1
|
Li LM, Carson A, Dams-O'Connor K. Psychiatric sequelae of traumatic brain injury - future directions in research. Nat Rev Neurol 2023; 19:556-571. [PMID: 37591931 DOI: 10.1038/s41582-023-00853-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/19/2023]
Abstract
Despite growing appreciation that traumatic brain injury (TBI) is an important public health burden, our understanding of the psychiatric and behavioural consequences of TBI remains limited. These changes are particularly detrimental to a person's sense of self, their relationships and their participation in the wider community, and they continue to have devastating individual and cumulative effects long after TBI. This Review relates specifically to TBIs that confer objective clinical or biomarker evidence of structural brain injury; symptomatic head injuries without such evidence are outside the scope of this article. Common psychiatric, affective and behavioural sequelae of TBI and their proposed underlying mechanisms are outlined, along with a brief overview of current treatments. Suggestions for how scientists and clinicians can work together in the future to address the chasms in clinical care and knowledge are discussed in depth.
Collapse
Affiliation(s)
- Lucia M Li
- Department of Brain Sciences, Imperial College London, London, UK.
| | - Alan Carson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Kristen Dams-O'Connor
- Brain Injury Research Center, Department of Rehabilitation and Human Performance, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Lai JQ, Shi YC, Lin S, Chen XR. Metabolic disorders on cognitive dysfunction after traumatic brain injury. Trends Endocrinol Metab 2022; 33:451-462. [PMID: 35534336 DOI: 10.1016/j.tem.2022.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 01/10/2023]
Abstract
Cognitive dysfunction is a common adverse consequence of traumatic brain injury (TBI). After brain injury, the brain and other organs trigger a series of complex metabolic changes, including reduced glucose metabolism, enhanced lipid peroxidation, disordered neurotransmitter secretion, and imbalanced trace element synthesis. In recent years, several research and clinical studies have demonstrated that brain metabolism directly or indirectly affects cognitive dysfunction after TBI, but the mechanisms remain unclear. Drugs that improve the symptoms of cognitive dysfunction caused by TBI are under investigation and treatments that target metabolic processes are expected to improve cognitive function in the future. This review explores the impact of metabolic disorders on cognitive dysfunction after TBI and provides new strategies for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Jin-Qing Lai
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Centre of Neurological and Metabolic Research, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-Chuan Shi
- Neuroendocrinology Group, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Centre of Neurological and Metabolic Research, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Neuroendocrinology Group, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, Australia.
| | - Xiang-Rong Chen
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Centre of Neurological and Metabolic Research, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
3
|
Stetter C, Lopez-Caperuchipi S, Hopp-Krämer S, Bieber M, Kleinschnitz C, Sirén AL, Albert-Weißenberger C. Amelioration of Cognitive and Behavioral Deficits after Traumatic Brain Injury in Coagulation Factor XII Deficient Mice. Int J Mol Sci 2021; 22:4855. [PMID: 34063730 PMCID: PMC8124758 DOI: 10.3390/ijms22094855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/01/2021] [Indexed: 11/23/2022] Open
Abstract
Based on recent findings that show that depletion of factor XII (FXII) leads to better posttraumatic neurological recovery, we studied the effect of FXII-deficiency on post-traumatic cognitive and behavioral outcomes in female and male mice. In agreement with our previous findings, neurological deficits on day 7 after weight-drop traumatic brain injury (TBI) were significantly reduced in FXII-/- mice compared to wild type (WT) mice. Also, glycoprotein Ib (GPIb)-positive platelet aggregates were more frequent in brain microvasculature of WT than FXII-/- mice 3 months after TBI. Six weeks after TBI, memory for novel object was significantly reduced in both female and male WT but not in FXII-/- mice compared to sham-operated mice. In the setting of automated home-cage monitoring of socially housed mice in IntelliCages, female WT mice but not FXII-/- mice showed decreased exploration and reacted negatively to reward extinction one month after TBI. Since neuroendocrine stress after TBI might contribute to trauma-induced cognitive dysfunction and negative emotional contrast reactions, we measured peripheral corticosterone levels and the ration of heart, lung, and spleen weight to bodyweight. Three months after TBI, plasma corticosterone levels were significantly suppressed in both female and male WT but not in FXII-/- mice, while the relative heart weight increased in males but not in females of both phenotypes when compared to sham-operated mice. Our results indicate that FXII deficiency is associated with efficient post-traumatic behavioral and neuroendocrine recovery.
