1
|
Alfaifi A, Bahashwan S, Alsaadi M, Ageel AH, Ahmed HH, Fatima K, Malhan H, Qadri I, Almehdar H. Advancements in B-Cell Non-Hodgkin's Lymphoma: From Signaling Pathways to Targeted Therapies. Adv Hematol 2024; 2024:5948170. [PMID: 39563886 PMCID: PMC11576080 DOI: 10.1155/2024/5948170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/27/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Lymphoma is the sixth most prevalent cancer globally. Non-Hodgkin's lymphomas are the majority group of lymphomas, with B cells accounting for approximately 95% of these lymphomas. A key feature of B-cell lymphoma is the functional perturbations of essential biological pathways caused by genetic aberrations. These lead to atypical gene expression, providing cells with a selective growth advantage. Molecular analysis reveals that each lymphoma subtype has unique molecular mutations, which pose challenges in disease management and treatment. Substantial efforts over the last decade have led to the integration of this information into clinical applications, resulting in crucial insights into clinical diagnosis and targeted therapies. However, with the growing need for more effective medication development, we anticipate a deeper understanding of signaling pathways and their interactions to emerge. This review aims to demonstrate how the BCR, specific signaling pathways like PI3K/AKT/mTOR, NF-kB, and JAK/STAT are diverse in common types of B-cell lymphoma. Furthermore, it offers a detailed examination of each pathway and a synopsis of the approved or in-development targeted therapies. In conclusion, finding the activated signaling pathways is crucial for developing effective treatment plans to improve the prognosis of patients with relapsed or refractory lymphoma. Trial Registration: ClinicalTrials.gov identifier: NCT02180724, NCT02029443, NCT02477696, NCT03836261, NCT02343120, NCT04440059, NCT01882803, NCT01258998, NCT01742988, NCT02055820, NCT02285062, NCT01855750, NCT03422679, NCT01897571.
Collapse
Affiliation(s)
- Abdullah Alfaifi
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- Fayfa General Hospital, Ministry of Health, Jazan 83581, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Salem Bahashwan
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- Department of Hematology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Alsaadi
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Ali H Ageel
- Eradah Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Hamzah H Ahmed
- Department of Radiologic Sciences, Faculty of Applied Medical Sciences, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Kaneez Fatima
- IQ Institute of Infection and Immunity, Lahore, Punjab, Pakistan
| | - Hafiz Malhan
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Hussein Almehdar
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Nguyen JT, Jessri M, Costa-da-Silva AC, Sharma R, Mays JW, Treister NS. Oral Chronic Graft-Versus-Host Disease: Pathogenesis, Diagnosis, Current Treatment, and Emerging Therapies. Int J Mol Sci 2024; 25:10411. [PMID: 39408739 PMCID: PMC11476840 DOI: 10.3390/ijms251910411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is a multisystem disorder that occurs in recipients of allogeneic hematopoietic (alloHCT) stem cell transplants and is characterized by both inflammatory and fibrotic manifestations. It begins with the recognition of host tissues by the non-self (allogeneic) graft and progresses to tissue inflammation, organ dysfunction and fibrosis throughout the body. Oral cavity manifestations of cGVHD include mucosal features, salivary gland dysfunction and fibrosis. This review synthesizes current knowledge on the pathogenesis, diagnosis and management of oral cGVHD, with a focus on emerging trends and novel therapeutics. Data from various clinical studies and expert consensus are integrated to provide a comprehensive overview.
Collapse
Affiliation(s)
- Joe T. Nguyen
- Nguyen Laboratory, Head and Neck Cancer Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; (A.C.C.-d.-S.); (R.S.); (J.W.M.)
| | - Maryam Jessri
- Metro North Hospital and Health Service, Queensland Health, Brisbane, QLD 4029, Australia;
- Department of Oral Medicine and Pathology, School of Dentistry, The University of Queensland, Herston, QLD 4072, Australia
| | - Ana C. Costa-da-Silva
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; (A.C.C.-d.-S.); (R.S.); (J.W.M.)
| | - Rubina Sharma
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; (A.C.C.-d.-S.); (R.S.); (J.W.M.)
