1
|
Sanchez-Piedra C, Rodríguez-Ortiz-de-Salazar B, Roca O, Prado-Galbarro FJ, Perestelo-Perez L, Sanchez-Gomez LM. Electrical impedance tomography for PEEP titration in ARDS patients: a systematic review and meta-analysis. J Clin Monit Comput 2025:10.1007/s10877-025-01266-2. [PMID: 40011398 DOI: 10.1007/s10877-025-01266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025]
Abstract
To assess the efficacy of electrical impedance tomography (EIT)-guided positive end-expiratory pressure (PEEP) titration in improving outcomes for patients with acute respiratory distress syndrome (ARDS). A systematic review and meta-analysis was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Randomized controlled trials and observational studies with a control group comparing EIT-guided PEEP titration to other strategies were included. Endpoints analysed included mortality, days of mechanical ventilation (MV), intensive care unit (ICU) length of stay (LOS), weaning success rate, barotrauma, driving pressure (∆P), mechanical power (MP), Sequential Organ Failure Assessment (SOFA) score and adverse events. Pooled results were presented as Risk Ratio (RR) for dichotomous outcomes and standardized difference in means (SMD) for continuous outcomes. A total of 4 studies were identified (3 randomized controlled trials and one observational study). All studies were single-center studies (N total = 271 patients). The main limitations were related to potential bias in selecting reported outcomes. EIT-guided PEEP titration was associated with a significant reduction in mortality among critically ill patients with ARDS (RR = 0.64, 95% CI: 0.45-0.91). No significant differences were found in other outcomes. Our findings suggest that EIT may be a valuable tool for PEEP titration in critically ill patients with ARDS. By optimizing lung mechanics, EIT-guided PEEP titration may potentially reduce mortality rates. While larger, multicenter studies are needed to definitively establish the clinical role of EIT in ARDS management, our results provide promising evidence for its potential clinical impact.
Collapse
Affiliation(s)
- Carlos Sanchez-Piedra
- Health Technology Assessment Agency, Instituto de Salud Carlos III, Madrid, España.
- RICAPPS. Red de Investigación en Cronicidad, Atención Primaria y Prevención y Promoción de la Salud, Madrid, Spain.
| | | | - Oriol Roca
- Servei de Medicina Intensiva, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Lilisbeth Perestelo-Perez
- RICAPPS. Red de Investigación en Cronicidad, Atención Primaria y Prevención y Promoción de la Salud, Madrid, Spain
- Evaluation and Planning Unit of the Canary Islands Health Service (SESCS), Tenerife, Spain
| | - Luis-Maria Sanchez-Gomez
- Health Technology Assessment Agency, Instituto de Salud Carlos III, Madrid, España
- RICAPPS. Red de Investigación en Cronicidad, Atención Primaria y Prevención y Promoción de la Salud, Madrid, Spain
- IIS-IP. Instituto de Investigación Sanitaria. HU La Princesa, Madrid, Spain
| |
Collapse
|
2
|
Bertini P, Marabotti A, Sangalli F, Paternoster G. Survival difference in patients treated with extracorporeal membrane oxygenation in COVID-19 vs. non-COVID ARDS: a systematic review and meta-analysis. Minerva Anestesiol 2024; 90:1139-1150. [PMID: 39630142 DOI: 10.23736/s0375-9393.24.18219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
INTRODUCTION The COVID-19 pandemic has emphasized the need for effective management of severe acute respiratory distress syndrome (ARDS) using veno-venous extracorporeal membrane oxygenation (VV-ECMO). This meta-analysis aims to compare the effectiveness and outcomes of ECMO in patients with COVID-19 ARDS versus those with non-COVID ARDS, assessing its role in different respiratory virus infections. EVIDENCE ACQUISITION A systematic search was conducted in PubMed, Web of Science, and other relevant databases up to June 30, 2023, to identify studies comparing ECMO use in COVID-19 and non-COVID ARDS cases. This analysis adheres to PRISMA guidelines, with studies rigorously selected based on predefined inclusion and exclusion criteria and assessed for bias using validated tools. EVIDENCE SYNTHESIS The meta-analysis included 24 studies with 2,121 patients, revealing that non-COVID ARDS patients treated with ECMO had a lower mortality risk compared to those with COVID-19 ARDS. Specifically, the overall pooled risk difference in survival was -0.11 (95% CI: -0.17 to -0.05, P<0.001), indicating a statistically significant advantage for non-COVID patients. The standardized mean difference for ECMO duration was significantly longer in COVID-19 patients (SMD=0.70, 95% CI: 0.32 to 1.08, P<0.001), reflecting more prolonged treatment needs. CONCLUSIONS ECMO serves as a vital intervention in severe ARDS, with differential effectiveness observed between COVID-19 and non-COVID patients. The study's findings underline the need for precise patient selection and tailored ECMO application across different viral etiologies. These insights are crucial for enhancing clinical strategies and resource allocation during ongoing and future pandemics.
