1
|
Bulliard Y, Freeborn R, Uyeda MJ, Humes D, Bjordahl R, de Vries D, Roncarolo MG. From promise to practice: CAR T and Treg cell therapies in autoimmunity and other immune-mediated diseases. Front Immunol 2024; 15:1509956. [PMID: 39697333 PMCID: PMC11653210 DOI: 10.3389/fimmu.2024.1509956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Autoimmune diseases, characterized by the immune system's attack on the body's own tissues, affect millions of people worldwide. Current treatments, which primarily rely on broad immunosuppression and symptom management, are often associated with significant adverse effects and necessitate lifelong therapy. This review explores the next generation of therapies for immune-mediated diseases, including chimeric antigen receptor (CAR) T cell and regulatory T cell (Treg)-based approaches, which offer the prospect of targeted, durable disease remission. Notably, we highlight the emergence of CD19-targeted CAR T cell therapies, and their ability to drive sustained remission in B cell-mediated autoimmune diseases, suggesting a possible paradigm shift. Further, we discuss the therapeutic potential of Type 1 and FOXP3+ Treg and CAR-Treg cells, which aim to achieve localized immune modulation by targeting their activity to specific tissues or cell types, thereby minimizing the risk of generalized immunosuppression. By examining the latest advances in this rapidly evolving field, we underscore the potential of these innovative cell therapies to address the unmet need for long-term remission and potential tolerance induction in individuals with autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Yannick Bulliard
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Robert Freeborn
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Molly Javier Uyeda
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Daryl Humes
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Ryan Bjordahl
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - David de Vries
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Maria Grazia Roncarolo
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
2
|
Liu H, Cui D, Huangfu S, Wang X, Yu X, Yang H, Zheng X, Li Y, Bi J, Zhang L, Wang P. VCAM-1 + Mesenchymal Stem/Stromal Cells Reveal Preferable Efficacy Upon an Experimental Autoimmune Encephalomyelitis Mouse Model of Multiple Sclerosis Over the VCAM-1 - Counterpart. Neurochem Res 2024; 50:40. [PMID: 39613932 DOI: 10.1007/s11064-024-04267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/07/2024] [Accepted: 09/24/2024] [Indexed: 12/01/2024]
Abstract
Despite the considerable progress in mesenchymal stem/stromal cells (MSCs)-based novel intervention of multiple sclerosis (MS), yet the disease-modifying effect of VCAM-1- MSCs and novel VCAM-1+ counterpart is largely obscure. In this study, we took advantage of the EAE mouse model and VCAM-1+ human umbilical cord-derived MSCs (hUC-MSCs) for the evaluation of the therapeutic effect of systematic MSCs infusion. On the one hand, we compared the protective effect of VCAM-1- and VCAM-1+ hUC-MSCs against the clinical symptoms, demyelination, active glia cells and neuroinflammation in EAE mice by conducting multifaceted detections upon spinal cord and brain tissues. On the other hand, we conducted RNA-sequencing (RNA-SEQ) and multidimensional bioinformatics analyses for the evaluation of the transcriptomic features of spinal cord tissue in EAE mice after systematic hUC-MSCs infusion. Compared to those with VCAM-1- hUC-MSCs injection, VCAM-1+ mice showed further remission in clinical manifestations, and in particular, the inflammatory infiltration and active glial cells. Mice in all groups revealed conservations in overall gene expression profiling and somatic mutation spectrum. The differentially expressed genes (DEGs) between EAE mice and those with hUC-MSCs infusion were mainly involved in neuroinflammation and inflammatory response. Our findings indicated the feasibility of VCAM-1+ hUC-MSCs for multiple sclerosis treatment, which would supply new references for the development of novel VCAM-1+ MSCs-based cytotherapy in future.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Neurology, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, China
- Department of Neurology, Weihai Municipal Hospital, Weihai, China
| | - Dongqing Cui
- Department of Neurology, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, China
| | - Shasha Huangfu
- Department of Neurology, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, China
| | - Xiaojun Wang
- Universal Biomedical Research Institute, Zibo, China
| | - Xiao Yu
- Department of Neurology, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, China
| | - Hui Yang
- Department of Neurology, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, China
| | - Xiaolei Zheng
- Department of Neurology, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, China
| | - Yan Li
- Universal Biomedical Research Institute, Zibo, China
| | - Jianzhong Bi
- Department of Neurology, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, China
| | - Leisheng Zhang
- Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Blood Ecology and Biointelligence, Jinan Key Laboratory of Medical Cell Bioengineering, The Fourth People's Hospital of Jinan, The Teaching Hospital of Shandong First Medical University, 50 Shifan Road, Jinan, China.