Collapse
Affiliation(s)
- Christian Stetter
- Department of Neurosurgery, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (C.S.); (S.L.-C.); (S.H.-K.); (C.A.-W.)
| | - Simon Lopez-Caperuchipi
- Department of Neurosurgery, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (C.S.); (S.L.-C.); (S.H.-K.); (C.A.-W.)
| | - Sarah Hopp-Krämer
- Department of Neurosurgery, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (C.S.); (S.L.-C.); (S.H.-K.); (C.A.-W.)
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (M.B.); (C.K.)
| | - Michael Bieber
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (M.B.); (C.K.)
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (M.B.); (C.K.)
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Hospital of Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (C.S.); (S.L.-C.); (S.H.-K.); (C.A.-W.)
| | - Christiane Albert-Weißenberger
- Department of Neurosurgery, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (C.S.); (S.L.-C.); (S.H.-K.); (C.A.-W.)
- Institute for Physiology, Department for Neurophysiology, Julius-Maximilians-University Würzburg, Röntgenring 9, 97070 Würzburg, Germany
| |
Collapse
|
4
|
Kotb MA, Kamal AM, Al-Malki D, Abd El Fatah AS, Ahmed YM. Cognitive performance in patients with chronic tension-type headache and its relation to neuroendocrine hormones. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-0150-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Abstract
Background
Tension-type headache is the most common headache to be seen in clinical practice. Depression is highly prevalent in chronic tension-type headache (CTTH) patients attending the clinical settings. Cognitive impairment and neuroendocrine dysregulation had been reported in patients with depression and patients with CTTH.
Objective
To assess the cognitive performance and investigate its possible relations to neuroendocrine levels in patients with CTTH.
Subjects and methods
Patients with CTTH, depression, and control subjects were recruited. CTTH was diagnosed according to the International Classification of Headache Disorders. Cognitive performance, depression severity, and pain intensity were assessed by the Montreal Cognitive Assessment Arabic version, Beck’s Depression Inventory, and McGill Pain Questionnaire respectively. Blood samples were collected in the morning within 60 min after waking up from 8:00 to 9:00 a.m. to measure serum levels of basal plasma CRH, ACTH, Cortisol, TSH, FT3, and FT4.
Results
Both patients with CTTH and depression had impaired cognitive performance. Patients with CTTH and patients with depression had altered the hypothalamus-pituitary-adrenal axis, and pituitary-thyroid axis. The hormonal levels significantly correlated with cognitive function in patient groups, especially patients with CTTH.
Conclusion
Patients with CTTH had cognitive dysfunction which could be related to neuroendocrine hormonal dysregulation.
Collapse
|
5
|
McGlennon TW, Buchwald JN, Pories WJ, Yu F, Roberts A, Ahnfeldt EP, Menon R, Buchwald H. Bypassing TBI: Metabolic Surgery and the Link between Obesity and Traumatic Brain Injury-a Review. Obes Surg 2020; 30:4704-4714. [PMID: 33125676 DOI: 10.1007/s11695-020-05065-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Obesity is a common outcome of traumatic brain injury (TBI) that exacerbates principal TBI symptom domains identified as common areas of post-TBI long-term dysfunction. Obesity is also associated with increased risk of later-life dementia and Alzheimer's disease. Patients with obesity and chronic TBI may be more vulnerable to long-term mental abnormalities. This review explores the question of whether weight loss induced by bariatric surgery could delay or perhaps even reverse the progression of mental deterioration. Bariatric surgery, with its induction of weight loss, remission of type 2 diabetes, and other expressions of the metabolic syndrome, improves metabolic efficiency, leads to reversal of brain lesions seen on imaging studies, and improves function. These observations suggest that metabolic/bariatric surgery may be a most effective therapy for TBI.
