1
|
Sykopetrites V, Sica E, Moalli R, Cocozza D, Razza S, Cristofari E. Robot-assisted vs. manual cochlear implant electrode array insertion in four children. Eur Arch Otorhinolaryngol 2025:10.1007/s00405-024-09195-7. [PMID: 39825199 DOI: 10.1007/s00405-024-09195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
PURPOSE Evaluate the feasibility and safety of a robotic electrode insertion in pediatric cochlear implantation and compare the results with manually inserted electrodes in the same subject. METHODS Retrospective case series review of four children who underwent bilateral cochlear implantation with the same array: on one side, the array was inserted using the robot, while on the other side the array was inserted manually. Behavioural and electrophysiological measures were compared. RESULTS The duration of surgery when the robot was adopted was significantly longer than when a manual insertion was performed (161.15 ± 27.59 minutes vs. 122.6 ± 37.71 min, paired t-test: p = 0.029). Moreover, robotic electrode insertion was significantly slower (average insertion speed 0.3 mm/second vs. 0.52 ± 0.17 mm/s, paired t-test: p = 0.0055). On radiologic examination, none of the arrays was misplaced. Impedance, both at activation and at one year of cochlear implant use, was significantly lower on the robotic side in monopolar mode compared to the manual side (mean 9.64 ± 2.41kΩ and 9.97 ± 1.39 kΩ vs. 10.43 ± 2.69 kΩ and 10.94 ± 1.11 kΩ, paired t test, p = 0.0251 and p = 0.0061, respectively). Both the threshold stimulation level and the most comfortable loud stimulation level were significantly lower in the robotic inserted ear compared to the manually inserted ear (mean 108.1 ± 5.98 and 169 ± 4.84 vs. 112.1 ± 7.43 and 172.7 ± 6.83, respectively, paired t test p < 0.0001). CONCLUSIONS Although we present a small group of cases, our results show how robot-based array insertion is associated with lower impedance and stimulation levels compared to manually inserted arrays.
Collapse
Affiliation(s)
- Vittoria Sykopetrites
- Department of Audiovestibology, ASST dei Sette Laghi, Via Lazio, 21100, Varese, VA, Italy.
| | - Eleonora Sica
- Department of Audiovestibology, ASST dei Sette Laghi, Via Lazio, 21100, Varese, VA, Italy
| | - Raffaella Moalli
- Department of Audiovestibology, ASST dei Sette Laghi, Via Lazio, 21100, Varese, VA, Italy
| | - Davide Cocozza
- Department of Audiovestibology, ASST dei Sette Laghi, Via Lazio, 21100, Varese, VA, Italy
| | - Sergio Razza
- Department of Audiovestibology, ASST dei Sette Laghi, Via Lazio, 21100, Varese, VA, Italy
| | - Eliana Cristofari
- Department of Audiovestibology, ASST dei Sette Laghi, Via Lazio, 21100, Varese, VA, Italy
| |
Collapse
|
2
|
Radomska K, Mielnik M, Gostyński M, Dzięciołowska-Baran E. Objective evaluation, using computed tomography, of round window access for cochlear implantation. Eur Arch Otorhinolaryngol 2024; 281:6367-6376. [PMID: 39098956 PMCID: PMC11564340 DOI: 10.1007/s00405-024-08873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
OBJECTIVE The aim of this study was to determine optimal radiological parameters for assessment of the round window approach in cochlear implantation surgery. MATERIALS AND METHODS Patients undergoing cochlear implantation at the Department of Otolaryngology in Szczecin, between 2015 and 2022 inclusive, were eligible for the study. Radiological assessments were performed according to eight parameters (seven proposed in the literature) and visibility clinical assessments were made intra-operatively on a scale of 1 to 5 (1 - not visible, 5 - fully visible). Visibility assessments of the round window niche (RWN) and round window membrane (RWM) allowed the difference (RWN minus RWM) to be used as a clinical assessment of the size of the overhang over the round window. RESULTS Computed tomography images of 57 ears from 52 patients were analyzed in terms of round window access. The study group included 26 females and 26 males, ranging in age from 1 year to 80 years, with a median age of 41 years. In clinical assessment, round window visibility was rated as 5, after removal of the bone overhang, in 69% of patients. Cochlear access through the round window was achieved in 39 (68%) cases, extended access through the round window in 13 (23%) cases and cochleostomy was performed in 5 (9%) cases. Statistically significant ordinal correlations with round-window access were found using one parameter from the literature (Chen_Angle) and from our proposal (RWM_prediction). From parameters describing the bone overhang of the round window, positive correlations (using Kendall rank tests) were found using parameters from the literature (Sarafraz_OH and Mehanna_OH). CONCLUSIONS Radiological measurements describing access to the round window which determine the angle based on the anatomy of the posterior wall of the auditory canal and the position of the facial nerve were found to be of the highest value. CLINICAL RELEVANCE STATEMENT In the future, the use of algorithms for computed tomography evaluation and robot-assisted surgery will require parameters for assessing round window access, for surgery planning and choice of electrode. The parameters proposed by various authors are summarized, allowing researchers to assess their usefulness in further clinical practice.
