1
|
Manfrini O, Cenko E, Bergami M, Yoon J, Kostadinovic J, Zdravkovic D, Zdravkovic M, Bugiardini R. Anticancer-Drug-Related Cardiotoxicity from Adjuvant Goserelin and Tamoxifen Therapy. J Clin Med 2025; 14:484. [PMID: 39860490 PMCID: PMC11766263 DOI: 10.3390/jcm14020484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Breast cancer is a prevalent malignancy with rising incidence globally. Advances in endocrine therapy have improved outcomes for premenopausal women with hormone receptor-positive breast cancer. However, these treatments may induce menopause-like states, potentially elevating cardiovascular risks, including left ventricular (LV) dysfunction. This study aims to evaluate the impact of one year of adjuvant endocrine therapy with goserelin and tamoxifen on LV function in premenopausal breast cancer patients. Methods: The ISACS cardiovascular toxicity (NCT01218776) is a pilot multicenter registry of breast cancer patients referred to hospitals for routine surveillance, suspected, or confirmed anticancer-drug-related cardiotoxicity (ADRC). Patients may be enrolled retrospectively (1 year) and prospectively. The pilot phase focused on the available data on combined goserelin and tamoxifen therapy for breast cancer and its impact on LV disfunction at 1-year follow-up. Inverse probability of treatment weighting (IPTW) analysis of the ISACS registry was performed assigning 70 patients to combined endocrine therapy (goserelin and tamoxifen). Controls consisted of 120 patients with no adjuvant combined goserelin and tamoxifen therapy. None of the patients developed distant metastasis. Primary outcome measures were as follows: low LV function in women as defined by a left ventricular ejection fraction (LVEF) < 65% and subclinical LV dysfunction as defined by a 10-percentage point decrease in LVEF. Results: In the overall population, combined goserelin and tamoxifen therapy did not affect the mean LV function compared with controls at 3-, 6-, and 12-month follow-up (65.7 ± 2.7% versus 65.3 ± 2.1%, p value = 0.27; 65.5 ± 2.9% versus 65.1 ± 2.5%, p value = 0.34; 65.0 ± 3.2% versus 64.6 ± 3.1%, p value = 0.29, respectively). The mean LVEF reduction in patients who did or did not receive combination therapy for 12 months was small and approximately similar (1.03 ± 2.5% versus 1.16 ± 2.9%, p value = 0.73). Using IPTW analyses, there were no significant associations between combined therapy and low LV function (risk ratio [RR]: 1.75; 95% CI: 0.71-4.31) or subclinical LV dysfunction (RR: 1.50; 95% CI: 0.35-6.53) compared with controls. Conclusions: One year of endocrine therapy with goserelin and tamoxifen does not cause ADRC in patients with invasive breast cancer. Findings are independent of the severity of the disease. Results may not be definitive without replication in studies with larger sample size.
Collapse
Affiliation(s)
- Olivia Manfrini
- Laboratory of Epidemiological and Clinical Cardiology, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (O.M.); (E.C.); (M.B.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Sant’Orsola Hospital, 40138 Bologna, Italy
| | - Edina Cenko
- Laboratory of Epidemiological and Clinical Cardiology, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (O.M.); (E.C.); (M.B.)
| | - Maria Bergami
- Laboratory of Epidemiological and Clinical Cardiology, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (O.M.); (E.C.); (M.B.)
| | | | - Jelena Kostadinovic
- Department of Oncology, University Hospital Medical Center, Bezanijska Kosa, 11000 Belgrade, Serbia;
| | - Darko Zdravkovic
- Department of Surgical Oncology, University Hospital Medical Center, Bezanijska Kosa, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Marija Zdravkovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Department of Cardiology, University Hospital Medical Center, Bezanijska Kosa, 11000 Belgrade, Serbia
| | - Raffaele Bugiardini
- Laboratory of Epidemiological and Clinical Cardiology, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (O.M.); (E.C.); (M.B.)