Collapse
Affiliation(s)
- T W McGlennon
- Statistics Division, McGlennon MotiMetrics, Maiden Rock, WI, USA
| | - J N Buchwald
- Division of Scientific Research Writing, Medwrite, Maiden Rock, WI, USA
| | - Walter J Pories
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Fang Yu
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | | | - Eric P Ahnfeldt
- Uniformed Services University of the Health Sciences, Bethesda, MA, USA
| | - Rukmini Menon
- Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Henry Buchwald
- Surgery and Biomedical Engineering, Owen H. & Sarah Davidson Wangensteen Chair in Experimental Surgery, Emeritus, University of Minnesota Medical School, 420 Delaware Street SE, MMC 195, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Rowe RK, Ortiz JB, Thomas TC. Mild and Moderate Traumatic Brain Injury and Repeated Stress Affect Corticosterone in the Rat. Neurotrauma Rep 2020; 1:113-124. [PMID: 34223536 PMCID: PMC8240883 DOI: 10.1089/neur.2020.0019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) survivors suffer from a range of morbidities, including post-traumatic endocrinopathies that can cause physical and mental changes in patients, greatly compromising quality of life. This study tested the hypothesis that mild and moderate diffuse TBI leads to chronic deficiencies in corticosterone (CORT) regulation following repeated exposure to restraint stress over time. Young adult male rats (n = 9–11/group) were subjected to mild or moderate TBI induced by midline fluid percussion injury (mFPI) or control sham surgery. At 6 and 24 h post-injury, both mild and moderate TBI resulted in elevated resting plasma CORT levels compared with uninjured shams. Independent of TBI severity, all rats had lower resting plasma CORT levels at 7, 14, 28, and 54 days post-injury compared with pre-surgery baseline CORT. Circulating levels of CORT were also evaluated under restraint stress and in response to dexamethasone (DEX), a synthetic glucocorticoid. Independent of TBI severity, restraint stress elevated CORT at 30, 60, and 90 min post-stressor initiation at all post-injury time-points. A blunted CORT response to restraint stress was observed with lower CORT levels after restraint at 28 and 54 days compared with 7 days post-injury (DPI), indicative of habituation to the stressor. A high dose of DEX lowered CORT levels at 90 min post-restraint stress initiation compared with low-dose DEX, independent of TBI severity. These results support TBI-induced CORT dysregulation at acute time-points, but additional studies that investigate the onset and progression of endocrinopathies, controlling for habituation to repeated restraint stress, are needed to inform the diagnosis and treatment of such morbidities in TBI survivors.