Collapse
Affiliation(s)
- Pietro Bertini
- Department of Anesthesia and Intensive Care Medicine, Casa di Cura San Rossore, Pisa, Italy -
| | - Alberto Marabotti
- Intensive Care Unit and Regional ECMO Referral Center, Careggi University Hospital, Florence, Italy
| | - Fabio Sangalli
- Department of Anesthesia and Intensive Care, ASST Valtellina e Alto Lario, Milan, Italy
| | - Gianluca Paternoster
- Department of Health Science Anesthesia and ICU, School of Medicine, San Carlo Hospital, University of Basilicata, Potenza, Italy
| |
Collapse
|
3
|
Ring BJ. Decades Under the Influence: Shifting the PEEP Paradigm in ARDS. Respir Care 2024; 69:1347-1350. [PMID: 39327024 PMCID: PMC11469003 DOI: 10.4187/respcare.12435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Affiliation(s)
- Brian J Ring
- Division of Acute Care SurgeryTrauma and Critical CareUniversity of Cincinnati College of MedicineCincinnati, Ohio
| |
Collapse
|
4
|
Cui Z, Liu X, Qu H, Wang H. Technical Principles and Clinical Applications of Electrical Impedance Tomography in Pulmonary Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:4539. [PMID: 39065936 PMCID: PMC11281055 DOI: 10.3390/s24144539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Pulmonary monitoring is crucial for the diagnosis and management of respiratory conditions, especially after the epidemic of coronavirus disease. Electrical impedance tomography (EIT) is an alternative non-radioactive tomographic imaging tool for monitoring pulmonary conditions. This review proffers the current EIT technical principles and applications on pulmonary monitoring, which gives a comprehensive summary of EIT applied on the chest and encourages its extensive usage to clinical physicians. The technical principles involving EIT instrumentations and image reconstruction algorithms are explained in detail, and the conditional selection is recommended based on clinical application scenarios. For applications, specifically, the monitoring of ventilation/perfusion (V/Q) is one of the most developed EIT applications. The matching correlation of V/Q could indicate many pulmonary diseases, e.g., the acute respiratory distress syndrome, pneumothorax, pulmonary embolism, and pulmonary edema. Several recently emerging applications like lung transplantation are also briefly introduced as supplementary applications that have potential and are about to be developed in the future. In addition, the limitations, disadvantages, and developing trends of EIT are discussed, indicating that EIT will still be in a long-term development stage before large-scale clinical applications.
Collapse
Affiliation(s)
- Ziqiang Cui
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China; (X.L.); (H.Q.); (H.W.)