| |
Collapse
|
2
|
Jiang C, Xu H, Wu Y. Effect of chemotherapy in tumor on coronary arteries: Mechanisms and management. Life Sci 2024; 338:122377. [PMID: 38135114 DOI: 10.1016/j.lfs.2023.122377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Coronary artery disease (CAD) is an important contributor to the cardiovascular burden in cancer survivors. The development of coronary ischemia events, myocardial infarction, and heart failure has been associated with many conventional chemotherapeutic agents, new targeted therapies, and immunotherapy. The most frequent pathological manifestations of chemotherapy-mediated coronary damage include acute vasospasm, acute thrombosis, accelerated atherosclerosis development, and microvascular dysfunction. Potential screening techniques for CAD patients include baseline risk factor evaluation, polygenic risk factors, and coronary artery calcium scores. Determining the risk requires consideration of both the type of chemotherapy and the type of cancer being treated. Cardiology-oncology guidelines offer some suggestions for the care of coronary artery disease, which might involve medication, lifestyle changes, and coronary revascularization.
Collapse
Affiliation(s)
- Chengqing Jiang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haiyan Xu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Yongjian Wu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Gupta J, Jalil AT, Abd Alzahraa ZH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Najafi M. The Metformin Immunoregulatory Actions in Tumor Suppression and Normal Tissues Protection. Curr Med Chem 2024; 31:5370-5396. [PMID: 37403391 DOI: 10.2174/0929867331666230703143907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
The immune system is the key player in a wide range of responses in normal tissues and tumors to anticancer therapy. Inflammatory and fibrotic responses in normal tissues are the main limitations of chemotherapy, radiotherapy, and also some newer anticancer drugs such as immune checkpoint inhibitors (ICIs). Immune system responses within solid tumors including anti-tumor and tumor-promoting responses can suppress or help tumor growth. Thus, modulation of immune cells and their secretions such as cytokines, growth factors and epigenetic modulators, pro-apoptosis molecules, and some other molecules can be suggested to alleviate side effects in normal tissues and drug-resistance mechanisms in the tumor. Metformin as an anti-diabetes drug has shown intriguing properties such as anti-inflammation, anti-fibrosis, and anticancer effects. Some investigations have uncovered that metformin can ameliorate radiation/chemotherapy toxicity in normal cells and tissues through the modulation of several targets in cells and tissues. These effects of metformin may ameliorate severe inflammatory responses and fibrosis after exposure to ionizing radiation or following treatment with highly toxic chemotherapy drugs. Metformin can suppress the activity of immunosuppressive cells in the tumor through the phosphorylation of AMP-activated protein kinase (AMPK). In addition, metformin may stimulate antigen presentation and maturation of anticancer immune cells, which lead to the induction of anticancer immunity in the tumor. This review aims to explain the detailed mechanisms of normal tissue sparing and tumor suppression during cancer therapy using adjuvant metformin with an emphasis on immune system responses.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Hammond ST, Baumfalk DR, Parr SK, Butenas AL, Scheuermann BC, Turpin VRG, Behnke BJ, Hashmi MH, Ade CJ. Impaired microvascular reactivity in patients treated with 5-fluorouracil chemotherapy regimens: Potential role of endothelial dysfunction. IJC HEART & VASCULATURE 2023; 49:101300. [PMID: 38173789 PMCID: PMC10761309 DOI: 10.1016/j.ijcha.2023.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Background 5-fluorouracil (5-FU) is the second most common cancer chemotherapy associated with short- and long-term cardiotoxicity. Although the mechanisms mediating these toxicities are not well understood, patients often present with symptoms suggestive of microvascular dysfunction. We tested the hypotheses that patients undergoing cancer treatment with 5-FU based chemotherapy regimens would present with impaired microvascular reactivity and that these findings would be substantiated by decrements in endothelial nitric oxide synthase (eNOS) gene expression in 5-FU treated human coronary artery endothelial cells (HCAEC). Methods We first performed a cross-sectional analysis of 30 patients undergoing 5-FU based chemotherapy treatment for cancer (5-FU) and 32 controls (CON) matched for age, sex, body mass index, and prior health history (excluding cancer). Cutaneous microvascular reactivity was evaluated by laser Doppler flowmetry in response to endothelium-dependent (local skin heating; acetylcholine iontophoresis, ACh) and -independent (sodium nitroprusside iontophoresis, SNP) stimuli. In vitro experiments in HCAEC were completed to assess the effects of 5-FU on eNOS gene expression. Results 5-FU presented with diminished microvascular reactivity following eNOS-dependent local heating compared to CON (P = 0.001). Iontophoresis of the eNOS inhibitor L-NAME failed to alter the heating response in 5-FU (P = 0.95), despite significant reductions in CON (P = 0.03). These findings were corroborated by lower eNOS gene expression in 5-FU treated HCAEC (P < 0.01) compared to control. Peak vasodilation to ACh (P = 0.58) nor SNP (P = 0.39) were different between groups. Conclusions The present findings suggest diminished microvascular function along the eNOS-NO vasodilatory pathway in patients with cancer undergoing treatment with 5-FU-based chemotherapy regimens and thus, may provide insight into the underlying mechanisms of 5-FU cardiotoxicity.