Collapse
Affiliation(s)
- Rachel K Rowe
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, Arizona, USA.,Department of Child Health, University of Arizona College of Medicine Phoenix, Phoenix, Arizona, USA.,Phoenix Veteran Affairs Health Care System, Phoenix, Arizona, USA
| | - J Bryce Ortiz
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, Arizona, USA.,Department of Child Health, University of Arizona College of Medicine Phoenix, Phoenix, Arizona, USA
| | - Theresa Currier Thomas
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, Arizona, USA.,Department of Child Health, University of Arizona College of Medicine Phoenix, Phoenix, Arizona, USA.,Phoenix Veteran Affairs Health Care System, Phoenix, Arizona, USA
| |
Collapse
|
7
|
Peng J, He F, Qin C, Que Y, Fan R, Qin B. Intraoperative Dexmedetomidine Versus Midazolam in Patients Undergoing Peripheral Surgery With Mild Traumatic Brain Injuries: A Retrospective Cohort Analysis. Dose Response 2020; 18:1559325820916342. [PMID: 32284701 PMCID: PMC7139181 DOI: 10.1177/1559325820916342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/27/2022] Open
Abstract
Background: The intra- and postoperative effects of dexmedetomidine are not completely
consistent and midazolam/fentanyl is most widely used in peripheral
surgeries. The objectives of the study were to evaluate the sedative,
analgesic, hemodynamic, anti-inflammatory, and antioxidant effects of
dexmedetomidine against midazolam in patients undergoing peripheral
surgeries with mild traumatic brain injuries. Methods: Medical records of patients who underwent peripheral surgeries with mild
traumatic brain injury were included in the analysis. Patients received
intraoperative midazolam (MDZ cohort, n = 225) or dexmedetomidine (DEX
cohort, n = 231). Pre-, intra-, and postoperative characteristics of
patients were collected and analyzed. Results: After administration of anesthesia, up to 40 minutes, patients of the MDZ
group had lower modified observer’s assessment of alertness/sedation score
than those of the DEX group (P = .041), but after 40
minutes, patients of the MDZ group had a higher score than those of the DEX
group throughout surgeries (P = 0.048). The DEX group has
less requirements of postoperative morphine/equivalent doses than the MDZ
group (4 ± 1 vs 5 ± 1, P < .0001, q =
18.451). Conclusions: Intraoperative DEX offers better sedation, postoperative analgesia, and
clinical recovery for peripheral surgeries and suppresses inflammatory
response. Level of Evidence: III.
Collapse
Affiliation(s)
- Jing Peng
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Fujuan He
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Chenguang Qin
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yuanyuan Que
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Rui Fan
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Bin Qin
- Department of Oral and Maxillofacial Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| |
Collapse
|
8
|
Neurological Enhancement Effects of Melatonin against Brain Injury-Induced Oxidative Stress, Neuroinflammation, and Neurodegeneration via AMPK/CREB Signaling. Cells 2019. [PMID: 31330909 DOI: 10.3390/cells8070760.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress and energy imbalance strongly correlate in neurodegenerative diseases. Repeated concussion is becoming a serious public health issue with uncontrollable adverse effects in the human population, which involve cognitive dysfunction and even permanent disability. Here, we demonstrate that traumatic brain injury (TBI) evokes oxidative stress, disrupts brain energy homeostasis, and boosts neuroinflammation, which further contributes to neuronal degeneration and cognitive dysfunction in the mouse brain. We also demonstrate that melatonin (an anti-oxidant agent) treatment exerts neuroprotective effects, while overcoming oxidative stress and energy depletion and reducing neuroinflammation and neurodegeneration. Male C57BL/6N mice were used as a model for repetitive mild traumatic brain injury (rmTBI) and were treated with melatonin. Protein expressions were examined via Western blot analysis, immunofluorescence, and ELISA; meanwhile, behavior analysis was performed through a Morris water maze test, and Y-maze and beam-walking tests. We found elevated oxidative stress, depressed phospho-5'AMP-activated protein kinase (p-AMPK) and phospho- CAMP-response element-binding (p-CREB) levels, and elevated p-NF-κB in rmTBI mouse brains, while melatonin treatment significantly regulated p-AMPK, p-CREB, and p-NF-κB in the rmTBI mouse brain. Furthermore, rmTBI mouse brains showed a deregulated mitochondrial system, abnormal amyloidogenic pathway activation, and cognitive functions which were significantly regulated by melatonin treatment in the mice. These findings provide evidence, for the first time, that rmTBI induces brain energy imbalance and reduces neuronal cell survival, and that melatonin treatment overcomes energy depletion and protects against brain damage via the regulation of p-AMPK/p-CREB signaling pathways in the mouse brain.
