1
|
Şeker Karatoprak G, Dumlupınar B, Celep E, Kurt Celep I, Küpeli Akkol E, Sobarzo-Sánchez E. A comprehensive review on the potential of coumarin and related derivatives as multi-target therapeutic agents in the management of gynecological cancers. Front Pharmacol 2024; 15:1423480. [PMID: 39364049 PMCID: PMC11447453 DOI: 10.3389/fphar.2024.1423480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Current treatments for gynecological cancers include surgery, radiotherapy, and chemotherapy. However, these treatments often have significant side effects. Phytochemicals, natural compounds derived from plants, offer promising anticancer properties. Coumarins, a class of benzopyrone compounds found in various plants like tonka beans, exhibit notable antitumor effects. These compounds induce cell apoptosis, target PI3K/Akt/mTOR signaling pathways, inhibit carbonic anhydrase, and disrupt microtubules. Additionally, they inhibit tumor multidrug resistance and angiogenesis and regulate reactive oxygen species. Specific coumarin derivatives, such as auraptene, praeruptorin, osthole, and scopoletin, show anti-invasive, anti-migratory, and antiproliferative activities by arresting the cell cycle and inducing apoptosis. They also inhibit metalloproteinases-2 and -9, reducing tumor cell migration, invasion, and metastasis. These compounds can sensitize tumor cells to radiotherapy and chemotherapy. Synthetic coumarin derivatives also demonstrate potent antitumor and anticancer activities with minimal side effects. Given their diverse mechanisms of action and minimal side effects, coumarin-class phytochemicals hold significant potential as therapeutic agents in gynecological cancers, potentially improving treatment outcomes and reducing side effects. This review will aid in the synthesis and development of novel coumarin-based drugs for these cancers.
Collapse
Affiliation(s)
| | - Berrak Dumlupınar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Okan University, İstanbul, Türkiye
| | - Engin Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, Türkiye
| | - Inci Kurt Celep
- Department of Biotechnology, Faculty of Pharmacy, Istanbul Okan University, Istanbul, Türkiye
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado Facultad de Ciencias de la Salud Universidad Central de Chile, Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
2
|
de Moraes FCA, Sudo RYU, Souza MEC, Fernandes MR, Dos Santos NPC. The incidence risk of gynecological cancer by antipsychotic use: a meta-analysis of 50,402 patients. BMC Cancer 2024; 24:712. [PMID: 38858638 PMCID: PMC11163728 DOI: 10.1186/s12885-024-12481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Female gynecological cancers represent a serious public health problem, with 1,398,601 new diagnoses and 671,875 deaths per year worldwide. Antipsychotics are often used in psychiatric disorders, including schizophrenia, bipolar disorder, and major depression. It is estimated that the prescription of these drugs is linked to 1,800 deaths a year in the United States, but their association with cancer remains controversial. METHODS We searched PubMed, Scopus, and Web of Science databases for studies reporting the correlation in the incidence risk of gynecological cancer by antipsychotic use. We used DerSimonian and Laird random-effect models to compute logit transformed odds ratio (OR) for the primary binary endpoint with 95% confidence interval (CI). Heterogeneity was assessed through effect size width along with I-squared and Tau-squared statistics. Review Manager 5.4.1. was used for statistical analyses. A p-value of < 0.05 denoted statistically significant. RESULTS 50,402 patients were included, of whom 778 (1,54%) took antipsychotic medication for at least 1 year. 1,086 (2,15%) with ovarian cancer and 49,316 (97,85%) with endometrial cancer. Antipsychotic use (OR 1.50; 1.06 to 2.13 95% CI; p-value 0.02), hypertension (OR 1.50; 95% CI 1.06 to 2.13; p-value < 0.01), nulliparity (OR 1.98; 95% CI 1.53 to 2.57; p-value < 0.01) and multiparity (OR 0.53; 95% CI 0.41 to 0.69; p-value < 0.01) showed significantly different distributions between groups of cancer and cancer-free patients. The primary endpoint of incidence risk of gynecological cancer by antipsychotic therapy showed a statistically significant difference (OR 1.67; 95% CI 1.02 to 2.73; p-value < 0.05) against the use of antipsychotic drugs. CONCLUSIONS Our meta-analysis showed that the use of antipsychotic drugs increases the risk of gynecological cancers, particularly endometrial cancer. This result should be weighed against the potential effects of treatment for a balanced prescribing decision.
