1
|
Li W, Chen L, Zhao W, Li Y, Chen Y, Wen T, Liu Z, Huang C, Zhang L, Zhao L. Mutation of YFT3, an isomerase in the isoprenoid biosynthetic pathway, impairs its catalytic activity and carotenoid accumulation in tomato fruit. HORTICULTURE RESEARCH 2024; 11:uhae202. [PMID: 39308791 PMCID: PMC11415240 DOI: 10.1093/hr/uhae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/11/2024] [Indexed: 09/25/2024]
Abstract
Tomato fruit colors are directly associated with their appearance quality and nutritional value. However, tomato fruit color formation is an intricate biological process that remains elusive. In this work we characterized a tomato yellow fruited tomato 3 (yft3, e9292, Solanum lycopersicum) mutant with yellow fruits. By the map-based cloning approach, we identified a transversion mutation (A2117C) in the YFT3 gene encoding a putative isopentenyl diphosphate isomerase (SlIDI1) enzyme, which may function in the isoprenoid biosynthetic pathway by catalyzing conversion between isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). The mutated YFT3 (A2117C) (designated YFT3 allele) and the YFT3 genes did not show expression difference at protein level, and their encoded YFT3 allelic (S126R) and YFT3 proteins were both localized in plastids. However, the transcript levels of eight genes (DXR, DXS, HDR, PSY1, CRTISO, CYCB, CYP97A, and NCED) associated with carotenoid synthesis were upregulated in fruits of both yft3 and YFT3 knockout (YFT3-KO) lines at 35 and 47 days post-anthesis compared with the red-fruit tomato cultivar (M82). In vitro and in vivo biochemical analyses indicated that YFT3 (S126R) possessed much lower enzymatic activities than the YFT3 protein, indicating that the S126R mutation can impair YFT3 activity. Molecular docking analysis showed that the YFT3 allele has higher ability to recruit isopentenyl pyrophosphate (IPP), but abolishes attachment of the Mg2+ cofactor to IPP, suggesting that Ser126 is a critical residue for YTF3 biochemical and physiological functions. As a result, the yft3 mutant tomato line has low carotenoid accumulation and abnormal chromoplast development, which results in yellow ripe fruits. This study provides new insights into molecular mechanisms of tomato fruit color formation and development.
Collapse
Affiliation(s)
- Wenzhen Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lulu Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetland, Yancheng Teachers University, 2 South Xiwang Avenue, Yancheng 224002, China
| | - Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuhang Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Chen
- Youlaigu Science and Technology Innovation Center, 588 West Chenfeng, Yushan town, Agriculture Service Center, Kunshan 215300, China
| | - Tengjian Wen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhengjun Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 2708 South Huaxi Avenue, Guiyang 550025, China
| | - Chao Huang
- Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
2
|
Yu X, Müller WEG, Frank M, Gao Y, Guo Z, Zou K, Proksch P, Liu Z. Caryophyllene-type sesquiterpenes from the endophytic fungus Pestalotiopsis lespedezae through an OSMAC approach. Front Microbiol 2024; 14:1248896. [PMID: 38274753 PMCID: PMC10808731 DOI: 10.3389/fmicb.2023.1248896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Two new caryophyllene-type sesquiterpenes pestalotiopsins U and V (1 and 2) and three known compounds pestalotiopsin B (7), pestaloporinate B (8), and pestalotiopsin C (9) were isolated by the cultivation of the endophytic fungus Pestalotiopsis lespedezae on solid rice medium, while four additional new caryophyllene pestalotiopsins W-Z (3-6) were obtained when 3.5% NaI was added to the fungal culture medium. The structures of the new compounds were determined by HRESIMS and 1D/2D nuclear magnetic resonance data. Compounds 1-9 were tested for cytotoxicity against the mouse lymphoma cell line L5178Y, but only 6 displayed significant activity with an IC50 value of 2.4 μM.
Collapse
Affiliation(s)
- Xiaoqin Yu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Werner E. G. Müller
- Institute of Physiological Chemistry, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Marian Frank
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Ying Gao
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Zhiyong Guo
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Peter Proksch
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Zhen Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
3
|
Dai Z, Wu Y, Xiong Y, Wu J, Wang M, Sun X, Ding X, Yang L, Sun X, Ge G. CYP1A inhibitors: Recent progress, current challenges, and future perspectives. Med Res Rev 2024; 44:169-234. [PMID: 37337403 DOI: 10.1002/med.21982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Mammalian cytochrome P450 1A (CYP1A) are key phase I xenobiotic-metabolizing enzymes that play a distinctive role in metabolic activation or metabolic clearance of a variety of procarcinogens, drugs, and endogenous substances. Human CYP1A subfamily contains two members (hCYP1A1 and hCYP1A2), which are known to catalyze the oxidative activation of some environmental procarcinogens into carcinogenic species. Increasing evidence has demonstrated that CYP1A inhibitor therapies are promising strategies for cancer chemoprevention or overcoming CYP1A-associated drug toxicity and resistance. Herein, we reviewed recent advances in the discovery and characterization of hCYP1A inhibitors, from the discovery approaches to structural features and biomedical applications of hCYP1A inhibitors. The inhibition potentials, inhibition modes, and inhibition constants of all reported hCYP1A inhibitors are comprehensively summarized. Meanwhile, the structural features and structure-activity relationships of different classes of hCYP1A1 and hCYP1A2 inhibitors are analyzed and discussed in depth. Furthermore, the major challenges and future directions for this field are presented and highlighted. Collectively, the information and knowledge presented here will strongly facilitate the researchers to discover and develop more efficacious CYP1A inhibitors for specific purposes, such as chemo-preventive agents or as tool molecules in hCYP1A-related fundamental studies.