Collapse
|
9
|
Rehman SU, Ikram M, Ullah N, Alam SI, Park HY, Badshah H, Choe K, Kim MO. Neurological Enhancement Effects of Melatonin against Brain Injury-Induced Oxidative Stress, Neuroinflammation, and Neurodegeneration via AMPK/CREB Signaling. Cells 2019; 8:E760. [PMID: 31330909 PMCID: PMC6678342 DOI: 10.3390/cells8070760] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and energy imbalance strongly correlate in neurodegenerative diseases. Repeated concussion is becoming a serious public health issue with uncontrollable adverse effects in the human population, which involve cognitive dysfunction and even permanent disability. Here, we demonstrate that traumatic brain injury (TBI) evokes oxidative stress, disrupts brain energy homeostasis, and boosts neuroinflammation, which further contributes to neuronal degeneration and cognitive dysfunction in the mouse brain. We also demonstrate that melatonin (an anti-oxidant agent) treatment exerts neuroprotective effects, while overcoming oxidative stress and energy depletion and reducing neuroinflammation and neurodegeneration. Male C57BL/6N mice were used as a model for repetitive mild traumatic brain injury (rmTBI) and were treated with melatonin. Protein expressions were examined via Western blot analysis, immunofluorescence, and ELISA; meanwhile, behavior analysis was performed through a Morris water maze test, and Y-maze and beam-walking tests. We found elevated oxidative stress, depressed phospho-5'AMP-activated protein kinase (p-AMPK) and phospho- CAMP-response element-binding (p-CREB) levels, and elevated p-NF-κB in rmTBI mouse brains, while melatonin treatment significantly regulated p-AMPK, p-CREB, and p-NF-κB in the rmTBI mouse brain. Furthermore, rmTBI mouse brains showed a deregulated mitochondrial system, abnormal amyloidogenic pathway activation, and cognitive functions which were significantly regulated by melatonin treatment in the mice. These findings provide evidence, for the first time, that rmTBI induces brain energy imbalance and reduces neuronal cell survival, and that melatonin treatment overcomes energy depletion and protects against brain damage via the regulation of p-AMPK/p-CREB signaling pathways in the mouse brain.
Collapse
Affiliation(s)
- Shafiq Ur Rehman
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Muhammad Ikram
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Najeeb Ullah
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa 25100, Pakistan
| | - Sayed Ibrar Alam
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hyun Young Park
- Maastricht University Medical Center (MUMC+), School for Mental Health and Neuroscience|Alzheimer Center Limburg, Maastricht 6229ER, The Netherlands
| | - Haroon Badshah
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Kyonghwan Choe
- Maastricht University Medical Center (MUMC+), School for Mental Health and Neuroscience|Alzheimer Center Limburg, Maastricht 6229ER, The Netherlands
| | - Myeong Ok Kim
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
10
|
Tapp ZM, Godbout JP, Kokiko-Cochran ON. A Tilted Axis: Maladaptive Inflammation and HPA Axis Dysfunction Contribute to Consequences of TBI. Front Neurol 2019; 10:345. [PMID: 31068886 PMCID: PMC6491704 DOI: 10.3389/fneur.2019.00345] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Each year approximately 1.7 million people sustain a traumatic brain injury (TBI) in the US alone. Associated with these head injuries is a high prevalence of neuropsychiatric symptoms including irritability, depression, and anxiety. Neuroinflammation, due in part to microglia, can worsen or even cause neuropsychiatric disorders after TBI. For example, mounting evidence demonstrates that microglia become “primed” or hyper-reactive with an exaggerated pro-inflammatory phenotype following multiple immune challenges. Microglial priming occurs after experimental TBI and correlates with the emergence of depressive-like behavior as well as cognitive dysfunction. Critically, immune challenges are various and include illness, aging, and stress. The collective influence of any combination of these immune challenges shapes the neuroimmune environment and the response to TBI. For example, stress reliably induces inflammation and could therefore be a gateway to altered neuropathology and behavioral decline following TBI. Given the increasing incidence of stress-related psychiatric disorders after TBI, the degree in which stress affects outcome is of particular interest. This review aims to highlight the role of the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of stress-immune pathway communication following TBI. We will first describe maladaptive neuroinflammation after TBI and how stress contributes to inflammation through both anti- and pro-inflammatory mechanisms. Clinical and experimental data describing HPA-axis dysfunction and consequences of altered stress responses after TBI will be discussed. Lastly, we will review common stress models used after TBI that could better elucidate the relationship between HPA axis dysfunction and maladaptive inflammation following TBI. Together, the studies described in this review suggest that HPA axis dysfunction after brain injury is prevalent and contributes to the dynamic nature of the neuroinflammatory response to brain injury. Experimental stressors that directly engage the HPA axis represent important areas for future research to better define the role of stress-immune pathways in mediating outcome following TBI.