| | - Jacqueline W. Mays
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; (A.C.C.-d.-S.); (R.S.); (J.W.M.)
| | - Nathaniel S. Treister
- Division of Oral Medicine and Dentistry, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02114, USA
| |
Collapse
|
3
|
Mehra S, Nicholls M, Taylor J. The Evolving Role of Bruton's Tyrosine Kinase Inhibitors in B Cell Lymphomas. Int J Mol Sci 2024; 25:7516. [PMID: 39062757 PMCID: PMC11276629 DOI: 10.3390/ijms25147516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Bruton's tyrosine kinase (BTK), a non-receptor tyrosine kinase crucial for B cell development and function, acts downstream of the B cell receptor (BCR) in the BCR pathway. Other kinases involved downstream of the BCR besides BTK such as Syk, Lyn, PI3K, and Mitogen-activated protein (MAP) kinases also play roles in relaying signals from the BCR to provide pro-survival, activation, and proliferation cues. BTK signaling is implicated in various B-cell lymphomas such as mantle cell lymphoma, Waldenström Macroglobulinemia, follicular lymphoma, and diffuse large B cell lymphoma, leading to the development of transformative treatments like ibrutinib, the first-in-class covalent BTK inhibitor, and pirtobrutinib, the first-in-class noncovalent BTK inhibitor. However, kinase-deficient mutations C481F, C481Y, C481R, and L528W in the BTK gene confer resistance to both covalent and non-covalent BTK inhibitors, facilitating B cell survival and lymphomagenesis despite kinase inactivation. Further studies have revealed BTK's non-catalytic scaffolding function, mediating the assembly and activation of proteins including Toll-like receptor 9 (TLR9), vascular cell adhesion protein 1 (VCAM-1), hematopoietic cell kinase (HCK), and integrin-linked kinase (ILK). This non-enzymatic role promotes cell survival and proliferation independently of kinase activity. Understanding BTK's dual roles unveils opportunities for therapeutics targeting its scaffolding function, promising advancements in disrupting lymphomagenesis and refining B cell lymphoma treatments.
Collapse
Affiliation(s)
- Shefali Mehra
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Miah Nicholls
- College of Arts and Sciences, University of Miami, Coral Gables, FL 33146, USA;
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| |
Collapse
|
4
|
Arnold DL, Elliott C, Martin EC, Hyvert Y, Tomic D, Montalban X. Effect of Evobrutinib on Slowly Expanding Lesion Volume in Relapsing Multiple Sclerosis: A Post Hoc Analysis of a Phase 2 Trial. Neurology 2024; 102:e208058. [PMID: 38335474 PMCID: PMC11067693 DOI: 10.1212/wnl.0000000000208058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/19/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Chronic active lesions (CALs) are demyelinated multiple sclerosis (MS) lesions with ongoing microglia/macrophage activity, resulting in irreversible neuronal damage and axonal loss. Evobrutinib is a highly selective, covalent, CNS-penetrant, Bruton tyrosine kinase inhibitor. This post hoc analysis evaluated the effect of evobrutinib on slowly expanding lesion (SEL) volume, an MRI marker of CALs, assessed baseline-week 48 in a phase 2, double-blind, randomized trial (NCT02975349) in relapsing MS (RMS). METHODS In the 48-week, double-blind trial, adult patients received evobrutinib (25 mg once daily [QD], 75 mg QD, or 75 mg twice daily [BID]), placebo (switched to evobrutinib 25 mg QD after week 24), or open-label dimethyl fumarate (DMF) 240 mg BID. SELs were defined as slowly and consistently radially expanding areas of preexisting T2 lesions of ≥10 contiguous voxels (∼30 mm3) over time. SELs were identified by MRI and assessed by the Jacobian determinant of the nonlinear deformation from baseline to week 48. SEL volume analysis, stratified by baseline T2 lesion volume tertiles, was based on week 48/end-of-treatment status (completers/non-completers). Treatment effect was analyzed using the stratified Hodges-Lehmann estimate of shift in distribution and stratified Wilcoxon rank-sum test. Comparisons of evobrutinib and DMF vs placebo/evobrutinib 25 mg QD were made. Subgroup analyses used pooled treatment groups (evobrutinib high dose [75 mg QD/BID] vs low dose [placebo/evobrutinib 25 mg QD]). RESULTS The SEL analysis set included 223 patients (mean [SD] age: 42.4 [10.7] years; 69.3% female; 87.4% relapsing/remitting MS). Mean (SD) SEL volume was 2,099 (2,981.0) mm3 with evobrutinib 75 mg BID vs 2,681 (3,624.2) mm3 with placebo/evobrutinib 25 mg QD. Median number of SELs/patient ranged from 7 to 11 across treatments. SEL volume decreased with increasing evobrutinib dose vs placebo/evobrutinib 25 mg QD, and no difference with DMF vs placebo/evobrutinib 25 mg QD was noted. SEL volume significantly decreased with evobrutinib 75 mg BID vs placebo/evobrutinib 25 mg QD (-474.5 mm3 [-1,098.0 to -3.0], p = 0.047) and vs DMF (-711.6 [-1,290.0 to -149.0], p = 0.011). SEL volume was significantly reduced for evobrutinib high vs low dose within baseline Expanded Disability Status Scale ≥3.5 and longer disease duration (≥8.5 years) subgroups. DISCUSSION Evobrutinib reduced SEL volume in a dose-dependent manner in RMS, with a significant reduction with evobrutinib 75 mg BID. This is evident that evobrutinib affects brain lesions associated with chronic inflammation and tissue loss. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov number: NCT02975349. Submitted to ClinicalTrials.gov on November 29, 2016. First patient enrolled: March 7, 2017. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that evobrutinib reduces the volume of SELs assessed on MRI comparing baseline with week 48, in patients with RMS.
Collapse
Affiliation(s)
- Douglas L Arnold
- From the Montreal Neurological Institute (D.L.A.), McGill University; NeuroRx Research (D.L.A., C.E.), Montreal, Quebec, Canada; EMD Serono (E.C.M.), Billerica, MA; The Healthcare Business of Merck KGaA (Y.H.); Ares Trading SA (D.T.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany; and Centre d'Esclerosi Múltiple de Catalunya (Cemcat) (X.M.), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Colm Elliott
- From the Montreal Neurological Institute (D.L.A.), McGill University; NeuroRx Research (D.L.A., C.E.), Montreal, Quebec, Canada; EMD Serono (E.C.M.), Billerica, MA; The Healthcare Business of Merck KGaA (Y.H.); Ares Trading SA (D.T.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany; and Centre d'Esclerosi Múltiple de Catalunya (Cemcat) (X.M.), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Emily C Martin
- From the Montreal Neurological Institute (D.L.A.), McGill University; NeuroRx Research (D.L.A., C.E.), Montreal, Quebec, Canada; EMD Serono (E.C.M.), Billerica, MA; The Healthcare Business of Merck KGaA (Y.H.); Ares Trading SA (D.T.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany; and Centre d'Esclerosi Múltiple de Catalunya (Cemcat) (X.M.), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Yann Hyvert
- From the Montreal Neurological Institute (D.L.A.), McGill University; NeuroRx Research (D.L.A., C.E.), Montreal, Quebec, Canada; EMD Serono (E.C.M.), Billerica, MA; The Healthcare Business of Merck KGaA (Y.H.); Ares Trading SA (D.T.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany; and Centre d'Esclerosi Múltiple de Catalunya (Cemcat) (X.M.), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Davorka Tomic
- From the Montreal Neurological Institute (D.L.A.), McGill University; NeuroRx Research (D.L.A., C.E.), Montreal, Quebec, Canada; EMD Serono (E.C.M.), Billerica, MA; The Healthcare Business of Merck KGaA (Y.H.); Ares Trading SA (D.T.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany; and Centre d'Esclerosi Múltiple de Catalunya (Cemcat) (X.M.), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Xavier Montalban
- From the Montreal Neurological Institute (D.L.A.), McGill University; NeuroRx Research (D.L.A., C.E.), Montreal, Quebec, Canada; EMD Serono (E.C.M.), Billerica, MA; The Healthcare Business of Merck KGaA (Y.H.); Ares Trading SA (D.T.), Eysins, Switzerland, an affiliate of Merck KGaA, Darmstadt, Germany; and Centre d'Esclerosi Múltiple de Catalunya (Cemcat) (X.M.), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
5
|
Li M, Liu Q. Inflammatory Demyelinating Diseases of the Central Nervous System. ADVANCES IN NEUROBIOLOGY 2024; 41:171-218. [PMID: 39589715 DOI: 10.1007/978-3-031-69188-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Over the past decades, a large number of immunomodulatory or immunosuppressive treatments have been approved to treat central nervous system (CNS) demyelinating disorders such as multiple sclerosis (MS). Owing to the heterogeneity of patients with CNS demyelinating diseases, there is no clinical treatment that can adequately control all disease subtypes. Although significant progress has been made for relapsing-remitting MS, effective management of the progressive phase of MS has not yet been achieved. This is at least in part caused by our incomplete understanding of the mechanisms driving disease progression, despite our increasing knowledge regarding the underlying cellular and molecular mechanisms. Here, we summarized our current knowledge regarding the mechanisms of CNS demyelinating disorders and their animal models to identify open questions and challenges for existing concepts. We also discussed potential strategies for the future design of immune therapies to treat CNS demyelinating disorders.