Collapse
Affiliation(s)
- Francisco Cezar Aquino de Moraes
- Oncology Research Center, University Hospital João de Barros de Barreto, Federal University of Pará, Rua dos Mundurucus, n?4487, Belém, PA, 66073-000, Brazil.
| | | | | | - Marianne Rodrigues Fernandes
- Oncology Research Center, University Hospital João de Barros de Barreto, Federal University of Pará, Rua dos Mundurucus, n?4487, Belém, PA, 66073-000, Brazil
| | - Ney Pereira Carneiro Dos Santos
- Oncology Research Center, University Hospital João de Barros de Barreto, Federal University of Pará, Rua dos Mundurucus, n?4487, Belém, PA, 66073-000, Brazil
| |
Collapse
|
3
|
Ito Y, Kobori T, Urashima Y, Ito T, Hotta K, Obata T. Moesin affects the plasma membrane expression and the immune checkpoint function of CD47 in human ovarian clear cell carcinoma. J Reprod Immunol 2024; 161:104185. [PMID: 38141516 DOI: 10.1016/j.jri.2023.104185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
Among major histological subtypes of epithelial ovarian cancer, a higher incidence of ovarian clear cell carcinoma (OCCC) is observed in East Asian populations, particularly in Japan. Despite recent progress in the immune checkpoint inhibitors for a wide variety of cancer cell types, patients with OCCC exhibit considerably low response rates to these drugs. Hence, urgent efforts are needed to develop a novel immunotherapeutic approach for OCCC. CD47, a transmembrane protein, is overexpressed in almost all cancer cells and disrupts macrophage phagocytic activity in cancer cells. Ezrin-Radixin-Moesin (ERM) family member of proteins serve as scaffold proteins by crosslinking certain transmembrane proteins with the actin cytoskeleton, contributing to their plasma membrane localization. Here, we examined the role of ERM family in the plasma membrane localization and functionality of CD47 in OCCC cell lines derived from Japanese women. Confocal laser scanning microscopy analysis showed colocalization of CD47 with all three ERM in the plasma membrane of OCCC cells. RNA interference-mediated gene silencing of moesin, but not others, decreased the plasma membrane expression and immune checkpoint function of CD47, as determined by flow cytometry and in vitro phagocytosis assay using human macrophage-like cells, respectively. Interestingly, clinical database analysis indicated that moesin expression in OCCC was higher than that in other histological subtypes of ovarian cancers, and the expression of CD47 and moesin increased with the cancer stage. In conclusion, moesin is overexpressed in OCCC and may be the predominant scaffold protein responsible for CD47 plasma membrane localization and function in OCCC.
Collapse
Affiliation(s)
- Yui Ito
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Takuro Kobori
- Laboratory of Pathophysiology and Pharmacotherapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Yoko Urashima
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Takuya Ito
- Laboratory of Natural Medicines, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Kikuko Hotta
- Laboratory of Pathophysiology and Pharmacotherapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Tokio Obata
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan.
| |
Collapse
|
4
|
Ghasemian M, Zehtabi M, Dari MAG, Pour FK, Tabesh GA, Moramezi F, Jafari RM, Barati M, Uddin S, Farzaneh M. The emerging roles of long non-coding RNA (lncRNA) H19 in gynecologic cancers. BMC Cancer 2024; 24:4. [PMID: 38166752 PMCID: PMC10763168 DOI: 10.1186/s12885-023-11743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Long non-coding RNA (lncRNA) H19 has gained significant recognition as a pivotal contributor to the initiation and advancement of gynecologic cancers, encompassing ovarian, endometrial, cervical, and breast cancers. H19 exhibits a complex array of mechanisms, demonstrating dualistic effects on tumorigenesis as it can function as both an oncogene and a tumor suppressor, contingent upon the specific context and type of cancer being investigated. In ovarian cancer, H19 promotes tumor growth, metastasis, and chemoresistance through modulation of key signaling pathways and interaction with microRNAs. Conversely, in endometrial cancer, H19 acts as a tumor suppressor by inhibiting proliferation, inducing apoptosis, and regulating epithelial-mesenchymal transition. Additionally, H19 has been implicated in cervical and breast cancers, where it influences cell proliferation, invasion, and immune evasion. Moreover, H19 has potential as a diagnostic and prognostic biomarker for gynecologic cancers, with its expression levels correlating with clinical parameters and patient outcomes. Understanding the functional roles of H19 in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized treatment approaches. Further investigation into the intricate molecular mechanisms underlying H19's involvement in gynecologic malignancies is warranted to fully unravel its therapeutic potential and clinical implications. This review aims to elucidate the functional roles of H19 in various gynecologic malignancies.
