1
|
Clotet-Freixas S, Zaslaver O, Kotlyar M, Pastrello C, Quaile AT, McEvoy CM, Saha AD, Farkona S, Boshart A, Zorcic K, Neupane S, Manion K, Allen M, Chan M, Chen X, Arnold AP, Sekula P, Steinbrenner I, Köttgen A, Dart AB, Wicklow B, McGavock JM, Blydt-Hansen TD, Barrios C, Riera M, Soler MJ, Isenbrandt A, Lamontagne-Proulx J, Pradeloux S, Coulombe K, Soulet D, Rajasekar S, Zhang B, John R, Mehrotra A, Gehring A, Puhka M, Jurisica I, Woo M, Scholey JW, Röst H, Konvalinka A. Sex differences in kidney metabolism may reflect sex-dependent outcomes in human diabetic kidney disease. Sci Transl Med 2024; 16:eabm2090. [PMID: 38446901 DOI: 10.1126/scitranslmed.abm2090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/24/2024] [Indexed: 03/08/2024]
Abstract
Diabetic kidney disease (DKD) is the main cause of chronic kidney disease (CKD) and progresses faster in males than in females. We identify sex-based differences in kidney metabolism and in the blood metabolome of male and female individuals with diabetes. Primary human proximal tubular epithelial cells (PTECs) from healthy males displayed increased mitochondrial respiration, oxidative stress, apoptosis, and greater injury when exposed to high glucose compared with PTECs from healthy females. Male human PTECs showed increased glucose and glutamine fluxes to the TCA cycle, whereas female human PTECs showed increased pyruvate content. The male human PTEC phenotype was enhanced by dihydrotestosterone and mediated by the transcription factor HNF4A and histone demethylase KDM6A. In mice where sex chromosomes either matched or did not match gonadal sex, male gonadal sex contributed to the kidney metabolism differences between males and females. A blood metabolomics analysis in a cohort of adolescents with or without diabetes showed increased TCA cycle metabolites in males. In a second cohort of adults with diabetes, females without DKD had higher serum pyruvate concentrations than did males with or without DKD. Serum pyruvate concentrations positively correlated with the estimated glomerular filtration rate, a measure of kidney function, and negatively correlated with all-cause mortality in this cohort. In a third cohort of adults with CKD, male sex and diabetes were associated with increased plasma TCA cycle metabolites, which correlated with all-cause mortality. These findings suggest that differences in male and female kidney metabolism may contribute to sex-dependent outcomes in DKD.
Collapse
Affiliation(s)
- Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Olga Zaslaver
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Andrew T Quaile
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Caitriona M McEvoy
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Division of Nephrology, Tallaght University Hospital, Dublin D24, Ireland
- Trinity Kidney Centre, Trinity College Dublin, Dublin D8, Ireland
| | - Aninda D Saha
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Alex Boshart
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Katarina Zorcic
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Slaghaniya Neupane
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Kieran Manion
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Maya Allen
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Michael Chan
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Xuqi Chen
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA 90095, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA 90095, USA
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg 79085, Germany
| | - Inga Steinbrenner
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg 79085, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg 79085, Germany
| | - Allison B Dart
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba Research Team, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Brandy Wicklow
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba Research Team, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Jon M McGavock
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba Research Team, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Tom D Blydt-Hansen
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | - Clara Barrios
- Kidney Research Group, Hospital del Mar Medical Research Institute, IMIM, Barcelona 08003, Spain
| | - Marta Riera
- Kidney Research Group, Hospital del Mar Medical Research Institute, IMIM, Barcelona 08003, Spain
| | - María José Soler
- Hospital Universitari Vall d'Hebron, Division of Nephrology Autonomous University of Barcelona, Barcelona 08035, Spain
| | - Amandine Isenbrandt
- Neurosciences Axis, CHU de Quebec Research Center - Université Laval, Québec, QC G1V 4G2, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jérôme Lamontagne-Proulx
- Neurosciences Axis, CHU de Quebec Research Center - Université Laval, Québec, QC G1V 4G2, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada
| | - Solène Pradeloux
- Neurosciences Axis, CHU de Quebec Research Center - Université Laval, Québec, QC G1V 4G2, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada
| | - Katherine Coulombe
- Neurosciences Axis, CHU de Quebec Research Center - Université Laval, Québec, QC G1V 4G2, Canada
| | - Denis Soulet
- Neurosciences Axis, CHU de Quebec Research Center - Université Laval, Québec, QC G1V 4G2, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada
| | - Shravanthi Rajasekar
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Rohan John
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aman Mehrotra
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Adam Gehring
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Maija Puhka
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava 845 10, Slovakia
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medicine, Division of Endocrinology, University Health Network, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - James W Scholey
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON M5S 3H2, Canada
| | - Hannes Röst
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