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, 204 Donggang West Road, Lanzhou, China.
| | - Ping Wang
- Department of Neurology, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, China.
| |
Collapse
|
3
|
Olejnik P, Roszkowska Z, Adamus S, Kasarełło K. Multiple sclerosis: a narrative overview of current pharmacotherapies and emerging treatment prospects. Pharmacol Rep 2024; 76:926-943. [PMID: 39177889 PMCID: PMC11387431 DOI: 10.1007/s43440-024-00642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by pathological processes of demyelination, subsequent axonal loss, and neurodegeneration within the central nervous system. Despite the availability of numerous disease-modifying therapies that effectively manage this condition, there is an emerging need to identify novel therapeutic targets, particularly for progressive forms of MS. Based on contemporary insights into disease pathophysiology, ongoing efforts are directed toward developing innovative treatment modalities. Primarily, monoclonal antibodies have been extensively investigated for their efficacy in influencing specific pathological pathways not yet targeted. Emerging approaches emphasizing cellular mechanisms, such as chimeric antigen receptor T cell therapy targeting immunological cells, are attracting increasing interest. The evolving understanding of microglia and the involvement of ferroptotic mechanisms in MS pathogenesis presents further avenues for targeted therapies. Moreover, innovative treatment strategies extend beyond conventional approaches to encompass interventions that target alterations in microbiota composition and dietary modifications. These adjunctive therapies hold promise as complementary methods for the holistic management of MS. This narrative review aims to summarize current therapies and outline potential treatment methods for individuals with MS.
Collapse
Affiliation(s)
- Piotr Olejnik
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Roszkowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Sylwia Adamus
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Kaja Kasarełło
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
4
|
Peng D, Lu R, Lü L, Yao Q, Yang K, Xu Y, Feng X, Pan R, Ma Y. Olig2 + single-colony-derived cranial bone-marrow mesenchymal stem cells achieve improved regeneration in a cuprizone-induced demyelination mouse model. J Zhejiang Univ Sci B 2024; 25:1-7. [PMID: 39327259 DOI: 10.1631/jzus.b2300790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/24/2024] [Indexed: 09/28/2024]
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system. Brain injury and neurodegenerative disease often lead to oligodendrocyte death and subsequent demyelination-related pathological changes, resulting in neurological defects and cognitive impairment (Spaas et al., 2021; Zhang J et al., 2022). Multiple sclerosis (MS) is a major demyelinating disease of the central nervous system. The pathology of MS is characterized by the loss of myelin, oligodendrocytes, and axons in the brain, brain stem, and spinal cord, as well as by white matter lesions (Lassmann et al., 2007). Unfortunately, no definitive cure for MS has been developed. Immunomodulatory and anti-inflammatory drugs are effective in the relapsing-remitting phase of MS because they reduce the frequency of relapses and the formation of inflammatory lesions; however, they do not alter the course of progressive MS and are insufficient to cure chronic neurological dysfunction (Xiao et al., 2015; Zhang et al., 2021). The treatment outcome is even worse for MS patients with primary and secondary progressions. Mesenchymal stem cells (MSCs) are stromal cells that can self-renew and exhibit multilineage differentiation. MSCs are easy to expand in vitro and exhibit low immunogenicity, no tumorigenic risks, and ethical controversies, making them a promising candidate for regenerative medicine (Zhang L et al., 2022; Xu et al., 2023). Many studies have confirmed the neural differentiation potential of MSCs under certain conditions, making them a prime candidate for treating neurodegenerative diseases (Jang et al., 2010; Yan et al., 2013). The present study investigated the effects of cranial bone-marrow mesenchymal stem cells (cBMMSCs) and oligodendrocyte-specific protein 2-positive (Olig2+) single-colony-derived cBMMSC (sc-cBMMSC), isolated in our previous work (Yang et al., 2022), in a central nervous system demyelination mouse model.