Collapse
Affiliation(s)
- Ziru Dai
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Wu
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Xiong
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Min Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, America
| | - Ling Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Su J, Fu C, Wang S, Chen X, Wang R, Shi H, Li J, Wang X. Screening and Activity Evaluation of Novel BCR-ABL/T315I Tyrosine Kinase Inhibitors. Curr Med Chem 2024; 31:2872-2894. [PMID: 37211852 DOI: 10.2174/0929867330666230519105900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Chronic myeloid leukemia (CML) is a kind of malignant tumor formed by the clonal proliferation of bone marrow hematopoietic stem cells. BCR-ABL fusion protein, found in more than 90% of patients, is a vital target for discovering anti- CML drugs. Up to date, imatinib is the first BCR-ABL tyrosine kinase inhibitor (TKI) approved by the FDA for treating CML. However, the drug resistance problems appeared for many reasons, especially the T135I mutation, a "gatekeeper" of BCR-ABL. Currently, there is no long-term effective and low side effect drug in clinical. METHODS This study intends to find novel TKIs targeting BCR-ABL with high inhibitory activity against T315I mutant protein by combining artificial intelligence technology and cell growth curve, cytotoxicity, flow cytometry and Western blot experiments. RESULTS The obtained compound was found to kill leukemia cells, which had good inhibitory efficacy in BaF3/T315I cells. Compound no 4 could induce cell cycle arrest, cause autophagy and apoptosis, and inhibit the phosphorylation of BCR-ABL tyrosine kinase, STAT5 and Crkl proteins. CONCLUSION The results indicated that the screened compound could be used as a lead compound for further research to discover ideal chronic myeloid leukemia therapeutic drugs.
Collapse
MESH Headings
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemistry
- Humans
- Apoptosis/drug effects
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Cell Proliferation/drug effects
- Drug Screening Assays, Antitumor
- Cell Line, Tumor
- Mice
- Animals
- Autophagy/drug effects
- STAT5 Transcription Factor/metabolism
- STAT5 Transcription Factor/antagonists & inhibitors
- Cell Cycle Checkpoints/drug effects
- Tyrosine Kinase Inhibitors
- Adaptor Proteins, Signal Transducing
Collapse
Affiliation(s)
- Jie Su
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| | - Chenggong Fu
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| | - Shuo Wang
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| | - Xuelian Chen
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| | - Runan Wang
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| | - Huaihuai Shi
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| | - Jiazhong Li
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| |
Collapse
|
5
|
Zhao TT, Hu HJ, Gao LX, Zhou YB, Zhu YL, Zhang C, Li J, Wang WL. Exploring the mechanism of the PTP1B inhibitors by molecular dynamics and experimental study. J Mol Graph Model 2023; 125:108585. [PMID: 37544021 DOI: 10.1016/j.jmgm.2023.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) has proven to be an attractive target for the treatment of cancer, diabetes and other diseases. Although many PTP1B inhibitors with various scaffolds have been developed, there is still a lack of PTP1B inhibitor with high specificity and acceptable pharmacological properties. Therefore, it is urgent to develop more methods to explore complex action mode of PTP1B and ligands for designing ideal PTP1B modulators. In this work, we developed a potential molecular dynamics (MD) analytic mode to analyze the mechanism of active compounds 6a and 6e against PTP1B from different perspectives, including the stable ability, interactions and binding site of ligand and protein, the binding energy, relative movement between residues and changes in protein internal interactions. The simulated results demonstrated that compound 6a bound more stably to the active pocket of PTP1B than 6e due to its smaller molecular volume (326 Å3), matched electronegativity, and enhanced the positive correlation motion of residues, especially for WPD loop and P loop. Lastly, compound 6a as a competitive inhibitor for PTP1B was verified by enzyme kinetic assay. This work successfully studied the mechanism of compound 6a against PTP1B from various aspects, enriched the analysis of interaction mode between PTP1B and inhibitors. In summary, we hope that this work could provide more theoretical information for designing and developing more novel and ideal PTP1B inhibitors in the future.