Collapse
Affiliation(s)
- Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
6
|
Zhang Q, Wen C, Zhao L, Wang Y. A Comprehensive Review of Small-Molecule Inhibitors Targeting Bruton Tyrosine Kinase: Synthetic Approaches and Clinical Applications. Molecules 2023; 28:8037. [PMID: 38138527 PMCID: PMC10746017 DOI: 10.3390/molecules28248037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Bruton tyrosine kinase (BTK) is an essential enzyme in the signaling pathway of the B-cell receptor (BCR) and is vital for the growth and activation of B-cells. Dysfunction of BTK has been linked to different types of B-cell cancers, autoimmune conditions, and inflammatory ailments. Therefore, focusing on BTK has become a hopeful approach in the field of therapeutics. Small-molecule inhibitors of BTK have been developed to selectively inhibit its activity and disrupt B-cell signaling pathways. These inhibitors bind to the active site of BTK and prevent its phosphorylation, leading to the inhibition of downstream signaling cascades. Regulatory authorities have granted approval to treat B-cell malignancies, such as chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), with multiple small-molecule BTK inhibitors. This review offers a comprehensive analysis of the synthesis and clinical application of conventional small-molecule BTK inhibitors at various clinical stages, as well as presents promising prospects for the advancement of new small-molecule BTK inhibitors.
Collapse
Affiliation(s)
- Qi Zhang
- Nanyang Central Hospital, Nanyang 473000, China; (Q.Z.); (C.W.)
| | - Changming Wen
- Nanyang Central Hospital, Nanyang 473000, China; (Q.Z.); (C.W.)
| | - Lijie Zhao
- The Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yatao Wang
- First People’s Hospital of Shangqiu, Shangqiu 476100, China
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| |
Collapse
|
7
|
Liu X, Hu B, Peng N, Chen L, Hu D, Zhang J, Wang L, Xie Z, Niu S, Lu Q, Lu J, Fang Y. Evaluation of Bruton tyrosine kinase inhibitors monotherapy and combination therapy in lymphocytic leukemia. Clin Exp Med 2023; 23:4237-4248. [PMID: 37831432 DOI: 10.1007/s10238-023-01208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
BTKi is an effective treatment in chronic lymphocytic leukemia. However, head-to-head clinical trials between BTKi are rare. To explore evidence-based treatment decisions, we conducted this network meta-analysis. We searched in PubMed, Cochrane Library and Embase and selected articles of BTKi treatment in CLL patients, with English restrictions. Objective response rate (ORR), progression-free survival (PFS) and safety were outcomes. Combination therapy and acalabrutinib monotherapy achieved great ORR (greater than 80%). Combination therapy (AO and IR) also performed terrific PFS (> 80%). Compared with ibrutinib monotherapy, zanubrutinib, acalabrutinib and IR showed no significance in overall survival. Diarrhea, hypertension, cardiac events, neutropenia were common adverse events of BTKi therapy. IR had higher incidence of hypertension (0.38, 95% CI 0.28-0.48), and IU was more likely occurred cardiac events. Zanubrutinib monotherapy had lower incidence of total serious adverse reaction (0.42, 95% confidence interval (95% CI): 0.36-0.47),while ibrutinib monotherapy occurred higher adverse reactions of grade ≥ 3 (0.77, 95% CI 0.72-0.82). Although both BTKi monotherapy and combination therapy showed great efficacy, combination therapy did not display priority. Meanwhile, safety of BTKi combination therapy needs to be fully and comprehensively considered.Registration number: CRD42022378732.
