1
|
Nguyen BN, Hong S, Choi S, Lee CG, Yoo G, Kim M. Dexamethasone-induced muscle atrophy and bone loss in six genetically diverse collaborative cross founder strains demonstrates phenotypic variability by Rg3 treatment. J Ginseng Res 2024; 48:310-322. [PMID: 38707648 PMCID: PMC11069000 DOI: 10.1016/j.jgr.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/14/2023] [Accepted: 12/26/2023] [Indexed: 05/07/2024] Open
Abstract
Background Osteosarcopenia is a common condition characterized by the loss of both bone and muscle mass, which can lead to an increased risk of fractures and disability in older adults. The study aimed to elucidate the response of various mouse strains to treatment with Rg3, one of the leading ginsenosides, on musculoskeletal traits and immune function, and their correlation. Methods Six Collaborative Cross (CC) founder strains induced muscle atrophy and bone loss with dexamethasone (15 mg/kg) treatment for 1 month, and half of the mice for each strain were orally administered Rg3 (20 mg/kg). Different responses were observed depending on genetic background and Rg3 treatment. Results Rg3 significantly increased grip strength, running performance, and expression of muscle and bone health-related genes in a two-way analysis of variance considering the genetic backgrounds and Rg3 treatment. Significant improvements in grip strength, running performance, bone area, and muscle mass, and the increased gene expression were observed in specific strains of PWK/PhJ. For traits related to muscle, bone, and immune functions, significant correlations between traits were confirmed following Rg3 administration compared with control mice. The phenotyping analysis was compiled into a public web resource called Rg3-OsteoSarco. Conclusion This highlights the complex interplay between genetic determinants, pathogenesis of muscle atrophy and bone loss, and phytochemical bioactivity and the need to move away from single inbred mouse models to improve their translatability to genetically diverse humans. Rg3-OsteoSarco highlights the use of CC founder strains as a valuable tool in the field of personalized nutrition.
Collapse
Affiliation(s)
- Bao Ngoc Nguyen
- College of Dentistry, Gangneung Wonju National University, Gangneung, Gangwon-do, Republic of Korea
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Republic of Korea
| | - Soyeon Hong
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Republic of Korea
| | - Sowoon Choi
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Republic of Korea
| | - Choong-Gu Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - GyHye Yoo
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Myungsuk Kim
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| |
Collapse
|
2
|
Qin X, Wei J, Wei J, Wei J, Chen J, Lei F, Qin Y. The association between appendicular skeletal muscle index and bone mineral density in children and adolescents with chronic kidney disease: A cross-sectional study. Medicine (Baltimore) 2023; 102:e36613. [PMID: 38115339 PMCID: PMC10727626 DOI: 10.1097/md.0000000000036613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/25/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Chronic kidney disease (CKD), a pervasive public health concern, can lead to complications like sarcopenia and reduced bone mineral density (BMD). However, it is still unclear exactly how muscle mass correlates with BMD in youngsters and adolescents with CKD. We aimed to investigate the association between appendicular skeletal muscle index (ASMI) and BMD among children and adolescents with CKD. In our research, we utilized data from the National Health and Nutrition Examination Survey (NHANES) collected between 2011 and 2014 to investigate the association of ASMI with BMD among this population. The association linking ASMI with total BMD was examined through multivariate linear regression models. Furthermore, fitted smoothing curves were employed, as well as generalized additive models. Our analysis finally included 503 CKD participants aged between 8 and 19 years. We found a significant association linking ASMI with total BMD among children and adolescents with CKD. The connection persisted even after accounting for covariates. Upon subgroup analysis, there was a statistically significant association of ASMI with total BMD for both males and females, as well as for Mexican-American and non-Hispanic White populations. However, no significant association was observed in other Hispanic, non-Hispanic Black, or populations of other races. We discovered a positive correlation linking the ASMI and the total BMD in children and teenagers with CKD. In CKD patients, maintaining skeletal muscle mass may be crucial for managing and preventing renal osteodystrophy.
Collapse
Affiliation(s)
- Xuankai Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiahui Wei
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinshuang Wei
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Junyu Wei
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jie Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fengying Lei
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanhan Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|