Collapse
Affiliation(s)
- Tian-Tian Zhao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Hao-Jie Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China
| | - Li-Xin Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu-Bo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yun-Long Zhu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China.
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Wen-Long Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China.
| |
Collapse
|
6
|
Wang Z, Sun L, Xu Y, Liang P, Xu K, Huang J. Discovery of novel JAK1 inhibitors through combining machine learning, structure-based pharmacophore modeling and bio-evaluation. J Transl Med 2023; 21:579. [PMID: 37641144 PMCID: PMC10464202 DOI: 10.1186/s12967-023-04443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Janus kinase 1 (JAK1) plays a critical role in most cytokine-mediated inflammatory, autoimmune responses and various cancers via the JAK/STAT signaling pathway. Inhibition of JAK1 is therefore an attractive therapeutic strategy for several diseases. Recently, high-performance machine learning techniques have been increasingly applied in virtual screening to develop new kinase inhibitors. Our study aimed to develop a novel layered virtual screening method based on machine learning (ML) and pharmacophore models to identify the potential JAK1 inhibitors. METHODS Firstly, we constructed a high-quality dataset comprising 3834 JAK1 inhibitors and 12,230 decoys, followed by establishing a series of classification models based on a combination of three molecular descriptors and six ML algorithms. To further screen potential compounds, we constructed several pharmacophore models based on Hiphop and receptor-ligand algorithms. We then used molecular docking to filter the recognized compounds. Finally, the binding stability and enzyme inhibition activity of the identified compounds were assessed by molecular dynamics (MD) simulations and in vitro enzyme activity tests. RESULTS The best performance ML model DNN-ECFP4 and two pharmacophore models Hiphop3 and 6TPF 08 were utilized to screen the ZINC database. A total of 13 potentially active compounds were screened and the MD results demonstrated that all of the above molecules could bind with JAK1 stably in dynamic conditions. Among the shortlisted compounds, the four purchasable compounds demonstrated significant kinase inhibition activity, with Z-10 being the most active (IC50 = 194.9 nM). CONCLUSION The current study provides an efficient and accurate integrated model. The hit compounds were promising candidates for the further development of novel JAK1 inhibitors.
Collapse
Affiliation(s)
- Zixiao Wang
- Department of Pharmacy, Honghui Hospital, Xi' an Jiaotong University, Xi' an, 710054, China.
| | - Lili Sun
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yu Xu
- State Key Laboratory of Natural Medicines,Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery,China Pharmaceutical University, Nanjing, 210009, China
| | - Peida Liang
- Department of Pharmacy, Honghui Hospital, Xi' an Jiaotong University, Xi' an, 710054, China
| | - Kaiyan Xu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jing Huang
- Department of Pharmacy, Honghui Hospital, Xi' an Jiaotong University, Xi' an, 710054, China.
| |
Collapse
|
7
|
Polinário G, Primo LMDG, Rosa MABC, Dett FHM, Barbugli PA, Roque-Borda CA, Pavan FR. Antimicrobial peptides as drugs with double response against Mycobacterium tuberculosis coinfections in lung cancer. Front Microbiol 2023; 14:1183247. [PMID: 37342560 PMCID: PMC10277934 DOI: 10.3389/fmicb.2023.1183247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Tuberculosis and lung cancer are, in many cases, correlated diseases that can be confused because they have similar symptoms. Many meta-analyses have proven that there is a greater chance of developing lung cancer in patients who have active pulmonary tuberculosis. It is, therefore, important to monitor the patient for a long time after recovery and search for combined therapies that can treat both diseases, as well as face the great problem of drug resistance. Peptides are molecules derived from the breakdown of proteins, and the membranolytic class is already being studied. It has been proposed that these molecules destabilize cellular homeostasis, performing a dual antimicrobial and anticancer function and offering several possibilities of adaptation for adequate delivery and action. In this review, we focus on two important reason for the use of multifunctional peptides or peptides, namely the double activity and no harmful effects on humans. We review some of the main antimicrobial and anti-inflammatory bioactive peptides and highlight four that have anti-tuberculosis and anti-cancer activity, which may contribute to obtaining drugs with this dual functionality.