Collapse
Affiliation(s)
- Xiangxing Liu
- Department of Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Yunlong District, Xuzhou, 221004, Jiangsu, China
- Clinical Trial Institution, Peking University People's Hospital, 100044, Beijing, China
| | - Binyi Hu
- Department of Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Yunlong District, Xuzhou, 221004, Jiangsu, China
- Clinical Trial Institution, Peking University People's Hospital, 100044, Beijing, China
| | - Nan Peng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, 100044, Beijing, China
| | - Liming Chen
- Nursing Department, Peking University People's Hospital, 100044, Beijing, China
| | - Dingyuan Hu
- Clinical Trial Institution, Peking University People's Hospital, 100044, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, 100044, Beijing, China
| | - Jiaojiao Zhang
- Department of Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Yunlong District, Xuzhou, 221004, Jiangsu, China
- Clinical Trial Institution, Peking University People's Hospital, 100044, Beijing, China
| | - Lijue Wang
- Clinical Trial Institution, Peking University People's Hospital, 100044, Beijing, China
| | - Zhenwei Xie
- Clinical Trial Institution, Peking University People's Hospital, 100044, Beijing, China
| | - Suping Niu
- Clinical Trial Institution, Scientific Research Department, Peking University People's Hospital, 100044, Beijing, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Yunlong District, Xuzhou, 221004, Jiangsu, China
| | - Jin Lu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, 100044, Beijing, China.
| | - Yi Fang
- Clinical Trial Institution, Peking University People's Hospital, 100044, Beijing, China.
| |
Collapse
|
8
|
Wu J, Li P, Chen X, Liu R, Mu Y, Shen Y, Cheng X, Shu M, Bai Y. Structural optimization of pyrrolopyrimidine BTK inhibitors based on molecular simulation. J Mol Model 2023; 29:367. [PMID: 37950076 DOI: 10.1007/s00894-023-05744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
CONTEXT BTK is a critical regulator involved in the proliferation, differentiation, and apoptosis of B cells. BTK inhibitors can effectively alleviate various diseases such as tumors, leukemia, and asthma. During this study, a range of novel BTK inhibitors were designed using 3D-QSAR, molecular docking, and molecular dynamics (MD) simulation. METHODS We selected 41 pyrrolopyrimidine derivatives as BTK inhibitors to structure a 3D-QSAR model. Comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) were adopted to research the connection between the pharmacological activities and chemical structures of the compounds. The CoMFA model (q2 = 0.519, R2 = 0.971), CoMSIA model (q2 = 0.512, R2 = 0.990), and external validation demonstrated excellent predictive performance and reliability of the 3D-QSAR model. We designed eight novel molecules with higher inhibitory activities according to the three-dimensional equipotential fields and explored the interactions between the compounds and BTK by molecular docking, which showed that the novel molecules had higher binding affinities with BTK than the template molecule 18. Then, the results of molecular docking were further verified by MD simulation, which showed that amino acid residues such as Leu528, Val416, and Met477 played vital parts in the interaction, and the binding free energy analysis showed that the novel molecules had higher stability with BTK. Finally, the ADME/T properties were predicted for all of the novel compounds, and the results showed that the majority of them had favorable pharmacokinetic properties. Therefore, this study provides strong support for the development of novel BTK inhibitors.