| | | | | | | |
Collapse
|
5
|
Songsangvorn N, Xu Y, Lu C, Rotstein O, Brochard L, Slutsky AS, Burns KEA, Zhang H. Electrical impedance tomography-guided positive end-expiratory pressure titration in ARDS: a systematic review and meta-analysis. Intensive Care Med 2024; 50:617-631. [PMID: 38512400 PMCID: PMC11078723 DOI: 10.1007/s00134-024-07362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE Assessing efficacy of electrical impedance tomography (EIT) in optimizing positive end-expiratory pressure (PEEP) for acute respiratory distress syndrome (ARDS) patients to enhance respiratory system mechanics and prevent ventilator-induced lung injury (VILI), compared to traditional methods. METHODS We carried out a systematic review and meta-analysis, spanning literature from January 2012 to May 2023, sourced from Scopus, PubMed, MEDLINE (Ovid), Cochrane, and LILACS, evaluated EIT-guided PEEP strategies in ARDS versus conventional methods. Thirteen studies (3 randomized, 10 non-randomized) involving 623 ARDS patients were analyzed using random-effects models for primary outcomes (respiratory mechanics and mechanical power) and secondary outcomes (PaO2/FiO2 ratio, mortality, stays in intensive care unit (ICU), ventilator-free days). RESULTS EIT-guided PEEP significantly improved lung compliance (n = 941 cases, mean difference (MD) = 4.33, 95% confidence interval (CI) [2.94, 5.71]), reduced mechanical power (n = 148, MD = - 1.99, 95% CI [- 3.51, - 0.47]), and lowered driving pressure (n = 903, MD = - 1.20, 95% CI [- 2.33, - 0.07]) compared to traditional methods. Sensitivity analysis showed consistent positive effect of EIT-guided PEEP on lung compliance in randomized clinical trials vs. non-randomized studies pooled (MD) = 2.43 (95% CI - 0.39 to 5.26), indicating a trend towards improvement. A reduction in mortality rate (259 patients, relative risk (RR) = 0.64, 95% CI [0.45, 0.91]) was associated with modest improvements in compliance and driving pressure in three studies. CONCLUSIONS EIT facilitates real-time, individualized PEEP adjustments, improving respiratory system mechanics. Integration of EIT as a guiding tool in mechanical ventilation holds potential benefits in preventing ventilator-induced lung injury. Larger-scale studies are essential to validate and optimize EIT's clinical utility in ARDS management.
Collapse
Affiliation(s)
- Nickjaree Songsangvorn
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Critical Care Medicine, Bhumibol Adulyadej Hospital, Bangkok, Thailand
| | - Yonghao Xu
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Cong Lu
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Ori Rotstein
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Laurent Brochard
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Arthur S Slutsky
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Karen E A Burns
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Simonte R, Cammarota G, Vetrugno L, De Robertis E, Longhini F, Spadaro S. Advanced Respiratory Monitoring during Extracorporeal Membrane Oxygenation. J Clin Med 2024; 13:2541. [PMID: 38731069 PMCID: PMC11084162 DOI: 10.3390/jcm13092541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Advanced respiratory monitoring encompasses a diverse range of mini- or noninvasive tools used to evaluate various aspects of respiratory function in patients experiencing acute respiratory failure, including those requiring extracorporeal membrane oxygenation (ECMO) support. Among these techniques, key modalities include esophageal pressure measurement (including derived pressures), lung and respiratory muscle ultrasounds, electrical impedance tomography, the monitoring of diaphragm electrical activity, and assessment of flow index. These tools play a critical role in assessing essential parameters such as lung recruitment and overdistention, lung aeration and morphology, ventilation/perfusion distribution, inspiratory effort, respiratory drive, respiratory muscle contraction, and patient-ventilator synchrony. In contrast to conventional methods, advanced respiratory monitoring offers a deeper understanding of pathological changes in lung aeration caused by underlying diseases. Moreover, it allows for meticulous tracking of responses to therapeutic interventions, aiding in the development of personalized respiratory support strategies aimed at preserving lung function and respiratory muscle integrity. The integration of advanced respiratory monitoring represents a significant advancement in the clinical management of acute respiratory failure. It serves as a cornerstone in scenarios where treatment strategies rely on tailored approaches, empowering clinicians to make informed decisions about intervention selection and adjustment. By enabling real-time assessment and modification of respiratory support, advanced monitoring not only optimizes care for patients with acute respiratory distress syndrome but also contributes to improved outcomes and enhanced patient safety.