Collapse
Affiliation(s)
- Giulia Polinário
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | | | | | - Paula Aboud Barbugli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Fernando Rogério Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
8
|
Ahlawat P, Phutela K, Bal A, Singh N, Sharma S. Therapeutic potential of human serum albumin nanoparticles encapsulated actinonin in murine model of lung adenocarcinoma. Drug Deliv 2022; 29:2403-2413. [PMID: 35892161 PMCID: PMC9336490 DOI: 10.1080/10717544.2022.2067600] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Non-small cell lung cancer comprises 85% of the global lung cancer cases. Conventional chemotherapeutics possess certain limitations like systemic toxicity and drug resistance that requires the development of new therapeutic agents for successful treatment of lung cancer. Actinonin, a human peptide deformylase inhibitor, has demonstrated anti-cancerous properties in various leukemias and solid cancer types. However, it has limited therapeutic application because of its low bioavailability and systemic toxicity if administered in free form. This limitation can be overcome by using nano-delivery systems that will increase the therapeutic efficacy of actinonin. In the present study, human serum albumin actinonin nanoparticles were prepared using a desolvation technique and folic acid was conjugated to lysine residues of albumin for effective delivery to the lung. The lung adenocarcinoma model was established 24 weeks after intraperitoneal administration of urethane and chemotherapeutic efficacy of free as well as nanoencapsulated actinonin was evaluated. This study demonstrated anti-proliferative potential of folic acid conjugated human serum albumin nanoparticles encapsulating actinonin. The intraperitoneally administered nanoformulation exhibited sustain release profile of actinonin with longer half-life and mean retention time. The reduced dose frequency resulted in therapeutic efficacy comparable to free drug in vivo in terms of 100% survival and reduced tumor burden along with downregulation of epidermal growth factor receptor, folate receptor α and peptide deformylase expression in lung adenocarcinoma mice model. Therefore, actinonin encapsulated albumin nanoparticles-based therapy holds great potential as an alternative strategy to improve its anti-cancerous activity against lung adenocarcinoma.
Collapse
Affiliation(s)
- Priyanca Ahlawat
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanika Phutela
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sadhna Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
9
|
Singh AK, Maurya S, Kumar S. Repurposing FDA-approved anti-diabetic drug to target H. pylori peptidyl deformylase using computer-based drug discovery approach. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2130377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Atul Kumar Singh
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Santosh Maurya
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
10
|
Design of novel quinoline derivatives as antibreast cancer using 3D-QSAR, molecular docking and pharmacokinetic investigation. Anticancer Drugs 2022; 33:789-802. [PMID: 36136985 DOI: 10.1097/cad.0000000000001318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Breast cancer has been one of the most challenging women's cancers and leading cause of mortality for decades. There are several studies being conducted all the time to find a cure for breast cancer. Quinoline derivatives have shown their potential as antitumor agents in breast cancer therapy. In this work, three-dimensional quantitative structure-activity relationships (3D-QSAR) and molecular docking with aromatase enzyme (Protein Data Bank: 3S7S) studies were performed to suggest the current scenario of quinoline derivatives as antitumor agents and to refine the path of these derivatives to discover and develop new drugs against breast cancer. For developing the 3D-QSAR model, comparative molecular similarity indices analysis (CoMSIA) and comparative molecular field analysis (CoMFA) were included. To attain the high level of predictability, the best CoMSIA model was applied. External validation utilizing a test set has been used in order to validate the predictive capabilities of the built model. According to the findings, electrostatic, hydrophobic and hydrogen bond donor, and acceptor fields had a significant impact on antibreast cancer activity. Thus, we generated a variety of novel effective aromatase inhibitors based on prior findings and we predicted their inhibitory activity using the built model. In addition, absorption, distribution, metabolism, elimination and toxicity properties were employed to explore the effectiveness of new drug candidates.
Collapse
|
11
|