Collapse
Affiliation(s)
- Jinping Wu
- Pharmacy Department, Langzhong People's Hospital, Nanchong, China
| | - Peng Li
- Pharmacy Department, Langzhong People's Hospital, Nanchong, China
| | - Xiaodie Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Screening and Activity Evaluation of Targeted Drugs, Chongqing, China
| | - Rong Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Screening and Activity Evaluation of Targeted Drugs, Chongqing, China
| | - Yucheng Mu
- Pharmacy Department, Langzhong People's Hospital, Nanchong, China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Screening and Activity Evaluation of Targeted Drugs, Chongqing, China
| | - Xilan Cheng
- Pharmacy Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mao Shu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Screening and Activity Evaluation of Targeted Drugs, Chongqing, China
| | - Yixiao Bai
- Pharmacy Department, Langzhong People's Hospital, Nanchong, China.
| |
Collapse
|
9
|
Bar-Or A, Cross AH, Cunningham AL, Hyvert Y, Seitzinger A, Gühring H, Drouin EE, Alexandri N, Tomic D, Montalban X. Antibody response to SARS-CoV-2 vaccines in patients with relapsing multiple sclerosis treated with evobrutinib: A Bruton's tyrosine kinase inhibitor. Mult Scler 2023; 29:1471-1481. [PMID: 37626477 PMCID: PMC10580670 DOI: 10.1177/13524585231192460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Evobrutinib is an oral, central nervous system (CNS)-penetrant and highly selective covalent Bruton's tyrosine kinase inhibitor under clinical development for patients with relapsing multiple sclerosis (RMS). OBJECTIVE To investigate the effect of evobrutinib on immune responses in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinated patients with RMS from a Phase II trial (NCT02975349). METHODS A post hoc analysis of patients with RMS who received evobrutinib 75 mg twice daily and SARS-CoV-2 vaccines during the open-label extension (n = 45) was conducted. Immunoglobulin (Ig)G anti-S1/S2-specific SARS-CoV-2 antibodies were measured using an indirect chemiluminescence immunoassay. RESULTS In the vaccinated subgroup, mean/minimum evobrutinib exposure pre-vaccination was 105.2/88.7 weeks. In total, 43 of 45 patients developed/increased S1/S2 IgG antibody levels post-vaccination; one patient's antibody response remained negative post-vaccination and the other had antibody levels above the upper limit of detection, both pre- and post-vaccination. Most patients (n = 36/45), regardless of pre-vaccination serostatus, had a 10-100-fold increase of antibody levels pre- to post-vaccination. Antibody levels post-booster were higher versus post-vaccination. CONCLUSION These results suggest evobrutinib, an investigational drug with therapeutic potential for patients with RMS, acts as an immunomodulator, that is, it inhibits aberrant immune cell responses in patients with RMS, while responsiveness to foreign de novo and recall antigens is maintained.
Collapse
Affiliation(s)
- Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anne H Cross
- Department of Neurology, Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | | | | | | | - Elise E Drouin
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA, an affiliate of Merck KGaA
| | | | - Davorka Tomic
- Ares Trading SA, Eysins, Switzerland, an affiliate of Merck KGaA
| | - Xavier Montalban
- Department of Neurology-Neuroimmunology, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d’Hebron, Barcelona, Spain
| |
Collapse
|
10
|
Wang L, Zhang Z, Yu D, Yang L, Li L, He Y, Shi J. Recent research of BTK inhibitors: Methods of structural design, pharmacological activities, manmade derivatives and structure-activity relationship. Bioorg Chem 2023; 138:106577. [PMID: 37178649 DOI: 10.1016/j.bioorg.2023.106577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Protein kinases constitute the largest group within the kinase family, and mutations and translocations of protein kinases due to genetic alterations are intimately linked to the pathogenesis of numerous diseases. Bruton's tyrosine kinase (BTK) is a member of the protein kinases and plays a pivotal role in the development and function of B cells. BTK belongs to the tyrosine TEC family. The aberrant activation of BTK is closely associated with the pathogenesis of B-cell lymphoma. Consequently, BTK has always been a critical target for treating hematological malignancies. To date, two generations of small-molecule covalent irreversible BTK inhibitors have been employed to treat malignant B-cell tumors, and have exhibited clinical efficacy in hitherto refractory diseases. However, these drugs are covalent BTK inhibitors, which inevitably lead to drug resistance after prolonged use, resulting in poor tolerance in patients. The third-generation non-covalent BTK inhibitor Pirtobrutinib has obtained approval for marketing in the United States, thereby circumventing drug resistance caused by C481 mutation. Currently, enhancing safety and tolerance constitutes the primary issue in developing novel BTK inhibitors. This article systematically summarizes recently discovered covalent and non-covalent BTK inhibitors and classifies them according to their structures. This article also provides a detailed discussion of binding modes, structural features, pharmacological activities, advantages and limitations of typical compounds within each structure type, providing valuable references and insights for developing safer, more effective and more targeted BTK inhibitors in future studies.
