1
|
Cheng X, Hu D, Wang C, Lu T, Ning Z, Li K, Ren Z, Huang Y, Zhou L, Chung SK, Liu Z, Xia Z, Meng W, Tang G, Sun J, Guo J. Plasma Inflammation Markers Linked to Complications and Outcomes after Spontaneous Intracerebral Hemorrhage. J Proteome Res 2024; 23:4369-4383. [PMID: 39225497 DOI: 10.1021/acs.jproteome.4c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Intracerebral hemorrhage (ICH) could trigger inflammatory responses. However, the specific role of inflammatory proteins in the pathological mechanism, complications, and prognosis of ICH remains unclear. In this study, we investigated the expression of 92 plasma inflammation-related proteins in patients with ICH (n = 55) and healthy controls (n = 20) using an Olink inflammation panel and discussed the relation to the severity of stroke, clinical complications, 30-day mortality, and 90-day outcomes. Our result showed that six proteins were upregulated in ICH patients compared with healthy controls, while seventy-four proteins were downregulated. In patients with ICH, seven proteins were increased in the severe stroke group compared with the moderate stroke group. In terms of complications, two proteins were downregulated in patients with pneumonia, while nine proteins were upregulated in patients with sepsis. Compared with the survival group, three proteins were upregulated, and one protein was downregulated in the death group. Compared with the good outcome group, eight proteins were upregulated, and four proteins were downregulated in the poor outcome group. In summary, an in-depth exploration of the differential inflammatory factors in the early stages of ICH could deepen our understanding of the pathogenesis of ICH, predict patient prognosis, and explore new treatment strategies.
Collapse
Affiliation(s)
- Xiao Cheng
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, Guangdong China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510120, Guangdong China
- Chinese Medicine Guangdong Laboratory, Hengqin 519000, Guangdong China
| | - Dafeng Hu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - Chengyi Wang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - Ting Lu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - Zhenqiu Ning
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - Kunhong Li
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - Zhixuan Ren
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - Yan Huang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, Guangdong China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510120, Guangdong China
- Chinese Medicine Guangdong Laboratory, Hengqin 519000, Guangdong China
| | - Lihua Zhou
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-sen University, Shenzhen 518107, Guangdong China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macao Special Administration Region 999078, China
| | - Zhenchuan Liu
- Department of Neurology, Linyi City People's Hospital, Linyi 276000, Shandong China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng City People's Hospital, Liaocheng 252600, Shandong China
| | - Wei Meng
- Department of Neurology, Panjin City Central Hospital, Panjin 124010, Liaoning China
| | - Guanghai Tang
- Department of Neurology, Shenyang City Second Hospital of Traditional Chinese Medicine, Shenyang 110000, Liaoning China
| | - Jingbo Sun
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, Guangdong China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510120, Guangdong China
- Chinese Medicine Guangdong Laboratory, Hengqin 519000, Guangdong China
| | - Jianwen Guo
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, Guangdong China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510120, Guangdong China
- Chinese Medicine Guangdong Laboratory, Hengqin 519000, Guangdong China
| |
Collapse
|
2
|
deKay JT, Chepurko E, Chepurko V, Knudsen L, Lord C, Searight M, Tsibulnikov S, Robich MP, Sawyer DB, Gagnon DJ, May T, Riker R, Seder DB, Ryzhov S. Delayed CCL23 response is associated with poor outcomes after cardiac arrest. Cytokine 2024; 176:156536. [PMID: 38325139 PMCID: PMC10915974 DOI: 10.1016/j.cyto.2024.156536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/10/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Chemokines, a family of chemotactic cytokines, mediate leukocyte migration to and entrance into inflamed tissue, contributing to the intensity of local inflammation. We performed an analysis of chemokine and immune cell responses to cardiac arrest (CA). Forty-two patients resuscitated from cardiac arrest were analyzed, and twenty-two patients who underwent coronary artery bypass grafting (CABG) surgery were enrolled. Quantitative antibody array, chemokines, and endotoxin quantification were performed using the patients blood. Analysis of CCL23 production in neutrophils obtained from CA patients and injected into immunodeficient mice after CA and cardiopulmonary resuscitation (CPR) were done using flow cytometry. The levels of CCL2, CCL4, and CCL23 are increased in CA patients. Temporal dynamics were different for each chemokine, with early increases in CCL2 and CCL4, followed by a delayed elevation in CCL23 at forty-eight hours after CA. A high level of CCL23 was associated with an increased number of neutrophils, neuron-specific enolase (NSE), worse cerebral performance category (CPC) score, and higher mortality. To investigate the role of neutrophil activation locally in injured brain tissue, we used a mouse model of CA/CPR. CCL23 production was increased in human neutrophils that infiltrated mouse brains compared to those in the peripheral circulation. It is known that an early intense inflammatory response (within hours) is associated with poor outcomes after CA. Our data indicate that late activation of neutrophils in brain tissue may also promote ongoing injury via the production of CCL23 and impair recovery after cardiac arrest.
Collapse
Affiliation(s)
| | | | | | - Lacey Knudsen
- MaineHealth Institue for Research, Scarborough, ME USA
| | - Christine Lord
- Maine Medical Center Department of Critical Care Services, Portland, ME, USA
| | - Meghan Searight
- Maine Medical Center Department of Critical Care Services, Portland, ME, USA
| | | | | | | | - David J Gagnon
- MaineHealth Institue for Research, Scarborough, ME USA; MaineHealth Department of Pharmacy, Portland, ME, USA; Tufts University School of Medicine, Boston, MA, USA
| | - Teresa May
- MaineHealth Institue for Research, Scarborough, ME USA; Maine Medical Center Department of Critical Care Services, Portland, ME, USA
| | - Richard Riker
- MaineHealth Institue for Research, Scarborough, ME USA; Maine Medical Center Department of Critical Care Services, Portland, ME, USA
| | - David B Seder
- MaineHealth Institue for Research, Scarborough, ME USA; Maine Medical Center Department of Critical Care Services, Portland, ME, USA.
| | - Sergey Ryzhov
- MaineHealth Institue for Research, Scarborough, ME USA.
| |
Collapse
|