Sunder Raj D, Kesavan DK, Kottaisamy CPD, Kumar VP, Hopper W, Sankaran U. Atomic level and structural understanding of natural ligands inhibiting Helicobacter pylori peptide deformylase through ligand and receptor based screening, SIFT, molecular dynamics and DFT - a structural computational approach. J Biomol Struct Dyn 2022; 41:3440-3461. [PMID: 35293845 DOI: 10.1080/07391102.2022.2050946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Helicobacter pylori is a Gram-negative microaerophilic gastric pathogen, responsible for the cause of peptic ulcer around half of the global population. Although several antibiotics and combination therapies have been employed for H. pylori-related gastric ulcer and cancer regiments, identifying potent inhibitors for specific targets of this bacterium will help assessing better treatment periodicity and methods to eradicate H. pylori. Herein, 1,000,000 natural compounds were virtually screened against Helicobacter pylori Peptide deformylase (HpPDF). Pharmacophore hypotheses were created using ligand and receptor-based pharmacophore modeling of GLIDE. Stringent HTVS and IFD docking protocol of GLIDE predicted leads with stable intermolecular bonds and scores. Molecular dynamics simulation of HpPDF was carried out for 100 ns using GROMACS. Hits ZINC00225109 and ZINC44896875 came up with a glide score of -9.967 kcal/mol and -12.114 kcal/mol whereas; reference compound actinonin produced a glide score of -9.730 kcal/mol. Binding energy values of these hits revealed the involvement of significant Van der Waals and Coulomb forces and the deduction of lipophilic forces that portray the deep hydrophobic residues in the S1pocket of H. pylori. The DFT analysis established the electron density-based features of the molecules and observed that the results correlate with intermolecular docking interactions. Analysis of the MD trajectories revealed the crucial residues involved in HpPDF - ligand binding and the conformational changes in the receptor. We have identified and deciphered the crucial features necessary for the potent ligand binding at catalytic site of HpPDF. The resulting ZINC natural compound hits from the study could be further employed for potent drug development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Divya Sunder Raj
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, India
| | | | | | - V Prasanth Kumar
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Waheetha Hopper
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM University, Kattankulathur Campus, Chennai, India
| | | |
Collapse
|
12
|
Metal utilization in genome-reduced bacteria: Do human mycoplasmas rely on iron? Comput Struct Biotechnol J 2021; 19:5752-5761. [PMID: 34765092 PMCID: PMC8566771 DOI: 10.1016/j.csbj.2021.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/04/2022] Open
Abstract
Mycoplasmas are parasitic bacteria with streamlined genomes and complex nutritional requirements. Although iron is vital for almost all organisms, its utilization by mycoplasmas is controversial. Despite its minimalist nature, mycoplasmas can survive and persist within the host, where iron availability is rigorously restricted through nutritional immunity. In this review, we describe the putative iron-enzymes, transporters, and metalloregulators of four relevant human mycoplasmas. This work brings in light critical differences in the mycoplasma-iron interplay. Mycoplasma penetrans, the species with the largest genome (1.36 Mb), shows a more classic repertoire of iron-related proteins, including different enzymes using iron-sulfur clusters as well as iron storage and transport systems. In contrast, the iron requirement is less apparent in the three species with markedly reduced genomes, Mycoplasma genitalium (0.58 Mb), Mycoplasma hominis (0.67 Mb) and Mycoplasma pneumoniae (0.82 Mb), as they exhibit only a few proteins possibly involved in iron homeostasis. The multiple facets of iron metabolism in mycoplasmas illustrate the remarkable evolutive potential of these minimal organisms when facing nutritional immunity and question the dependence of several human-infecting species for iron. Collectively, our data contribute to better understand the unique biology and infective strategies of these successful pathogens.
Collapse
Key Words
- ABC, ATP-binding cassette
- ECF transporter
- ECF, energy-coupling factor
- Fur, ferric uptake regulator
- Hrl, histidine-rich lipoprotein
- Iron homeostasis
- Metal acquisition
- Metalloenzyme
- Mge, Mycoplasma genitalium
- Mho, Mycoplasma hominis
- Mollicutes
- Mpe, Mycoplasma penetrans
- Mpn, Mycoplasma pneumonia
- Mycoplasmas
- PDB, protein data bank
- RNR, ribonucleotide reductase
- XRF, X-ray fluorescence
- ZIP, zinc-iron permease
Collapse
|
13
|
Druchok M, Yarish D, Garkot S, Nikolaienko T, Gurbych O. Ensembling machine learning models to boost molecular affinity prediction. Comput Biol Chem 2021; 93:107529. [PMID: 34192653 DOI: 10.1016/j.compbiolchem.2021.107529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 02/01/2023]
Abstract
This study unites six popular machine learning approaches to enhance the prediction of a molecular binding affinity between receptors (large protein molecules) and ligands (small organic molecules). Here we examine a scheme where affinity of ligands is predicted against a single receptor - human thrombin, thus, the models consider ligand features only. However, the suggested approach can be repurposed for other receptors. The methods include Support Vector Machine, Random Forest, CatBoost, feed-forward neural network, graph neural network, and Bidirectional Encoder Representations from Transformers. The first five methods use input features based on physico-chemical properties of molecules, while the last one is based on textual molecular representations. All approaches do not rely on atomic spatial coordinates, avoiding a potential bias from known structures, and are capable of generalizing for compounds with unknown conformations. Within each of the methods, we have trained two models that solve classification and regression tasks. Then, all models are grouped into a pipeline of two subsequent ensembles. The first ensemble aggregates six classification models which vote whether a ligand binds to a receptor or not. If a ligand is classified as active (i.e., binds), the second ensemble predicts its binding affinity in terms of the inhibition constant Ki.