Collapse
Affiliation(s)
- Katarzyna Radomska
- Department of Otolaryngology, Pomeranian University of Medicine, Unii Lubelskiej 1, Szczecin, 71-252, Poland
| | - Michał Mielnik
- Department of Otolaryngology, Pomeranian University of Medicine, Unii Lubelskiej 1, Szczecin, 71-252, Poland.
| | | | | |
Collapse
|
3
|
Koutná S, Kalitová P, Jeřábek J, Slabý K, Kučerová K, Bouček J, Čakrt O. Comparison of postural control and space perception outcomes between robotic and conventional cochlear implantation in adults. Eur Arch Otorhinolaryngol 2024; 281:3839-3843. [PMID: 38825603 DOI: 10.1007/s00405-024-08664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/06/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE The aim of the study is to capture the difference between the groups in direct relation to the type of electrode array insertion during cochlear implantation (CI). The robotic insertion is expected to be a more gently option. As recent studies have shown, there is a difference in perception of visual vertical (SVV) and postural control related to the CI. We assume that there can be differences in postural control and space perception outcomes depending on the type of the surgical method. METHODS In total, 37 (24 females, mean age ± SD was 42.9 ± 13.0) candidates for CI underwent an assessment. In 14 cases, the insertion of the electrode array was performed by a robotic system (RobOtol, Colin, France) and 23 were performed conventionally. In all of these patients, we performed the same examination before the surgery, the first day, and 3 weeks after the surgery. The protocol consists of static posturography and perception of visual vertical. RESULTS The both groups, RobOtol and conventional, responded to the procedure similarly despite the dissimilar electrode insertion. There was no difference between two groups in the dynamic of perception SVV and postural parameters. Patients in both groups were statistically significantly affected by the surgical procedure, SVV deviation appeared in the opposite direction from the implanted ear: 0.90° ± 1.25; - 1.67° ± 3.05 and - 0.19° ± 1.78 PRE and POST surgery (p < 0.001). And this deviation was spontaneously adjusted in FOLLOW-UP after 3 weeks (p < 0.01) in the both groups. We did not find a significant difference in postural parameters between the RobOtol and conventional group, even over time. CONCLUSION Although the robotic system RobOtol allows a substantial reduction in the speed of insertion of the electrode array into the inner ear, our data did not demonstrate a postoperative effect on vestibular functions (SVV and posturography), which have the same character and dynamics as in the group with standard manual insertion. REGISTRATION NUMBER The project is registered on clinicaltrials.gov (registration number: NCT05547113).
Collapse
Affiliation(s)
- Sára Koutná
- Department of Rehabilitation and Sport Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.
| | - Petra Kalitová
- Department of Otorhinolaryngology, Head and Neck Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jaroslav Jeřábek
- Department of Neurology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Kryštof Slabý
- Department of Rehabilitation and Sport Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Klára Kučerová
- Department of Rehabilitation and Sport Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Bouček
- Department of Otorhinolaryngology, Head and Neck Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Ondřej Čakrt
- Department of Rehabilitation and Sport Medicine, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
4
|
Geys M, Sijgers L, Dobrev I, Dalbert A, Röösli C, Pfiffner F, Huber A. ZH-ECochG Bode Plot: A Novel Approach to Visualize Electrocochleographic Data in Cochlear Implant Users. J Clin Med 2024; 13:3470. [PMID: 38929998 PMCID: PMC11205027 DOI: 10.3390/jcm13123470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Various representations exist in the literature to visualize electrocochleography (ECochG) recordings along the basilar membrane (BM). This lack of generalization complicates comparisons within and between cochlear implant (CI) users, as well as between publications. This study synthesized the visual representations available in the literature via a systematic review and provides a novel approach to visualize ECochG data in CI users. Methods: A systematic review was conducted within PubMed and EMBASE to evaluate studies investigating ECochG and CI. Figures that visualized ECochG responses were selected and analyzed. A novel visualization of individual ECochG data, the ZH-ECochG Bode plot (ZH = Zurich), was devised, and the recordings from three CI recipients were used to demonstrate and assess the new framework. Results: Within the database search, 74 articles with a total of 115 figures met the inclusion criteria. Analysis revealed various types of representations using different axes; their advantages were incorporated into the novel visualization framework. The ZH-ECochG Bode plot visualizes the amplitude and phase of the ECochG recordings along the different tonotopic regions and angular insertion depths of the recording sites. The graph includes the pre- and postoperative audiograms to enable a comparison of ECochG responses with the audiometric profile, and allows different measurements to be shown in the same graph. Conclusions: The ZH-ECochG Bode plot provides a generalized visual representation of ECochG data, using well-defined axes. This will facilitate the investigation of the complex ECochG potentials generated along the BM and allows for better comparisons of ECochG recordings within and among CI users and publications. The scripts used to construct the ZH-ECochG Bode plot are provided by the authors.