Collapse
Affiliation(s)
- Lin Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhengjie Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Liuqing Yang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ling Li
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan 610039, China.
| | - Yuxin He
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
11
|
Bakirtzis C, Boziki MK, Grigoriadis N. Prevention, Intervention and Care of Neurodegenerative Diseases. Healthcare (Basel) 2023; 11:2349. [PMID: 37628546 PMCID: PMC10454199 DOI: 10.3390/healthcare11162349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic neurodegenerative diseases encompass a wide spectrum of disorders and affect millions of people worldwide [...].
Collapse
Affiliation(s)
- Christos Bakirtzis
- Second Department of Neurology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.-K.B.); (N.G.)
| | | | | |
Collapse
|
12
|
Athanassiou P, Athanassiou L. Current Treatment Approach, Emerging Therapies and New Horizons in Systemic Lupus Erythematosus. Life (Basel) 2023; 13:1496. [PMID: 37511872 PMCID: PMC10381582 DOI: 10.3390/life13071496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Systemic lupus erythematosus (SLE), the prototype of systemic autoimmune diseases is characterized by extreme heterogeneity with a variable clinical course. Renal involvement may be observed and affects the outcome. Hydroxychloroquine should be administered to every lupus patient irrespective of organ involvement. Conventional immunosuppressive therapy includes corticosteroids, methotrexate, cyclophosphamide, mycophenolate mofetil, azathioprine, cyclosporine and tacrolimus. However, despite conventional immunosuppressive treatment, flares occur and broad immunosuppression is accompanied by multiple side effects. Flare occurrence, target organ involvement, side effects of broad immunosuppression and increased knowledge of the pathogenetic mechanisms involved in SLE pathogenesis as well as the availability of biologic agents has led to the application of biologic agents in SLE management. Biologic agents targeting various pathogenetic paths have been applied. B cell targeting agents have been used successfully. Belimumab, a B cell targeting agent, has been approved for the treatment of SLE. Rituximab, an anti-CD20 targeting agent is also used in SLE. Anifrolumab, an interferon I receptor-targeting agent has beneficial effects on SLE. In conclusion, biologic treatment is applied in SLE and should be further evaluated with the aim of a good treatment response and a significant improvement in quality of life.
Collapse
Affiliation(s)
| | - Lambros Athanassiou
- Department of Rheumatology, Asclepeion Hospital, Voula, GR16673 Athens, Greece
| |
Collapse
|
13
|
Han X, Sun Y. PROTACs: A novel strategy for cancer drug discovery and development. MedComm (Beijing) 2023; 4:e290. [PMID: 37261210 PMCID: PMC10227178 DOI: 10.1002/mco2.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Proteolysis targeting chimera (PROTAC) technology has become a powerful strategy in drug discovery, especially for undruggable targets/proteins. A typical PROTAC degrader consists of three components: a small molecule that binds to a target protein, an E3 ligase ligand (consisting of an E3 ligase and its small molecule recruiter), and a chemical linker that hooks first two components together. In the past 20 years, we have witnessed advancement of multiple PROTAC degraders into the clinical trials for anticancer therapies. However, one of the major challenges of PROTAC technology is that only very limited number of E3 ligase recruiters are currently available as E3 ligand for targeted protein degradation (TPD), although human genome encodes more than 600 E3 ligases. Thus, there is an urgent need to identify additional effective E3 ligase recruiters for TPD applications. In this review, we summarized the existing RING-type E3 ubiquitin ligase and their small molecule recruiters that act as effective E3 ligands of PROTAC degraders and their application in anticancer drug discovery. We believe that this review could serve as a reference in future development of efficient E3 ligands of PROTAC technology for cancer drug discovery and development.