Collapse
Affiliation(s)
- Zoe M Tapp
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jonathan P Godbout
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
11
|
Wickwire EM, Schnyer DM, Germain A, Williams SG, Lettieri CJ, McKeon AB, Scharf SM, Stocker R, Albrecht J, Badjatia N, Markowitz AJ, Manley GT. Sleep, Sleep Disorders, and Circadian Health following Mild Traumatic Brain Injury in Adults: Review and Research Agenda. J Neurotrauma 2018; 35:2615-2631. [PMID: 29877132 DOI: 10.1089/neu.2017.5243] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A rapidly expanding scientific literature supports the frequent co-occurrence of sleep and circadian disturbances following mild traumatic brain injury (mTBI). Although many questions remain unanswered, the preponderance of evidence suggests that sleep and circadian disorders can result from mTBI. Among those with mTBI, sleep disturbances and clinical sleep and circadian disorders contribute to the morbidity and long-term sequelae across domains of functional outcomes and quality of life. Specifically, along with deterioration of neurocognitive performance, insufficient and disturbed sleep can precede, exacerbate, or perpetuate many of the other common sequelae of mTBI, including depression, post-traumatic stress disorder, and chronic pain. Further, sleep and mTBI share neurophysiologic and neuroanatomic mechanisms that likely bear directly on success of rehabilitation following mTBI. For these reasons, focus on disturbed sleep as a modifiable treatment target has high likelihood of improving outcomes in mTBI. Here, we review relevant literature and present a research agenda to 1) advance understanding of the reciprocal relationships between sleep and circadian factors and mTBI sequelae and 2) advance rapidly the development of sleep-related treatments in this population.
Collapse
Affiliation(s)
- Emerson M Wickwire
- 1 Department of Psychiatry, University of Maryland School of Medicine , Baltimore, Maryland.,2 Sleep Disorders Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - David M Schnyer
- 3 Department of Psychology, University of Texas , Austin, Texas
| | - Anne Germain
- 4 Department of Psychiatry, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Scott G Williams
- 5 Sleep Disorders Center, Department of Medicine, Walter Reed National Military Medical Center , Bethesda, Maryland.,6 Department of Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Christopher J Lettieri
- 5 Sleep Disorders Center, Department of Medicine, Walter Reed National Military Medical Center , Bethesda, Maryland.,6 Department of Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Ashlee B McKeon
- 4 Department of Psychiatry, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Steven M Scharf
- 2 Sleep Disorders Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Ryan Stocker
- 7 University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Jennifer Albrecht
- 8 Department of Epidemiology and Public Health, University of Maryland School of Medicine , Baltimore, Maryland
| | - Neeraj Badjatia
- 9 Department of Neurology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Amy J Markowitz
- 10 UCSF Brain and Spinal Injury Center , San Francisco, California
| | - Geoffrey T Manley
- 11 Department of Neurosurgery, University of California , San Francisco, California
| |
Collapse
|
12
|
Jiang L, Hu M, Lu Y, Cao Y, Chang Y, Dai Z. The protective effects of dexmedetomidine on ischemic brain injury: A meta-analysis. J Clin Anesth 2017. [DOI: 10.1016/j.jclinane.2017.04.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Fox ME, King TZ. Pituitary disorders as a predictor of apathy and executive dysfunction in adult survivors of childhood brain tumors. Pediatr Blood Cancer 2016; 63:2019-25. [PMID: 27463526 DOI: 10.1002/pbc.26144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/23/2016] [Accepted: 06/13/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND The relationship between apathy and endocrine dysfunction, both frequent outcomes of neurological insult, has not yet been investigated in brain tumor survivors. The present study aimed to assess the relationship between pituitary disorders and apathy and other facets of executive function in long-term adult survivors