Collapse
Affiliation(s)
- Marlies Geys
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
5
|
Cepolina F, Razzoli R. Review of robotic surgery platforms and end effectors. J Robot Surg 2024; 18:74. [PMID: 38349595 PMCID: PMC10864559 DOI: 10.1007/s11701-023-01781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/10/2023] [Indexed: 02/15/2024]
Abstract
In the last 50 years, the number of companies producing automated devices for surgical operations has grown extensively. The population started to be more confident about the technology capabilities. The first patents related to surgical robotics are expiring and this knowledge is becoming a common base for the development of future surgical robotics. The review describes some of the most popular companies manufacturing surgical robots. The list of the company does not pretend to be exhaustive but wishes to give an overview of the sector. Due to space constraints, only a limited selction of companies is reported. Most of the companies described are born in America or Europe. Advantages and limitations of each product firm are described. A special focus is given to the end effectors; their shape and dexterity are crucial for the positive outcome of the surgical operations. New robots are developed every year, and existing robots are allowed to perform a wider range of procedures. Robotic technologies improve the abilities of surgeons in the domains of urology, gynecology, neurology, spine surgery, orthopedic reconstruction (knee, shoulder), hair restoration, oral surgery, thoracic surgery, laparoscopic surgery, and endoscopy.
Collapse
Affiliation(s)
- Francesco Cepolina
- DIMEC-PMAR Lab, Instrumental Robot Design Research Group, Department of Machines Mechanics and Design, University of Genova, Via All'Opera Pia 15A, 16145, Genoa, Italy.
| | - Roberto Razzoli
- DIMEC-PMAR Lab, Instrumental Robot Design Research Group, Department of Machines Mechanics and Design, University of Genova, Via All'Opera Pia 15A, 16145, Genoa, Italy
| |
Collapse
|
6
|
Kashani RG, Kocharyan A, Bennion DM, Scheperle RA, Etler C, Oleson J, Dunn CC, Claussen AD, Gantz BJ, Hansen MR. Combining Intraoperative Electrocochleography with Robotics-Assisted Electrode Array Insertion. Otol Neurotol 2024; 45:143-149. [PMID: 38206061 PMCID: PMC10786337 DOI: 10.1097/mao.0000000000004094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
OBJECTIVE To describe the use of robotics-assisted electrode array (EA) insertion combined with intraoperative electrocochleography (ECochG) in hearing preservation cochlear implant surgery. STUDY DESIGN Prospective, single-arm, open-label study. SETTING All procedures and data collection were performed at a single tertiary referral center. PATIENTS Twenty-one postlingually deaf adult subjects meeting Food and Drug Administration indication criteria for cochlear implantation with residual acoustic hearing defined as thresholds no worse than 65 dB at 125, 250, and 500 Hz. INTERVENTION All patients underwent standard-of-care unilateral cochlear implant surgery using a single-use robotics-assisted EA insertion device and concurrent intraoperative ECochG. MAIN OUTCOME MEASURES Postoperative pure-tone average over 125, 250, and 500 Hz measured at initial activation and subsequent intervals up to 1 year afterward. RESULTS Twenty-two EAs were implanted with a single-use robotics-assisted insertion device and simultaneous intraoperative ECochG. Fine control over robotic insertion kinetics could be applied in response to changes in ECochG signal. Patients had stable pure-tone averages after activation with normal impedance and neural telemetry responses. CONCLUSIONS Combining robotics-assisted EA insertion with intraoperative ECochG is a feasible technique when performing hearing preservation implant surgery. This combined approach may provide the surgeon a means to overcome the limitations of manual insertion and respond to cochlear feedback in real-time.