Collapse
Affiliation(s)
- Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
- Research Center for Life Science and Human HealthBinjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
14
|
Alsibaee AM, Aljohar HI, Attwa MW, Abdelhameed AS, Kadi AA. Investigation of Fenebrutinib Metabolism and Bioactivation Using MS 3 Methodology in Ion Trap LC/MS. Molecules 2023; 28:molecules28104225. [PMID: 37241965 DOI: 10.3390/molecules28104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Fenebrutinib is an orally available Bruton tyrosine kinase inhibitor. It is currently in multiple phase III clinical trials for the management of B-cell tumors and autoimmune disorders. Elementary in-silico studies were first performed to predict susceptible sites of metabolism and structural alerts for toxicities by StarDrop WhichP450™ module and DEREK software; respectively. Fenebrutinib metabolites and adducts were characterized in-vitro in rat liver microsomes (RLM) using MS3 method in Ion Trap LC-MS/MS. Formation of reactive and unstable intermediates was explored using potassium cyanide (KCN), glutathione (GSH) and methoxylamine as trapping nucleophiles to capture the transient and unstable iminium, 6-iminopyridin-3(6H)-one and aldehyde intermediates, respectively, to generate a stable adducts that can be investigated and analyzed using mass spectrometry. Ten phase I metabolites, four cyanide adducts, five GSH adducts and six methoxylamine adducts of fenebrutinib were identified. The proposed metabolic reactions involved in formation of these metabolites are hydroxylation, oxidation of primary alcohol to aldehyde, n-oxidation, and n-dealkylation. The mechanism of reactive intermediate formation of fenebrutinib can provide a justification of the cause of its adverse effects. Formation of iminium, iminoquinone and aldehyde intermediates of fenebrutinib was characterized. N-dealkylation followed by hydroxylation of the piperazine ring is proposed to cause the bioactivation to iminium intermediates captured by cyanide. Oxidation of the hydroxymethyl group on the pyridine moiety is proposed to cause the generation of reactive aldehyde intermediates captures by methoxylamine. N-dealkylation and hydroxylation of the pyridine ring is proposed to cause formation of iminoquinone reactive intermediates captured by glutathione. FBB and several phase I metabolites are bioactivated to fifteen reactive intermediates which might be the cause of adverse effects. In the future, drug discovery experiments utilizing this information could be performed, permitting the synthesis of new drugs with better safety profile. Overall, in silico software and in vitro metabolic incubation experiments were able to characterize the FBB metabolites and reactive intermediates using the multistep fragmentation capability of ion trap mass spectrometry.
Collapse
Affiliation(s)
- Aishah M Alsibaee
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haya I Aljohar
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Rozkiewicz D, Hermanowicz JM, Kwiatkowska I, Krupa A, Pawlak D. Bruton's Tyrosine Kinase Inhibitors (BTKIs): Review of Preclinical Studies and Evaluation of Clinical Trials. Molecules 2023; 28:2400. [PMID: 36903645 PMCID: PMC10005125 DOI: 10.3390/molecules28052400] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
In the last few decades, there has been a growing interest in Bruton's tyrosine kinase (BTK) and the compounds that target it. BTK is a downstream mediator of the B-cell receptor (BCR) signaling pathway and affects B-cell proliferation and differentiation. Evidence demonstrating the expression of BTK on the majority of hematological cells has led to the hypothesis that BTK inhibitors (BTKIs) such as ibrutinib can be an effective treatment for leukemias and lymphomas. However, a growing body of experimental and clinical data has demonstrated the significance of BTK, not just in B-cell malignancies, but also in solid tumors, such as breast, ovarian, colorectal, and prostate cancers. In addition, enhanced BTK activity is correlated with autoimmune disease. This gave rise to the hypothesis that BTK inhibitors can be beneficial in the therapy of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), Sjögren's syndrome (SS), allergies, and asthma. In this review article, we summarize the most recent findings regarding this kinase as well as the most advanced BTK inhibitors that have been developed to date and their clinical applications mainly in cancer and chronic inflammatory disease patients.
Collapse
Affiliation(s)
- Dariusz Rozkiewicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Anna Krupa
- Department of Internal Medicine and Metabolic, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| |
Collapse
|