Collapse
Affiliation(s)
- Stephen T. Hammond
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Shannon K. Parr
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Alec L.E. Butenas
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | | | | | - Bradley J. Behnke
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
- Johnson Cancer Research Center, Kansas State University, Manhattan, KS, USA
| | | | - Carl J. Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
- Johnson Cancer Research Center, Kansas State University, Manhattan, KS, USA
- Physicians Associates Studies, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
5
|
Meo L, Savarese M, Munno C, Mirabelli P, Ragno P, Leone O, Alfieri M. Circulating Biomarkers for Monitoring Chemotherapy-Induced Cardiotoxicity in Children. Pharmaceutics 2023; 15:2712. [PMID: 38140053 PMCID: PMC10747387 DOI: 10.3390/pharmaceutics15122712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Most commonly diagnosed cancer pathologies in the pediatric population comprise leukemias and cancers of the nervous system. The percentage of cancer survivors increased from approximatively 50% to 80% thanks to improvements in medical treatments and the introduction of new chemotherapies. However, as a consequence, heart disease has become the main cause of death in the children due to the cardiotoxicity induced by chemotherapy treatments. The use of different cardiovascular biomarkers, complementing data obtained from electrocardiogram, echocardiography cardiac imaging, and evaluation of clinical symptoms, is considered a routine in clinical diagnosis, prognosis, risk stratification, and differential diagnosis. Cardiac troponin and natriuretic peptides are the best-validated biomarkers broadly accepted in clinical practice for the diagnosis of acute coronary syndrome and heart failure, although many other biomarkers are used and several potential markers are currently under study and possibly will play a more prominent role in the future. Several studies have shown how the measurement of cardiac troponin (cTn) can be used for the early detection of heart damage in oncological patients treated with potentially cardiotoxic chemotherapeutic drugs. The advent of high sensitive methods (hs-cTnI or hs-cTnT) further improved the effectiveness of risk stratification and monitoring during treatment cycles.
Collapse
Affiliation(s)
- Luigia Meo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy; (L.M.); (P.R.)
| | - Maria Savarese
- Clinical Pathology, Santobono-Pausilipon Children’s Hospital, 80123 Naples, Italy; (M.S.); (C.M.); (O.L.)
| | - Carmen Munno
- Clinical Pathology, Santobono-Pausilipon Children’s Hospital, 80123 Naples, Italy; (M.S.); (C.M.); (O.L.)
| | - Peppino Mirabelli
- Clinical and Translational Research Unit, Santobono-Pausilipon Children’s Hospital, 80123 Naples, Italy;
| | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy; (L.M.); (P.R.)
| | - Ornella Leone
- Clinical Pathology, Santobono-Pausilipon Children’s Hospital, 80123 Naples, Italy; (M.S.); (C.M.); (O.L.)
| | - Mariaevelina Alfieri
- Clinical Pathology, Santobono-Pausilipon Children’s Hospital, 80123 Naples, Italy; (M.S.); (C.M.); (O.L.)