Collapse
Affiliation(s)
- Majid Ghasemian
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Khojasteh Pour
- Department of Obstetrics and Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Azizi Tabesh
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Moramezi
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Razieh Mohammad Jafari
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojgan Barati
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Uddin
- Translational Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 22602, India
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
5
|
Kobori T, Ito Y, Doukuni R, Urashima Y, Ito T, Obata T. Radixin modulates the plasma membrane localization of CD47 in human uterine cervical adenocarcinoma cells. J Reprod Immunol 2023; 158:103982. [PMID: 37364502 DOI: 10.1016/j.jri.2023.103982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/10/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Despite the dramatic success of immune checkpoint blockers in treating numerous cancer cell types, current therapeutic modalities provide clinical benefits to a subset of patients with cervical cancers. CD47 is commonly overexpressed in a broad variety of cancer cells, correlates with poor clinical prognosis, and acts as a dominant macrophage checkpoint by interacting with receptors expressed on macrophages. It allows cancer cells to escape from the innate immune system and hence is a potential therapeutic target for developing novel macrophage checkpoint blockade immunotherapies. As the intracellular scaffold proteins, ezrin/radixin/moesin (ERM) family proteins post-translationally regulate the cellular membrane localization of numerous transmembrane proteins, by crosslinking them with the actin cytoskeleton. We demonstrated that radixin modulates the plasma membrane localization and functionality of CD47 in HeLa cells. Immunofluorescence analysis and co-immunoprecipitation assay using anti-CD47 antibody showed the colocalization of CD47 and all three ERM families in the plasma membrane, and the molecular interactions between CD47 and all three ERM. Interestingly, gene silencing of only radixin, reduced the CD47 plasma membrane localization and functionality by means of flow cytometry and phagocytosis assay but had little influence on its mRNA expression. Together, in HeLa cells radixin may function as a principal scaffold protein responsible for the CD47 plasma membrane localization.
Collapse
Affiliation(s)
- Takuro Kobori
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Yui Ito
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Rina Doukuni
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Yoko Urashima
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan
| | - Takuya Ito
- Laboratory of Natural Medicines, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Tokio Obata
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan.
| |
Collapse
|
6
|
Niu Z, Yan B. Prognostic and clinicopathological impacts of Controlling Nutritional Status (CONUT) score on patients with gynecological cancer: a meta-analysis. Nutr J 2023; 22:33. [PMID: 37422623 DOI: 10.1186/s12937-023-00863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND The Controlling Nutritional Status (CONUT) score has proven to be a potential biomarker for determining the prognosis of patients with various types of cancer. Its value in determining the prognosis of patients with gynecological cancer, however, remains unknown. The present study was a meta-analysis that aimed to evaluate the prognostic and clinicopathological significance of the CONUT score in gynecological cancer. METHODS The Embase, PubMed, Cochrane Library, Web of Science, and China National Knowledge Infrastructure databases were comprehensively searched through November 22, 2022. A pooled hazard ratio (HR), together with a 95% confidence interval (CI), was used to determine whether the CONUT score had prognostic value in terms of survival outcomes. Using odds ratios (ORs) and 95% CIs, we estimated the relationship between the CONUT score and clinicopathological characteristics of gynecological cancer. RESULTS We evaluated 6 articles, involving a total of 2,569 cases, in the present study. According to the results of our analyses, higher CONUT scores were significantly correlated with decreased overall survival (OS) (n = 6; HR = 1.52; 95% CI = 1.13-2.04; P = 0.006; I2 = 57.4%; Ph = 0.038) and progression-free survival (PFS) (n = 4; HR = 1.51; 95% CI = 1.25-1.84; P < 0.001; I2 = 0; Ph = 0.682) in gynecological cancer. Moreover, higher CONUT scores were significantly correlated with a histological grade of G3 (n = 3; OR = 1.76; 95% CI = 1.18-2.62; P = 0.006; I2 = 0; Ph = 0.980), a tumor size ≥ 4 cm (n = 2; OR = 1.50; 95% CI = 1.12-2.01; P = 0.007; I2 = 0; Ph = 0.721), and an advanced International Federation of Gynecology and Obstetrics (FIGO) stage (n = 2; OR = 2.52; 95% CI = 1.54-4.11; P < 0.001; I2 = 45.5%; Ph = 0.175). The correlation between the CONUT score and lymph node metastasis, however, was not significant. CONCLUSIONS Higher CONUT scores were significantly correlated with decreased OS and PFS in gynecological cancer. The CONUT score, therefore, is a promising and cost-effective biomarker for predicting survival outcomes in gynecological cancer.
