1
|
Bucci M, Rebelos E, Oikonen V, Rinne J, Nummenmaa L, Iozzo P, Nuutila P. Kinetic Modeling of Brain [ 18-F]FDG Positron Emission Tomography Time Activity Curves with Input Function Recovery (IR) Method. Metabolites 2024; 14:114. [PMID: 38393006 PMCID: PMC10890269 DOI: 10.3390/metabo14020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Accurate positron emission tomography (PET) data quantification relies on high-quality input plasma curves, but venous blood sampling may yield poor-quality data, jeopardizing modeling outcomes. In this study, we aimed to recover sub-optimal input functions by using information from the tail (5th-100th min) of curves obtained through the frequent sampling protocol and an input recovery (IR) model trained with reference curves of optimal shape. Initially, we included 170 plasma input curves from eight published studies with clamp [18F]-fluorodeoxyglucose PET exams. Model validation involved 78 brain PET studies for which compartmental model (CM) analysis was feasible (reference (ref) + training sets). Recovered curves were compared with original curves using area under curve (AUC), max peak standardized uptake value (maxSUV). CM parameters (ref + training sets) and fractional uptake rate (FUR) (all sets) were computed. Original and recovered curves from the ref set had comparable AUC (d = 0.02, not significant (NS)), maxSUV (d = 0.05, NS) and comparable brain CM results (NS). Recovered curves from the training set were different from the original according to maxSUV (d = 3) and biologically plausible according to the max theoretical K1 (53//56). Brain CM results were different in the training set (p < 0.05 for all CM parameters and brain regions) but not in the ref set. FUR showed reductions similarly in the recovered curves of the training and test sets compared to the original curves (p < 0.05 for all regions for both sets). The IR method successfully recovered the plasma inputs of poor quality, rescuing cases otherwise excluded from the kinetic modeling results. The validation approach proved useful and can be applied to different tracers and metabolic conditions.
Collapse
Affiliation(s)
- Marco Bucci
- Turku PET Centre, Turku University Hospital, 20521 Turku, Finland
- Turku PET Centre, University of Turku, 20521 Turku, Finland
- Turku PET Centre, Åbo Akademi University, 20521 Turku, Finland
- Theme Inflammation and Aging, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska University, SE-141 84 Stockholm, Sweden
| | - Eleni Rebelos
- Turku PET Centre, University of Turku, 20521 Turku, Finland
| | - Vesa Oikonen
- Turku PET Centre, University of Turku, 20521 Turku, Finland
| | - Juha Rinne
- Turku PET Centre, Turku University Hospital, 20521 Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, 20521 Turku, Finland
- Department of Psychology, University of Turku, 20520 Turku, Finland
| | - Patricia Iozzo
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 56124 Pisa, Italy
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, 20521 Turku, Finland
- Department of Endocrinology, Turku University Hospital, 20521 Turku, Finland
| |
Collapse
|
2
|
Jeong HN, Chang SJ, Kim JR, Choi GW. Similarities and Differences of Interventions to Promote Physical and Psychological Health Between Prefrail and Frail Older Women: A Systematic Review. J Gerontol Nurs 2023; 49:20-28. [PMID: 37768583 DOI: 10.3928/00989134-20230915-05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The current review aimed to explore similarities and differences in the properties of interventions that promote physical and psychological health between prefrail and frail older women. Ten databases were searched for studies published from database inception to May 2023. Two Cochrane tools were used to assess the risk of bias in experimental and quasi-experimental studies. Twenty-three studies were selected, including 11 studies on prefrailty and 12 studies on frailty. Exercise interventions were predominant, but the contents and standards of exercise intensity were inconsistent between prefrail and frail women. For the main outcomes of the interventions, balance ability and biochemical factors were measured more frequently for frail older women than prefrail older women. Psychological health was less measured for prefrail and frail older women compared to physical health. Future research needs to consider balance training, as well as the evaluation of biochemical factors and psychological health among prefrail or frail older women. [Journal of Gerontological Nursing, 49(10), 20-28.].
Collapse
|