| |
Collapse
|
6
|
Mikail N, Chequer R, Imperiale A, Meisel A, Bengs S, Portmann A, Gimelli A, Buechel RR, Gebhard C, Rossi A. Tales from the future-nuclear cardio-oncology, from prediction to diagnosis and monitoring. Eur Heart J Cardiovasc Imaging 2023; 24:1129-1145. [PMID: 37467476 PMCID: PMC10501471 DOI: 10.1093/ehjci/jead168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Cancer and cardiovascular diseases (CVD) often share common risk factors, and patients with CVD who develop cancer are at high risk of experiencing major adverse cardiovascular events. Additionally, cancer treatment can induce short- and long-term adverse cardiovascular events. Given the improvement in oncological patients' prognosis, the burden in this vulnerable population is slowly shifting towards increased cardiovascular mortality. Consequently, the field of cardio-oncology is steadily expanding, prompting the need for new markers to stratify and monitor the cardiovascular risk in oncological patients before, during, and after the completion of treatment. Advanced non-invasive cardiac imaging has raised great interest in the early detection of CVD and cardiotoxicity in oncological patients. Nuclear medicine has long been a pivotal exam to robustly assess and monitor the cardiac function of patients undergoing potentially cardiotoxic chemotherapies. In addition, recent radiotracers have shown great interest in the early detection of cancer-treatment-related cardiotoxicity. In this review, we summarize the current and emerging nuclear cardiology tools that can help identify cardiotoxicity and assess the cardiovascular risk in patients undergoing cancer treatments and discuss the specific role of nuclear cardiology alongside other non-invasive imaging techniques.
Collapse
Affiliation(s)
- Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Renata Chequer
- Department of Nuclear Medicine, Bichat University Hospital, AP-HP, University Diderot, 75018 Paris, France
| | - Alessio Imperiale
- Nuclear Medicine, Institut de Cancérologie de Strasbourg Europe (ICANS), University Hospitals of Strasbourg, 67093 Strasbourg, France
- Molecular Imaging-DRHIM, IPHC, UMR 7178, CNRS/Unistra, 67093 Strasbourg, France
| | - Alexander Meisel
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Kantonsspital Glarus, Burgstrasse 99, 8750 Glarus, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Alessia Gimelli
- Imaging Department, Fondazione CNR/Regione Toscana Gabriele Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Cathérine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Cardiology, University Hospital Inselspital Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| |
Collapse
|
7
|
Hegazy M, Ghaleb S, Das BB. Diagnosis and Management of Cancer Treatment-Related Cardiac Dysfunction and Heart Failure in Children. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10010149. [PMID: 36670699 PMCID: PMC9856743 DOI: 10.3390/children10010149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
It is disheartening for parents to discover that their children have long-term cardiac dysfunction after being cured of life-threatening childhood cancers. As the number of childhood cancer survivors increases, early and late oncology-therapy-related cardiovascular complications continues to rise. It is essential to understand that cardiotoxicity in childhood cancer survivors is persistent and progressive. A child's cancer experience extends throughout his lifetime, and ongoing care for long-term survivors is recognized as an essential part of the cancer care continuum. Initially, there was a lack of recognition of late cardiotoxicities related to cancer therapy. About 38 years ago, in 1984, pioneers like Dr. Lipshultz and others published anecdotal case reports of late cardiotoxicities in children and adolescents exposed to chemotherapy, including some who ended up with heart transplantation. At that time, cardiac tests for cancer survivors were denied by insurance companies because they did not meet appropriate use criteria. Since then, cardio-oncology has been an emerging field of cardiology that focuses on the early detection of cancer therapy-related cardiac dysfunction occurring during and after oncological treatment. The passionate pursuit of many healthcare professionals to make life better for childhood cancer survivors led to more than 10,000 peer-reviewed publications in the last 40 years. We synthesized the existing evidence-based practice and described our experiences in this review to share our current method of surveillance and management of cardiac dysfunction related to cancer therapy. This review aims to discuss the pathological basis of cancer therapy-related cardiac dysfunction and heart failure, how to stratify patients prone to cardiotoxicity by identifying modifiable risk factors, early detection of cardiac dysfunction, and prevention and management of heart failure during and after cancer therapy in children. We emphasize serial longitudinal follow-ups of childhood cancer survivors and targeted intervention for high-risk patients. We describe our experience with the new paradigm of cardio-oncology care, and collaboration between cardiologist and oncologist is needed to maximize cancer survival while minimizing late cardiotoxicity.
Collapse
Affiliation(s)
- Mohamed Hegazy
- University of Mississippi Medical Center Program, Jackson, MS 39216, USA
| | - Stephanie Ghaleb
- Division of Pediatric Cardiology, Department of Pediatrics, Children’s of Mississippi Heart Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bibhuti B Das
- Division of Pediatric Cardiology, Department of Pediatrics, McLane Children’s Baylor Scott and White Medical Center, Baylor College of Medicine-Temple, Temple, TX 76502, USA
- Correspondence: ; Tel.: +1-254-935-4980
| |
Collapse
|