2
|
Nogal A, Alkis T, Lee Y, Kifer D, Hu J, Murphy RA, Huang Z, Wang-Sattler R, Kastenmüler G, Linkohr B, Barrios C, Crespo M, Gieger C, Peters A, Price J, Rexrode KM, Yu B, Menni C. Predictive metabolites for incident myocardial infarction: a two-step meta-analysis of individual patient data from six cohorts comprising 7897 individuals from the COnsortium of METabolomics Studies. Cardiovasc Res 2023; 119:2743-2754. [PMID: 37706562 PMCID: PMC10757581 DOI: 10.1093/cvr/cvad147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 09/15/2023] Open
Abstract
AIMS Myocardial infarction (MI) is a major cause of death and disability worldwide. Most metabolomics studies investigating metabolites predicting MI are limited by the participant number and/or the demographic diversity. We sought to identify biomarkers of incident MI in the COnsortium of METabolomics Studies. METHODS AND RESULTS We included 7897 individuals aged on average 66 years from six intercontinental cohorts with blood metabolomic profiling (n = 1428 metabolites, of which 168 were present in at least three cohorts with over 80% prevalence) and MI information (1373 cases). We performed a two-stage individual patient data meta-analysis. We first assessed the associations between circulating metabolites and incident MI for each cohort adjusting for traditional risk factors and then performed a fixed effect inverse variance meta-analysis to pull the results together. Finally, we conducted a pathway enrichment analysis to identify potential pathways linked to MI. On meta-analysis, 56 metabolites including 21 lipids and 17 amino acids were associated with incident MI after adjusting for multiple testing (false discovery rate < 0.05), and 10 were novel. The largest increased risk was observed for the carbohydrate mannitol/sorbitol {hazard ratio [HR] [95% confidence interval (CI)] = 1.40 [1.26-1.56], P < 0.001}, whereas the largest decrease in risk was found for glutamine [HR (95% CI) = 0.74 (0.67-0.82), P < 0.001]. Moreover, the identified metabolites were significantly enriched (corrected P < 0.05) in pathways previously linked with cardiovascular diseases, including aminoacyl-tRNA biosynthesis. CONCLUSIONS In the most comprehensive metabolomic study of incident MI to date, 10 novel metabolites were associated with MI. Metabolite profiles might help to identify high-risk individuals before disease onset. Further research is needed to fully understand the mechanisms of action and elaborate pathway findings.
Collapse
Affiliation(s)
- Ana Nogal
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, Westminster Bridge Road, SE1 7EH London, UK
| | - Taryn Alkis
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler St, Suite E407, Houston, 77030 TX, USA
| | - Yura Lee
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler St, Suite E407, Houston, 77030 TX, USA
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Jie Hu
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Rachel A Murphy
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Zhe Huang
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gabi Kastenmüler
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Birgit Linkohr
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Clara Barrios
- Department of Nephrology, Hospital del Mar, Institut Hospital del Mar d´Investigacions Mediques, Barcelona, Spain
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar, Institut Hospital del Mar d´Investigacions Mediques, Barcelona, Spain
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jackie Price
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Kathryn M Rexrode
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler St, Suite E407, Houston, 77030 TX, USA
| | - Cristina Menni
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, Westminster Bridge Road, SE1 7EH London, UK
| |
Collapse
|
3
|
Memarian E, Heijmans R, Slieker RC, Sierra A, Gornik O, Beulens JWJ, Hanic M, Elders P, Pascual J, Sijbrands E, Lauc G, Dotz V, Barrios C, 't Hart LM, Wuhrer M, van Hoek M. IgG N-glycans are associated with prevalent and incident complications of type 2 diabetes. Diabetes Metab Res Rev 2023; 39:e3685. [PMID: 37422864 DOI: 10.1002/dmrr.3685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 07/11/2023]
Abstract
AIMS/HYPOTHESIS Inflammation is important in the development of type 2 diabetes complications. The N-glycosylation of IgG influences its role in inflammation. To date, the association of plasma IgG N-glycosylation with type 2 diabetes complications has not been extensively investigated. We hypothesised that N-glycosylation of IgG may be related to the development of complications of type 2 diabetes. METHODS In three independent type 2 diabetes cohorts, plasma IgG N-glycosylation was measured using ultra performance liquid chromatography (DiaGene n = 1815, GenodiabMar n = 640) and mass spectrometry (Hoorn Diabetes Care Study n = 1266). We investigated the associations of IgG N-glycosylation (fucosylation, galactosylation, sialylation and bisection) with incident and prevalent nephropathy, retinopathy and macrovascular disease using Cox- and logistic regression, followed by meta-analyses. The models were adjusted for age and sex and additionally for clinical risk factors. RESULTS IgG galactosylation was negatively associated with prevalent and incident nephropathy and macrovascular disease after adjustment for clinical risk factors. Sialylation was negatively associated with incident diabetic nephropathy after adjustment for clinical risk factors. For incident retinopathy, similar associations were found for galactosylation, adjusted for age and sex. CONCLUSIONS We showed that IgG N-glycosylation, particularly galactosylation and to a lesser extent sialylation, is associated with a higher prevalence and future development of macro- and microvascular complications of diabetes. These findings indicate the predictive potential of IgG N-glycosylation in diabetes complications and should be analysed further in additional large cohorts to obtain the power to solidify these conclusions.