Collapse
Affiliation(s)
- Deqing Peng
- Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Ruijie Lu
- Second Clinical Medical College, Wenzhou Medical University, Wenzhou 325035, China
| | - Leyao Lü
- Second Clinical Medical College, Wenzhou Medical University, Wenzhou 325035, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Kaichuang Yang
- Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Yunfeng Xu
- Department of Neurosurgery, the First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing 314001, China
| | - Xiaoming Feng
- Department of Neurosurgery, the First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), Jiaxing 314001, China.
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou 311122, China
| | - Yuyuan Ma
- Center for Rehabilitation Medicine, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China. ,
| |
Collapse
|
5
|
Dadfar S, Yazdanpanah E, Pazoki A, Nemati MH, Eslami M, Haghmorad D, Oksenych V. The Role of Mesenchymal Stem Cells in Modulating Adaptive Immune Responses in Multiple Sclerosis. Cells 2024; 13:1556. [PMID: 39329740 PMCID: PMC11430382 DOI: 10.3390/cells13181556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system, leading to significant disability through neurodegeneration. Despite advances in the understanding of MS pathophysiology, effective treatments remain limited. Mesenchymal stem cells (MSCs) have gained attention as a potential therapeutic option due to their immunomodulatory and regenerative properties. This review examines MS pathogenesis, emphasizing the role of immune cells, particularly T cells, in disease progression, and explores MSCs' therapeutic potential. Although preclinical studies in animal models show MSC efficacy, challenges such as donor variability, culture conditions, migratory capacity, and immunological compatibility hinder widespread clinical adoption. Strategies like genetic modification, optimized delivery methods, and advanced manufacturing are critical to overcoming these obstacles. Further research is needed to validate MSCs' clinical application in MS therapy.
Collapse
Affiliation(s)
- Sepehr Dadfar
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Esmaeil Yazdanpanah
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Alireza Pazoki
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Mohammad Hossein Nemati
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
6
|
Arneth B. Current Knowledge about CD3 +CD20 + T Cells in Patients with Multiple Sclerosis. Int J Mol Sci 2024; 25:8987. [PMID: 39201672 PMCID: PMC11354236 DOI: 10.3390/ijms25168987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system (CNS) characterized by inflammation and autoimmune responses. This review explores the participation of T cells, particularly certain CD3+CD20+ T cells, in the clinical manifestations of MS and highlights their presence in diagnosed patients. These T cells show aberrant expression of CD20, normally considered a B-cell marker. In this review, relevant journal articles available in PubMed and CINAHL were identified by employing diverse search terms, such as MS, CD3+CD20+ T cells, the incidence and significance of CD3+CD20+ T cells in MS patients, and the impact of rituximab treatment. The search was limited to articles published in the ten-year period from 2014 to 2024. The results of this review suggest that most scholars agree on the presence of CD3+CD20+ T cells in cerebrospinal fluid. Emerging concepts relate to the fundamental role of CD20-expressing T cells in determining the target and efficacy of MS therapeutics and the presence of T cells in the cerebrospinal fluid of MS patients. The results clearly show that CD20+ T cells indicate disease chronicity and high disease activity.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany;