Collapse
Affiliation(s)
- Rachele Simonte
- Department of Medicine and Surgery, Università degli Studi di Perugia, 06100 Perugia, Italy; (R.S.); (E.D.R.)
| | - Gianmaria Cammarota
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Luigi Vetrugno
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Edoardo De Robertis
- Department of Medicine and Surgery, Università degli Studi di Perugia, 06100 Perugia, Italy; (R.S.); (E.D.R.)
| | - Federico Longhini
- Department of Medical and Surgical Sciences, Università della Magna Graecia, 88100 Catanzaro, Italy
- Anesthesia and Intensive Care Unit, “R. Dulbecco” University Hospital, 88100 Catanzaro, Italy
| | - Savino Spadaro
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44100 Ferrara, Italy;
| |
Collapse
|
7
|
Frerichs I, Schädler D, Becher T. Setting positive end-expiratory pressure by using electrical impedance tomography. Curr Opin Crit Care 2024; 30:43-52. [PMID: 38085866 DOI: 10.1097/mcc.0000000000001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW This review presents the principles and possibilities of setting positive end-expiratory pressure (PEEP) using electrical impedance tomography (EIT). It summarizes the major findings of recent studies where EIT was applied to monitor the effects of PEEP on regional lung function and to guide the selection of individualized PEEP setting. RECENT FINDINGS The most frequent approach of utilizing EIT for the assessment of PEEP effects and the PEEP setting during the time period from January 2022 till June 2023 was based on the analysis of pixel tidal impedance variation, typically acquired during stepwise incremental and/or decremental PEEP variation. The most common EIT parameters were the fraction of ventilation in various regions of interest, global inhomogeneity index, center of ventilation, silent spaces, and regional compliance of the respiratory system. The studies focused mainly on the spatial and less on the temporal distribution of ventilation. Contrast-enhanced EIT was applied in a few studies for the estimation of ventilation/perfusion matching. SUMMARY The availability of commercial EIT devices resulted in an increase in clinical studies using this bedside imaging technology in neonatal, pediatric and adult critically ill patients. The clinical interest in EIT became evident but the potential of this method in clinical decision-making still needs to be fully exploited.
Collapse
Affiliation(s)
- Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | |
Collapse
|
8
|
Heines SJH, Becher TH, van der Horst ICC, Bergmans DCJJ. Clinical Applicability of Electrical Impedance Tomography in Patient-Tailored Ventilation: A Narrative Review. Tomography 2023; 9:1903-1932. [PMID: 37888742 PMCID: PMC10611090 DOI: 10.3390/tomography9050150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Electrical Impedance Tomography (EIT) is a non-invasive bedside imaging technique that provides real-time lung ventilation information on critically ill patients. EIT can potentially become a valuable tool for optimising mechanical ventilation, especially in patients with acute respiratory distress syndrome (ARDS). In addition, EIT has been shown to improve the understanding of ventilation distribution and lung aeration, which can help tailor ventilatory strategies according to patient needs. Evidence from critically ill patients shows that EIT can reduce the duration of mechanical ventilation and prevent lung injury due to overdistension or collapse. EIT can also identify the presence of lung collapse or recruitment during a recruitment manoeuvre, which may guide further therapy. Despite its potential benefits, EIT has not yet been widely used in clinical practice. This may, in part, be due to the challenges associated with its implementation, including the need for specialised equipment and trained personnel and further validation of its usefulness in clinical settings. Nevertheless, ongoing research focuses on improving mechanical ventilation and clinical outcomes in critically ill patients.
Collapse
Affiliation(s)
- Serge J. H. Heines
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (I.C.C.v.d.H.); (D.C.J.J.B.)
| | - Tobias H. Becher
- Department of Anesthesiology and Intensive Care Medicine, Campus Kiel, University Medical Centre Schleswig-Holstein, 24118 Kiel, Germany;
| | - Iwan C. C. van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (I.C.C.v.d.H.); (D.C.J.J.B.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Dennis C. J. J. Bergmans
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (I.C.C.v.d.H.); (D.C.J.J.B.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
9
|
Giani M, Pozzi M, Rona R. Lessons from the COVID-19 Pandemic. J Clin Med 2023; 12:5791. [PMID: 37762732 PMCID: PMC10531926 DOI: 10.3390/jcm12185791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic was an unprecedented global crisis that significantly impacted around the world [...].