Collapse
Affiliation(s)
- Maksym Druchok
- SoftServe, Inc., 2d Sadova Str., 79021 Lviv, Ukraine; Institute for Condensed Matter Physics, NAS of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine.
| | | | - Sofiya Garkot
- SoftServe, Inc., 2d Sadova Str., 79021 Lviv, Ukraine; Ukrainian Catholic University, 17 Svientsitskii Str., 79011 Lviv, Ukraine
| | - Tymofii Nikolaienko
- SoftServe, Inc., 2d Sadova Str., 79021 Lviv, Ukraine; Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Str., 01601 Kyiv, Ukraine
| | - Oleksandr Gurbych
- SoftServe, Inc., 2d Sadova Str., 79021 Lviv, Ukraine; Lviv Polytechnic National University, 5 Kniazia Romana Str., 79005 Lviv, Ukraine
| |
Collapse
|
14
|
Huang TT, Wang X, Qiang SJ, Zhao ZN, Wu ZX, Ashby CR, Li JZ, Chen ZS. The Discovery of Novel BCR-ABL Tyrosine Kinase Inhibitors Using a Pharmacophore Modeling and Virtual Screening Approach. Front Cell Dev Biol 2021; 9:649434. [PMID: 33748144 PMCID: PMC7969810 DOI: 10.3389/fcell.2021.649434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
Chronic myelogenous leukemia (CML) typically results from a reciprocal translocation between chromosomes 9 and 22 to produce the bcr-abl oncogene that when translated, yields the p210 BCR-ABL protein in more than 90% of all CML patients. This protein has constitutive tyrosine kinase activity that activates numerous downstream pathways that ultimately produces uncontrolled myeloid proliferation. Although the use of the BCR-ABL tyrosine kinase inhibitors (TKIs), such as imatinib, nilotinib, dasatinib, bosutinib, and ponatinib have increased the overall survival of CML patients, their use is limited by drug resistance and severe adverse effects. Therefore, there is the need to develop novel compounds that can overcome these problems that limit the use of these drugs. Therefore, in this study, we sought to find novel compounds using Hypogen and Hiphip pharmacophore models based on the structures of clinically approved BCR-ABL TKIs. We also used optimal pharmacophore models such as three-dimensional queries to screen the ZINC database to search for potential BCR-ABL inhibitors. The hit compounds were further screened using Lipinski’s rule of five, ADMET and molecular docking, and the efficacy of the hit compounds was evaluated. Our in vitro results indicated that compound ZINC21710815 significantly inhibited the proliferation of K562, BaF3/WT, and BaF3/T315I leukemia cells by inducing cell cycle arrest. The compound ZINC21710815 decreased the expression of p-BCR-ABL, STAT5, and Crkl and produced apoptosis and autophagy. Our results suggest that ZINC21710815 may be a potential BCR-ABL inhibitor that should undergo in vivo evaluation.
Collapse
Affiliation(s)
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Zhen-Nan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhuo-Xun Wu
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Jia-Zhong Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
15
|
Joshi T, Joshi T, Sharma P, Chandra S, Pande V. Molecular docking and molecular dynamics simulation approach to screen natural compounds for inhibition of Xanthomonas oryzae pv. Oryzae by targeting peptide deformylase. J Biomol Struct Dyn 2020; 39:823-840. [PMID: 31965918 DOI: 10.1080/07391102.2020.1719200] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Xanthomonas oryzae pv. Oryzae (Xoo) causes bacterial leaf blight (BLB) of rice which results in a huge loss in production. Many chemicals are used to control BLB disease. However, these chemicals are toxic to the environments, animals and human beings. Thus, there is a demand to discover potential and safe natural pesticides to manage BLB disease successfully. Therefore, we screened a library of phytochemicals of different plants having antibacterial activity by targeting Peptide Deformylase (PDF) of Xoo using in silico techniques. A library of 318 phytochemicals was prepared and subjected to rigid and flexible molecular docking against PDF followed by molecular dynamics simulation and free energy analysis of protein-ligand complexes. The results of virtual screening showed that 14 compounds from different plants have good binding energy as compare to reference molecule (3 R)-2,3-dihydro[1,3] thiazolo [3,2 a]benzimidazol-3-ol) (-7.7 kcal mol-1). Out of 14 hit compounds, eight compounds that were selected based on binding energy were analyzed by Molecular dynamic (MD) simulation. Analysis of MD simulation revealed that eight compounds namely; Bisdemethoxycurcumin, Rosmarinic acid, Piperanine, Dihydropiperlonguminine, Piperdardine, Dihydrocurcumin and Lonhumosides B achieved good stability during the 80 ns MD simulation at 300 K in term of the RMSD. Further, we calculated RMSF, RG, SASA, and interaction energy after 40 ns due to showing the stability of complexes. From our results, we conclude that these natural compounds could inhibit Xoo by targeting PDF receptor and can be used as potential bactericidal candidates against BLB disease of rice against Xoo and other bacteria. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tushar Joshi
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India.,Department of Botany, Kumaun University, Almora, Uttarakhand, India
| | - Tanuja Joshi
- Department of Botany, Kumaun University, Almora, Uttarakhand, India
| | - Priyanka Sharma
- Department of Botany, Kumaun University, Nainital, Uttarakhand, India
| | - Subhash Chandra
- Department of Botany, Kumaun University, Almora, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| |
Collapse
|
16
|