Collapse
Affiliation(s)
- Rustin G. Kashani
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Armine Kocharyan
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Douglas M. Bennion
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Rachel A. Scheperle
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Christine Etler
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Jacob Oleson
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Camille C. Dunn
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Alexander D. Claussen
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Bruce J. Gantz
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Marlan R. Hansen
- Department of Otolaryngology–Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| |
Collapse
|
7
|
Kashani RG, Henslee A, Nelson RF, Hansen MR. Robotic assistance during cochlear implantation: the rationale for consistent, controlled speed of electrode array insertion. Front Neurol 2024; 15:1335994. [PMID: 38318440 PMCID: PMC10839068 DOI: 10.3389/fneur.2024.1335994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Cochlear implants (CI) have revolutionized the treatment of patients with severe to profound sensory hearing loss by providing a method of bypassing normal hearing to directly stimulate the auditory nerve. A further advance in the field has been the introduction of "hearing preservation" surgery, whereby the CI electrode array (EA) is carefully inserted to spare damage to the delicate anatomy and function of the cochlea. Preserving residual function of the inner ear allows patients to receive maximal benefit from the CI and to combine CI electric stimulation with acoustic hearing, offering improved postoperative speech, hearing, and quality of life outcomes. However, under the current paradigm of implant surgery, where EAs are inserted by hand, the cochlea cannot be reliably spared from damage. Robotics-assisted EA insertion is an emerging technology that may overcome fundamental human kinetic limitations that prevent consistency in achieving steady and slow EA insertion. This review begins by describing the relationship between EA insertion speed and generation of intracochlear forces and pressures. The various mechanisms by which these intracochlear forces can damage the cochlea and lead to worsened postoperative outcomes are discussed. The constraints of manual insertion technique are compared to robotics-assisted methods, followed by an overview of the current and future state of robotics-assisted EA insertion.
Collapse
Affiliation(s)
- Rustin G. Kashani
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | | | | | - Marlan R. Hansen
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
8
|
Nadour H, Bozorg Grayeli A, Poisson G, Belharet K. CochleRob: Parallel-Serial Robot to Position a Magnetic Actuator around a Patient's Head for Intracochlear Microrobot Navigation. SENSORS (BASEL, SWITZERLAND) 2023; 23:2973. [PMID: 36991684 PMCID: PMC10054852 DOI: 10.3390/s23062973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Our work introduces a new robotic solution named CochleRob, which is used for the administration of super-paramagnetic antiparticles as drug carriers into the human cochlea for the treatment of hearing loss caused by damaged cochlea. This novel robot architecture presents two key contributions. First, CochleRob has been designed to meet specifications pertaining to ear anatomy, including workspace, degrees of freedom, compactness, rigidity, and accuracy. The first objective was to develop a safer mathod to administer drugs to the cochlea without the need for catheter or CI insertion. Secondly, we aimed at developing and validating the mathemathical models, including forward, inverse, and dynamic models, to support the robot function. Our work provides a promising solution for drug administration into the inner ear.
Collapse
Affiliation(s)
- Housseyne Nadour
- Centre National de la Recherche Scientifique (CNRS), GIPSA-Lab, École Doctorale Électronique, Électrotechnique, Automatique, Traitement du Signal (ED EEATS), 38100 Grenoble, France
| | - Alexis Bozorg Grayeli
- Department of Otolaryngology-Head and Neck Surgery, Dijon University Hospital, 21000 Dijon, France
- CNRS UMR 6306 Le2i Research Laboratory, 21078 Dijon, France
| | - Gérard Poisson
- PRISME EA 4229, Université d’Orléans, 45100 Orléans, France
| | - Karim Belharet
- PRISME EA 4229, JUNIA-HEI, 2 Allée Jean Vaillé, 36000 Châteauroux, France
| |
Collapse
|
9
|
Robotized Cochlear Implantation under Fluoroscopy: A Preliminary Series. J Clin Med 2022; 12:jcm12010211. [PMID: 36615012 PMCID: PMC9820833 DOI: 10.3390/jcm12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
It is known that visual feedback by fluoroscopy can detect electrode array (EA) misrouting within the cochlea while robotized EA-insertion (rob-EAI) permits atraumatic cochlear implantation. We report here our unique experience of both fluoroscopy feedback and rob-EAI in cochlear implant surgery. We retrospectively analyzed a cohort of consecutive patients implanted from November 2021−October 2022 using rob-EAI, with the RobOtol®, to determine the quality of EA-insertion and the additional time required. Twenty-three patients (10 females, 61+/−19 yo) were tentatively implanted using robot assistance, with a rob-EAI speed < 1 mm/s. Only three cases required a successful revised insertion by hand. Under fluoroscopy (n = 11), it was possible to achieve a remote rob-EAI (n = 8), as the surgeon was outside the operative room, behind an anti-radiation screen. No scala translocation occurred. The additional operative time due to robot use was 18+/−7 min with about 4 min more for remote rob-EAI. Basal cochlear turn fibrosis precluded rob-EAI. In conclusion, Rob-EAI can be performed in almost all cases with a low risk of scala translocation, except in the case of partial cochlear obstruction such as fibrosis. Fluoroscopy also permits remote rob-EAI.
Collapse
|