Collapse
Affiliation(s)
- Marco Giani
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- Department of Emergency and Intensive Care, IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
| | - Matteo Pozzi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- Department of Emergency and Intensive Care, IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
| | - Roberto Rona
- Department of Emergency and Intensive Care, IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
| |
Collapse
|
10
|
Prone Positioning Decreases Inhomogeneity and Improves Dorsal Compliance in Invasively Ventilated Spontaneously Breathing COVID-19 Patients—A Study Using Electrical Impedance Tomography. Diagnostics (Basel) 2022; 12:diagnostics12102281. [PMID: 36291970 PMCID: PMC9600133 DOI: 10.3390/diagnostics12102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background: We studied prone positioning effects on lung aeration in spontaneously breathing invasively ventilated patients with coronavirus disease 2019 (COVID-19). Methods: changes in lung aeration were studied prospectively by electrical impedance tomography (EIT) from before to after placing the patient prone, and back to supine. Mixed effect models with a random intercept and only fixed effects were used to evaluate changes in lung aeration. Results: fifteen spontaneously breathing invasively ventilated patients were enrolled, and remained prone for a median of 19 [17 to 21] hours. At 16 h the global inhomogeneity index was lower. At 2 h, there were neither changes in dorsal nor in ventral compliance; after 16 h, only dorsal compliance (βFe +18.9 [95% Confidence interval (CI): 9.1 to 28.8]) and dorsal end-expiratory lung impedance (EELI) were increased (βFe, +252 [95% CI: 13 to 496]); at 2 and 16 h, dorsal silent spaces was unchanged (βFe, –4.6 [95% CI: –12.3 to +3.2]). The observed changes induced by prone positioning disappeared after turning patients back to supine. Conclusions: in this cohort of spontaneously breathing invasively ventilated COVID-19 patients, prone positioning decreased inhomogeneity, increased lung volumes, and improved dorsal compliance.
Collapse
|
11
|
S V Barbas C, Bp Amato M. Electrical Impedance Tomography to Titrate PEEP at Bedside in ARDS. Respir Care 2022; 67:1061-1063. [PMID: 35882444 PMCID: PMC9994139 DOI: 10.4187/respcare.10360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Carmen S V Barbas
- Pulmonary DivisionHeart Institute - INCORFMUSPUniversity of São PauloSão Paulo, BrazilAdult Intensive CareAlbert Einstein HospitalSão Paulo, Brazil
| | - Marcelo Bp Amato
- Pulmonary DivisionHeart Institute - INCORFMUSPUniversity of São PauloSão Paulo, Brazil
| |
Collapse
|
12
|
Severe COVID-19 ARDS Treated by Bronchoalveolar Lavage with Diluted Exogenous Pulmonary Surfactant as Salvage Therapy: In Pursuit of the Holy Grail? J Clin Med 2022; 11:jcm11133577. [PMID: 35806862 PMCID: PMC9267619 DOI: 10.3390/jcm11133577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/27/2022] Open
Abstract
Background: Severe pneumonia caused by coronavirus disease 2019 (COVID-19) is characterized by inflammatory lung injury, progressive parenchymal stiffening and consolidation, alveolar and airway collapse, altered vascular permeability, diffuse alveolar damage, and surfactant deficiency. COVID-19 causes both pneumonia and acute respiratory distress syndrome (COVID-19 ARDS). COVID-19 ARDS is characterized by severe refractory hypoxemia and high mortality. Despite extensive research, the treatment of COVID-19 ARDS is far from satisfactory. Some treatments are recommended for exhibiting some clinically positive impacts on COVID-19 patients although there are already several drugs in clinical trials, some of which are already demonstrating promising results in addressing COVID-19. Few studies have demonstrated beneficial effects in non-COVID-19 ARDS treatment of exogenous surfactant, and there is no evidence-based, proven method for the procedure of surfactant administration. Aim: The aim of this work is to underline the key role of ATII cells and reduced surfactant levels in COVID-19 ARDS and to emphasize the rational basis for exogenous surfactant therapy in COVID-19 ARDS, providing insights for future research. Methods: In this article, we describe and support via the literature the decision to administer large volumes of surfactant to two patients via bronchoalveolar lavage to maximize its distribution in the respiratory tract. Results: In this study, we report on two cases of COVID-19 ARDS in patients who have been successfully treated with diluted surfactants by bronchoalveolar lavage, followed by a low-dose bolus of surfactant. Conclusion: Combining the administration of diluted, exogenous pulmonary surfactant via bronchoalveolar lavage along with the standard therapy for SARS-CoV-2-induced ARDS may be a promising way of improving the management of ARDS.
Collapse
|