1
|
Makino T, Mizawa M, Takemoto K, Shimizu T. Expression of hornerin in skin lesions of atopic dermatitis and skin diseases. Clin Exp Dermatol 2024; 49:255-258. [PMID: 38123340 DOI: 10.1093/ced/llad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Indexed: 12/23/2023]
Abstract
We have previously identified the filaggrin (FLG)-like protein, hornerin (HRNR). Recently, there have been several reports regarding the relationship between HRNR and atopic dermatitis (AD). In the present study, we examined HRNR expression in the skin lesions of seven unrelated patients with AD to clarify the role of HRNR in the pathogenesis of AD. HRNR was detected in chronic AD lesions (n = 4), whereas no HRNR signals were observed in acute AD lesions (n = 3). HRNR was detected in the cytokeratin 6-expressing epidermis, and Ki67-positive keratinocytes were more abundant in the HRNR-positive epidermis. These findings suggest that HRNR may be associated with epidermal hyperproliferation in AD lesions. Next, we examined HRNR expression in skin diseases associated with hyperkeratosis. HRNR signals were irregularly observed in different cells from those expressing FLG in epidermolytic ichthyosis and actinic keratosis. Therefore, HRNR may play a unique role in the molecular process of cornification.
Collapse
Affiliation(s)
- Teruhiko Makino
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| | - Megumi Mizawa
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| | - Keita Takemoto
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| | - Tadamichi Shimizu
- Department of Dermatology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Toyama, Japan
| |
Collapse
|
2
|
Pontikas A, Antonatos C, Evangelou E, Vasilopoulos Y. Candidate Gene Association Studies in Atopic Dermatitis in Participants of European and Asian Ancestry: A Systematic Review and Meta-Analysis. Genes (Basel) 2023; 14:1456. [PMID: 37510360 PMCID: PMC10379179 DOI: 10.3390/genes14071456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Atopic dermatitis (AD) has been extensively investigated for genetic associations utilizing both candidate gene approaches and genome-wide scans. Here, we comprehensively evaluated the available literature to determine the association of candidate genes in AD to gain additional insight into the etiopathogenesis of the disease. We systematically screened all studies that explored the association between polymorphisms and AD risks in cases of European and Asian ancestry and synthesized the available evidence through a random-effects meta-analysis. We identified 99 studies that met our inclusion/exclusion criteria that examined 17 candidate loci in Europeans and 14 candidate genes in Asians. We confirmed the significant associations between FLG variants in both European and Asian populations and AD risk, while synthesis of the available data revealed novel loci mapped to IL18 and TGFB1 genes in Europeans and IL12RB1 and MIF in Asians that have not yet been identified by genome-wide association studies. Our findings provide comprehensive evidence for AD risk loci in cases of both European and Asian ancestries, validating previous associations as well as revealing novel loci that could imply previously unexplored biological pathways.
Collapse
Affiliation(s)
- Alexandros Pontikas
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Charalabos Antonatos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, 45110 Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
- Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| |
Collapse
|
3
|
Grafanaki K, Antonatos C, Maniatis A, Petropoulou A, Vryzaki E, Vasilopoulos Y, Georgiou S, Gregoriou S. Intrinsic Effects of Exposome in Atopic Dermatitis: Genomics, Epigenomics and Regulatory Layers. J Clin Med 2023; 12:4000. [PMID: 37373692 DOI: 10.3390/jcm12124000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Atopic dermatitis (AD) or atopic eczema is an increasingly manifested inflammatory skin disorder of complex etiology which is modulated by both extrinsic and intrinsic factors. The exposome includes a person's lifetime exposures and their effects. We recently reviewed the extrinsic exposome's environmental risk factors that contribute to AD. The periods of pregnancy, infancy, and teenage years are recognized as crucial stages in the formation of AD, where the exposome leads to enduring impacts on the immune system. However, research is now focusing on the interactions between intrinsic pathways that are modulated by the extrinsic exposome, including genetic variation, epigenetic modifications, and signals, such as diet, stress, and microbiome interactions. As a result, immune dysregulation, barrier dysfunction, hormonal fluctuations, and skin microbiome dysbiosis are important factors contributing to AD development, and their in-depth understanding is crucial not only for AD treatment but also for similar inflammatory disorders.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Charalabos Antonatos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Alexandros Maniatis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Antonia Petropoulou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Eleftheria Vryzaki
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Sophia Georgiou
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Stamatis Gregoriou
- Department of Dermatology-Venereology, Faculty of Medicine, Andreas Sygros Hospital, National and Kapodistrian University of Athens, 16121 Athens, Greece
| |
Collapse
|