Collapse
Affiliation(s)
- Elham Memarian
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ralph Heijmans
- Department of Internal Medicine, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Location VUMC, Amsterdam Public Health Institute, Amsterdam, The Netherlands
| | - Adriana Sierra
- Department of Nephrology, Hospital del Mar, Institut Mar d´Investigacions Mediques, Barcelona, Spain
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Joline W J Beulens
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Location VUMC, Amsterdam Public Health Institute, Amsterdam, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maja Hanic
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Petra Elders
- Department of General Practice, Amsterdam Public Health Institute, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Julio Pascual
- Department of Nephrology, Hospital del Mar, Institut Mar d´Investigacions Mediques, Barcelona, Spain
| | - Eric Sijbrands
- Department of Internal Medicine, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Viktoria Dotz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Clara Barrios
- Department of Nephrology, Hospital del Mar, Institut Mar d´Investigacions Mediques, Barcelona, Spain
| | - Leen M 't Hart
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Location VUMC, Amsterdam Public Health Institute, Amsterdam, The Netherlands
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mandy van Hoek
- Department of Internal Medicine, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Gan J, Zheng Y, Yu Q, Zhang Y, Xie W, Shi Y, Yu N, Yan Y, Lin Z, Yang H. Serum Lipocalin-2 Levels Are Increased and Independently Associated With Early-Stage Renal Damage and Carotid Atherosclerotic Plaque in Patients With T2DM. Front Endocrinol (Lausanne) 2022; 13:855616. [PMID: 35547005 PMCID: PMC9081837 DOI: 10.3389/fendo.2022.855616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Diabetic nephropathy (DN), one of the major complications of diabetes mellitus, is the major cause of end-stage renal failure that finally increases the risk of cardiovascular disease and mortality. The aim of this study is to explore the relationship between serum lipocalin-2 (LCN-2) levels and DN and carotid atherosclerotic plaque (CAP) in patients with type 2 diabetes mellitus (T2DM). METHODS We have performed a prospective study of 749 T2DM patients with or without DN. Blood samples were collected and used to test serum LCN-2 levels, renal function, as well as biochemical parameters. CAP in these subjects was determined by ultrasonography. RESULTS In these 749 subjects with T2DM, an increased morbidity of CAP was observed in T2DM patients with DN as compared with those without this complication (P < 0.05). Interestingly, serum LCN-2 levels were significantly increased in T2DM patients with DN or CAP compared with T2DM alone [97.71 (71.49-130.13) vs. 77.29 (58.83-115.05) ng/ml, P < 0.001]. In addition, serum LCN-2 levels in T2DM patients with DN and CAP were significantly higher than that of T2DM patients with DN or CAP [131.37 (101.43-182.04) vs. 97.71(71.49-130.13) ng/ml, P < 0.001]. Furthermore, serum LCN-2 levels were positively correlated with hemoglobin A1c, systolic blood pressure, hypertension, CAP, and DN, as well as renal function factors including uric acid, creatinine, the estimated glomerular filtration rate, and urinary albumin-to-creatinine ratio, respectively (P < 0.05), but negatively correlated with HDL-c (P < 0.05). The multinomial logistic regression analysis showed that serum LCN-2 was independently associated with DN and CAP in patients with T2DM after the adjustment for risk factors (P < 0.001). CONCLUSIONS Early-stage renal damage is a risk factor associated with the incidence of CAP in patients with T2DM. Serum LCN-2 is significantly increased and associated with early-stage renal damage and the incidence of CAP in patients with T2DM.
Collapse
Affiliation(s)
- Jing Gan
- The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Zheng
- The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiongli Yu
- School of Pharmaceutical College, Wenzhou Medical University, Wenzhou, China
| | - Yingchao Zhang
- School of Pharmaceutical College, Wenzhou Medical University, Wenzhou, China
| | - Wei Xie
- School of Pharmaceutical College, Wenzhou Medical University, Wenzhou, China
| | - Yaru Shi
- School of Pharmaceutical College, Wenzhou Medical University, Wenzhou, China
| | - Ning Yu
- School of Pharmaceutical College, Wenzhou Medical University, Wenzhou, China
| | - Yu Yan
- The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuofeng Lin
- School of Pharmaceutical College, Wenzhou Medical University, Wenzhou, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Laboratory Animal Center of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Zhuofeng Lin, ; Hong Yang,
| | - Hong Yang
- The 3rd Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Zhuofeng Lin, ; Hong Yang,
| |
Collapse
|