The Second Department of Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Ping Li
- Department of Surgical Area 4, Shenzhen Bao’an Traditional Chinese Medicine Hospital Group, Shenzhen, Guangdong Province, 518000, China
| | - Shaodong Gu
- Department of Surgical Area 4, Shenzhen Bao’an Traditional Chinese Medicine Hospital Group, No. 25
Yu’an 2nd Road, Bao’an District, Shenzhen, Guangdong Province, 518000, China
| |
Collapse
|