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
| |
Collapse
|
7
|
Sempik I, Dziadkowiak E, Moreira H, Zimny A, Pokryszko-Dragan A. Primary Progressive Multiple Sclerosis-A Key to Understanding and Managing Disease Progression. Int J Mol Sci 2024; 25:8751. [PMID: 39201438 PMCID: PMC11354232 DOI: 10.3390/ijms25168751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Primary progressive multiple sclerosis (PPMS), the least frequent type of multiple sclerosis (MS), is characterized by a specific course and clinical symptoms, and it is associated with a poor prognosis. It requires extensive differential diagnosis and often a long-term follow-up before its correct recognition. Despite recent progress in research into and treatment for progressive MS, the diagnosis and management of this type of disease still poses a challenge. Considering the modern concept of progression "smoldering" throughout all the stages of disease, a thorough exploration of PPMS may provide a better insight into mechanisms of progression in MS, with potential clinical implications. The goal of this study was to review the current evidence from investigations of PPMS, including its background, clinical characteristics, potential biomarkers and therapeutic opportunities. Processes underlying CNS damage in PPMS are discussed, including chronic immune-mediated inflammation, neurodegeneration, and remyelination failure. A review of potential clinical, biochemical and radiological biomarkers is presented, which is useful in monitoring and predicting the progression of PPMS. Therapeutic options for PPMS are summarized, with approved therapies, ongoing clinical trials and future directions of investigations. The clinical implications of findings from PPMS research would be associated with reliable assessments of disease outcomes, improvements in individualized therapeutic approaches and, hopefully, novel therapeutic targets, relevant for the management of progression.
Collapse
Affiliation(s)
- Izabela Sempik
- Department of Neurology, Regional Hospital in Legnica, Iwaszkiewicza 5, 59-220 Legnica, Poland;
| | - Edyta Dziadkowiak
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Helena Moreira
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Anna Zimny
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Anna Pokryszko-Dragan
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
8
|
Hamidi SH, Etebar N, Rahimzadegan M, Zali A, Roodsari SR, Niknazar S. Mesenchymal stem cells and their derived exosomes in multiple sclerosis disease: from paper to practice. Mol Cell Biochem 2024; 479:1643-1671. [PMID: 38977625 DOI: 10.1007/s11010-024-05051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative, inflammatory, and demyelinating disease of the central nervous system (CNS). Current medicines are not sufficient to control the inflammation and progressive damage to the CNS that is known in MS. These drawbacks highlight the need for novel treatment options. Cell therapy can now be used to treat complex diseases when conventional therapies are ineffective. Mesenchymal stem cells (MSCs) are a diverse group of multipotential non-hematopoietic stromal cells which have immunomodulatory, neurogenesis, and remyelinating capacity. Their advantageous effects mainly rely on paracrine, cell-cell communication and differentiation properties which introduced them as excellent candidates for MS therapy. Exosomes, as one of the MSCs secretomes, have unique properties that make them highly promising candidates for innovative approach in regenerative medicine. This review discusses the therapeutic potential of MSCs and their derived exosomes as a novel treatment for MS, highlighting the differences between these two approaches.