Collapse
Affiliation(s)
- Zheng Niu
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bing Yan
- Department of Pharmacy, The First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China.
| |
Collapse
|
7
|
Kobori T, Ito Y, Sawada Y, Urashima Y, Ito T, Obata T. Cellular Membrane Localization of Innate Immune Checkpoint Molecule CD47 Is Regulated by Radixin in Human Pancreatic Ductal Adenocarcinoma Cells. Biomedicines 2023; 11:biomedicines11041117. [PMID: 37189735 DOI: 10.3390/biomedicines11041117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
In the past decade, immune checkpoint inhibitors have exhibited potent antitumor efficacy against multiple solid malignancies but limited efficacy against pancreatic ductal adenocarcinoma (PDAC). Cluster of differentiation (CD) 47, a member of the immunoglobulin G superfamily, is overexpressed in the surface membrane of PDAC and independently correlates with a worse clinical prognosis. Furthermore, CD47 functions as a dominant macrophage checkpoint, providing a potent "do not eat me" signal to enable cancer cells to evade the innate immune system. Thus, the blockade of CD47 is a promising immunotherapeutic strategy for PDAC. In this study, we determined whether ezrin/radixin/moesin (ERM) family members, which post-translationally modulate the cellular membrane localization of numerous transmembrane proteins by crosslinking with the actin cytoskeleton, contribute to the cellular membrane localization of CD47 in KP-2 cells derived from human PDAC. Immunofluorescence analysis showed that CD47 and ezrin/radixin were highly co-localized in the plasma membrane. Interestingly, gene silencing of radixin but not ezrin dramatically decreased the cell surface expression of CD47 but had little effects on its mRNA level. Furthermore, CD47 and radixin interacted with each other, as determined by a co-immunoprecipitation assay. In conclusion, radixin regulates the cellular membrane localization of CD47 as a scaffold protein in KP-2 cells.
Collapse
Affiliation(s)
- Takuro Kobori
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540, Japan
| | - Yui Ito
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540, Japan
| | - Yuka Sawada
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540, Japan
| | - Yoko Urashima
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540, Japan
| | - Takuya Ito
- Laboratory of Natural Medicines, Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540, Japan
| | - Tokio Obata
- Laboratory of Clinical Pharmaceutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540, Japan
| |
Collapse
|
8
|
ERRα Up-Regulates Invadopodia Formation by Targeting HMGCS1 to Promote Endometrial Cancer Invasion and Metastasis. Int J Mol Sci 2023; 24:ijms24044010. [PMID: 36835419 PMCID: PMC9964422 DOI: 10.3390/ijms24044010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Estrogen-related receptor alpha (ERRα) plays an important role in endometrial cancer (EC) progression. However, the biological roles of ERRα in EC invasion and metastasis are not clear. This study aimed to investigate the role of ERRα and 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) in regulating intracellular cholesterol metabolism to promote EC progression. ERRα and HMGCS1 interactions were detected by co-immunoprecipitation, and the effects of ERRα/HMGCS1 on the metastasis of EC were investigated by wound-healing and transwell chamber invasion assays. Cellular cholesterol content was measured to verify the relationship between ERRα and cellular cholesterol metabolism. Additionally, immunohistochemistry was performed to confirm that ERRα and HMGCS1 were related to EC progression. Furthermore, the mechanism was investigated using loss-of-function and gain-of-function assays or treatment with simvastatin. High expression levels of ERRα and HMGCS1 promoted intracellular cholesterol metabolism for invadopodia formation. Moreover, inhibiting ERRα and HMGCS1 expression significantly weakened the malignant progression of EC in vitro and in vivo. Our functional analysis showed that ERRα promoted EC invasion and metastasis through the HMGCS1-mediated intracellular cholesterol metabolism pathway, which was dependent on the epithelial-mesenchymal transition pathway. Our findings suggest that ERRα and HMGCS1 are potential targets to suppress EC progression.
Collapse
|