Zhou L, Ma YC, Tang X, Li WY, Ma Y, Wang RL. Identification of the potential dual inhibitor of protein tyrosine phosphatase sigma and leukocyte common antigen-related phosphatase by virtual screen, molecular dynamic simulations and post-analysis. J Biomol Struct Dyn 2019; 39:45-62. [PMID: 31842717 DOI: 10.1080/07391102.2019.1705913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Owing to their inhibitory role in regulating oligodendrocyte differentiation and apoptosis, protein tyrosine phosphatase sigma (PTPσ) and leukocyte common antigen-related phosphatase (LAR) play a crucial potential role in treating spinal cord injury (SCI) disease. In this research, the computer aided drug design (CADD) methods were applied to discover the potential dual-target drug involving virtual screen, molecular docking and molecular dynamic simulation. Initially, the top 20 compounds with higher docking score than the positive controls (ZINC13749892, ZINC14516161) were virtually screened out from NCI and ZINC databases, and then were submitted in ADMET to predict their drug properties. Among these potential compounds, ZINC72417086 showed a higher docking score and satisfied Lipinski's rule of five. In addition, the post-analysis demonstrated that when ZINC72417086 bound to PTPσ and LAR, it could stable proteins conformations and destroy the residues interactions between P-loop and other loop regions in active pocket. Meanwhile, residue ARG1595 and ARG1528 could play a crucial role in in the inhibition of PTPσ and LAR, respectively. This research offered a novel approach for rapid discovery of dual-target leads compounds to treat SCI.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Liang Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yang-Chun Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xue Tang
- Tasly Research Institute, Tasly Holding Group Co., Ltd, Tianjin, China
| | - Wei-Ya Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Wu SC, Yang ZQ, Liu F, Peng WJ, Qu SQ, Li Q, Song XB, Zhu K, Shen JZ. Antibacterial Effect and Mode of Action of Flavonoids From Licorice Against Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2019; 10:2489. [PMID: 31749783 PMCID: PMC6848462 DOI: 10.3389/fmicb.2019.02489] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is a bacterial pathogen that causes food poisoning, various infections, and sepsis. Effective strategies and new drugs are needed to control S. aureus associated infections due to the emergence and rapid dissemination of antibiotic resistance. In the present study, the antibacterial activity, potential mode of action, and applications of flavonoids from licorice were investigated. Here, we showed that glabrol, licochalcone A, licochalcone C, and licochalcone E displayed high efficiency against methicillin-resistant Staphylococcus aureus (MRSA). Glabrol, licochalcone A, licochalcone C, and licochalcone E exhibited low cytotoxicity without hemolytic activity based on safety evaluation. Glabrol displayed rapid bactericidal activity with low levels of resistance development in vitro. Meanwhile, glabrol rapidly increased bacterial membrane permeability and dissipated the proton move force. Furthermore, we found that peptidoglycan, phosphatidylglycerol, and cardiolipin inhibited the antibacterial activity of glabrol. Molecular docking showed that glabrol binds to phosphatidylglycerol and cardiolipin through the formation of hydrogen bonds. Lastly, glabrol showed antibacterial activity against MRSA in both in vivo and in vitro models. Altogether, these results suggest that glabrol is a promising lead compound for the design of membrane-active antibacterial agents against MRSA and can be used as a disinfectant candidate as well.
Collapse
Affiliation(s)
- Shuai-Cheng Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.,College of Veterinary, Qingdao Agricultural University, Shandong, China.,College of Agriculture and Forestry, Linyi University, Shandong, China
| | - Zhi-Qiang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wen-Jing Peng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shao-Qi Qu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qian Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiang-Bin Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian-Zhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Bintari YR, Risandiansyah R. In Silico Study to Assess Antibacterial Activity from Cladophora Sp. on Peptide Deformylase: Molecular Docking Approach. BORNEO JOURNAL OF PHARMACY 2019. [DOI: 10.33084/bjop.v2i1.717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Increasing antibiotic-resistant pathogenic bacteria is a severe problem in the world. Therefore, there is a need to identify new drugs from natural products and also new drug targets. Cladophora sp. is a marine organism which is known to have bioactive compounds and a potential antibacterial. On the other hand, Peptide Deformylase (PDf) may prove to be a novel drug target since it is crucial for native peptide functioning in most pathogenic bacteria. This study screens for PDf inhibition activity of compounds from Cladophora sp. using molecular docking approach and screening the binding affinity of bioactive compounds against the peptide receptor PDf using Pyrex Autodock Vina software. Docking results were stored and visualized using Biovia Discovery Studio and PyMOL ligand. Ligands were obtained from previous literature in PubChem, and receptor peptide PDf from pathogenic bacteria: Pseudomonas aeruginosa (PDB ID:1N5N), Escherichia coli (PDB ID:1BSK), Enterococcus faecium (PDB ID:3G6N) and Staphylococcus aureus (PDB ID:1LQW), was obtained from the peptide data bank. The results of this screening show with ligand the highest binding affinity against PDf of P. aeruginosa, E. coli, E. faecium, and S. aureus is stearic acid (-5.9 kcal/mol), eicosapentaenoic acid (-6.6 kcal/mol), stearic acid (-5.8 kcal/mol), and stearic acid (-6.2 kcal/mol) respectively. The binding of natural compounds from Cladophora sp. with PDf models may provide a new drug with a different drug target for antibacterial potential.