Collapse
Affiliation(s)
- Seyed Hootan Hamidi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Acharya BM Reddy College of Pharmacy, Rajiv Gandhi University of Health Sciences Bachelor of Pharmacy, Bangalore, India
| | - Negar Etebar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Rahmati Roodsari
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Somayeh Niknazar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Vaheb S, Afshin S, Ghoshouni H, Ghaffary EM, Farzan M, Shaygannejad V, Thapa S, Zabeti A, Mirmosayyeb O. Neurological efficacy and safety of mesenchymal stem cells (MSCs) therapy in people with multiple sclerosis (pwMS): An updated systematic review and meta-analysis. Mult Scler Relat Disord 2024; 87:105681. [PMID: 38838423 DOI: 10.1016/j.msard.2024.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Current therapeutic strategies for multiple sclerosis (MS) aim to suppress the immune response and reduce relapse rates. As alternative treatments, mesenchymal stem cells (MSCs) are being explored. MSCs show promise in repairing nerve tissue and reducing autoimmune responses in people with MS (pwMS). OBJECTIVE This review delves into the literature on the efficacy and safety of MSC therapy for pwMS. METHODS A comprehensive search strategy was employed to identify relevant articles from five databases until January 2024. The inclusion criteria encompassed interventional studies. Efficacy and safety data concerning MSC therapy in relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), and primary progressive MS (PPMS) groups were extracted and analyzed. RESULTS A comprehensive analysis encompassing 30 studies revealed that individuals who underwent intrathecal (IT) protocol-based transplantation of MSCs experienced a noteworthy improvement in their expanded disability status scale (EDSS) compared to the placebo group. Weighted mean difference (WMD) was -0.28; 95 % CI -0.53 to -0.03, I2 = 0 %, p-value = 0.028); however, the intravenous (IV) group did not show significant changes in EDSS scores. The annualized relapse rate (ARR) did not significantly decrease among pwMS (WMD = -0.34; 95 % CI -1.05 to 0.38, I2 = 98 %, p-value = 0.357). Favorable results were observed in magnetic resonance imaging (MRI), with only 19.11 % of pwMS showing contrast-enhanced lesions (CEL) in the short term and no long-term MRI activity. The most common complications in both short-term and long-term follow-ups were infection, back pain, and gastrointestinal symptoms. CONCLUSIONS The study highlights the safety potential of MSC therapy for pwMS. While MRI-based neural regeneration shows significant treatment potential, the effectiveness of MSC therapy remains uncertain due to study limitations and ineffective outcome measures. Further research is needed to establish efficacy and optimize evaluation methods for MSC therapy on pwMS.
Collapse
Affiliation(s)
- Saeed Vaheb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahra Afshin
- Department of Neurology, School of Medicine, Hormozgan University of Medical Sciences, Bandarabbas, Iran
| | - Hamed Ghoshouni
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Moases Ghaffary
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahour Farzan
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sangharsha Thapa
- Jacobs School of Biomedical Sciences, University of Buffalo, Department of Neurology, Buffalo, USA
| | - Aram Zabeti
- University of Cincinnati, Cincinnati, OH, USA
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
10
|
Arneth B. Regulatory T Cells in Multiple Sclerosis Diagnostics-What Do We Know So Far? J Pers Med 2023; 14:29. [PMID: 38248730 PMCID: PMC10821144 DOI: 10.3390/jpm14010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disorder that affects the central nervous system (CNS) through inflammation. MS symptoms become acute if the disease progresses to the relapsing phase. AIM This review aimed to evaluate the role played by regulatory T cells (Tregs) in the pathogenesis of MS. METHODS This review used scholarly journal articles obtained from PubMed, PsycINFO, and CINAHL with different search parameters such as 'regulatory T cells', 'multiple sclerosis', and 'current knowledge'. The process of searching for articles was limited to those that had publication dates falling between 2010 and 2020. RESULTS Tregs play a role in the pathogenesis of MS. This conclusion is supported by animal disease models and environmental factors that can underlie Treg alterations in MS. Despite the knowledge of the role played by Tregs in MS pathogenesis, the specific subsets of Tregs involved in MS development remain incompletely understood. DISCUSSION This review provides an essential link between Tregs and MS activity. Targeting Tregs could be an efficient way to establish new treatment methods for MS management. CONCLUSION MS is a complex condition affecting many people worldwide. Research has shown that Tregs can influence MS development and progression. More investigations are needed to understand how Tregs affect the pathogenesis of MS.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Philipps University Marburg, 35043 Marburg, Germany;
- Institute of Laboratory Medicine and Pathobiochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
- Hospital of the Universities of Giessen and Marburg, 35392 Giessen, Germany
| |
Collapse
|