of childhood brain tumors and to differentiate between apathy and depression in this population. PROCEDURE Seventy-six adult survivors of childhood brain tumors at least 5 years past diagnosis participated. An informant completed the Frontal Systems Behavior Scale (FrSBe), and 75 of the 76 participants completed a Structured Clinical Interview for the DSM-IV-TR (SCID). Information on neuroendocrine dysfunction was obtained through medical chart review. RESULTS Clinically significant levels of apathy on the FrSBe were identified in 41% of survivors. Pituitary dysfunction significantly explained 9% of the variance in apathy scores and affected whether an individual presented with clinical levels of apathy. Pituitary dysfunction predicted higher levels of executive dysfunction but did not impact whether a participant reached clinical levels of executive dysfunction. A past major depressive episode (MDE) significantly predicted current apathy but showed no relationship with pituitary disorders. Radiation treatment predicted pituitary dysfunction but not the differences in apathy or executive functions. CONCLUSIONS Apathy and executive dysfunction in survivors of childhood brain tumors are strongly predicted by pituitary dysfunction, and individuals with pituitary dysfunction are more likely to present with clinical levels of apathy as adults. Clinical levels of apathy may present absent of current depression, and pituitary dysfunction impacts apathy uniquely.
Collapse
Affiliation(s)
- Michelle E Fox
- Department of Psychology and the Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Tricia Z King
- Department of Psychology and the Neuroscience Institute, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
14
|
Yang WH, Chen PC, Wang TC, Kuo TY, Cheng CY, Yang YH. Endocrine dysfunction following traumatic brain injury: a 5-year follow-up nationwide-based study. Sci Rep 2016; 6:32987. [PMID: 27608606 PMCID: PMC5017132 DOI: 10.1038/srep32987] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/16/2016] [Indexed: 11/23/2022] Open
Abstract
Post-traumatic endocrine dysfunction is a complication of traumatic brain injury (TBI). However, there is lack of long-term follow-up and large sample size studies. This study included patients suffering from TBI registered in the Health Insurance Database. Endocrine disorders were identified using the ICD codes: 244 (acquired hypothyroidism), 253 (pituitary dysfunction), 255 (disorders of the adrenal glands), 258 (polyglandular dysfunction), and 259 (other endocrine disorders) with at least three outpatient visits within 1 year or one admission diagnosis. Overall, 156,945 insured subjects were included in the final analysis. The 1- and 5-year incidence rates of post-traumatic endocrinopathies were 0.4% and 2%, respectively. The risks of developing a common endocrinopathy (p < 0.001) or pituitary dysfunction (P < 0.001) were significantly higher in patients with a TBI history. Patients with a skull bone fracture had a higher risk of developing pituitary dysfunction at the 1-year follow up (p value < 0.001). At the 5-year follow up, the association between intracranial hemorrhage and pituitary dysfunction (p value: 0.002) was significant. The risk of developing endocrine dysfunction after TBI increased during the entire 5-year follow-up period. Skull bone fracture and intracranial hemorrhage may be associated with short and long-term post-traumatic pituitary dysfunction, respectively.
Collapse
Affiliation(s)
- Wei-Hsun Yang
- Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chia-Yi Center, Taiwan
| | - Pau-Chung Chen
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan.,Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ting-Chung Wang
- Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chia-Yi Center, Taiwan
| | - Ting-Yu Kuo
- Center of Excellence for Chang Gung Research Datalink, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chun-Yu Cheng
- Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chia-Yi Center, Taiwan
| | - Yao-Hsu Yang
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan.,Center of Excellence for Chang Gung Research Datalink, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chia-Yi, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|