Collapse
|
19
|
Zeb A, Son M, Yoon S, Kim JH, Park SJ, Lee KW. Computational Simulations Identified Two Candidate Inhibitors of Cdk5/p25 to Abrogate Tau-associated Neurological Disorders. Comput Struct Biotechnol J 2019; 17:579-590. [PMID: 31073393 PMCID: PMC6495220 DOI: 10.1016/j.csbj.2019.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 01/26/2023] Open
Abstract
Deregulation of Cdk5 is a hallmark in neurodegenerative diseases and its complex with p25 forms Cdk5/p25, thereby causes severe neuropathological insults. Cdk5/p25 abnormally phosphorylates tau protein, and induces tau-associated neurofibrillary tangles in neurological disorders. Therefore, the pharmacological inhibition of Cdk5/p25 alleviates tau-associated neurological disorders. Herein, computational simulations probed two candidate inhibitors of Cdk5/p25. Structure-based pharmacophore investigated the essential complementary chemical features of ATP-binding site of Cdk5 in complex with roscovitine. Resultant pharmacophore harbored polar interactions with Cys83 and Asp86 residues and non-polar interactions with Ile10, Phe80, and Lys133 residues of Cdk5. The chemical space of selected pharmacophore was comprised of two hydrogen bond donors, one hydrogen bond acceptor, and three hydrophobic features. Decoy test validation of pharmacophore obtained highest Guner-Henry score (0.88) and enrichment factor score (7.23). The screening of natural product drug-like databases by validated pharmacophore retrieved 1126 compounds as candidate inhibitors of Cdk5/p25. The docking of candidate inhibitors filtered 10 molecules with docking score >80.00 and established polar and non-polar interactions with the ATP-binding site residues of Cdk5/p25. Finally, molecular dynamics simulation and binding free energy analyses identified two candidate inhibitors of Cdk5/p25. During 30 ns simulation, the candidate inhibitors established <3.0 Å root mean square deviation and stable hydrogen bond interactions with the ATP-binding site residues of Cdk5/p25. The final candidate inhibitors obtained lowest binding free energies of -122.18 kJ/mol and - 117.26 kJ/mol with Cdk5/p25. Overall, we recommend two natural product candidate inhibitors to target the pharmacological inhibition of Cdk5/p25 in tau-associated neurological disorders.
Collapse
Key Words
- 2D, Two-dimentional
- 3D, Three-dimentional
- AD, Alzheimer's disease
- ADMET, Absorption, distribution, metabolism, excretion, and toxicity
- ASP, Astex statistical potential
- Aβ, Amyloid beta
- BBB, Blood-brain barrier
- CGMC, Cyclin-dependent kinases, mitogen-activated protein kinases, glycogen synthase kinases, and Cdk-like kinases
- Cdk5, Cyclin-dependent kinase 5
- Cdk5/p25 inhibitors
- Cdks, Cyclin-dependent kinases
- DS, Discovery Studio
- EF, Enrichment factor
- GA, Genetic algorithm
- GFA, Genetic Function Approximation
- GH, Guner-Henry
- GOLD, Genetic optimization of ligand docking
- GROMACS, Groningen Machine for Chemical Simulation
- H-bond, Hydrogen bond
- HBA, Hydrogen bond acceptor
- HBD, Hydrogen bond donor
- HD, Hungtington's disease
- HYP, Hydrophobic
- IBS, InterBioScreen
- K, kelvin
- MD, Molecular dynamics
- MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Molecular docking
- Molecular dynamics simulation
- NPT, Number particle, pressure, and temperature
- NVT, Number of particles, volume, and temperature
- P5, A 24-residues mimetic peptide of p35
- PD, Parkinson's disease
- PDB, Protein databank
- PLP, Piecewise linear potential
- PME, Particle mesh ewald
- RMSD, Root mean square deviation
- ROF, Rule of five
- Structure-based pharmacophore modeling
- TAT, Twin-arginine targeting
- TIP3P, Transferable intermolecular potential with 3 points
- Tau-pathogenesis
- ZNPD, Zinc Natural Product Database
Collapse
Affiliation(s)
- Amir Zeb
- Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| | - Minky Son
- Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| | - Sanghwa Yoon
- Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| | - Ju Hyun Kim
- Department of Chemistry (BK21 Plus), Research Institute of Natural Science (RINS), Geyongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| | - Seok Ju Park
- Department of Internal Medicine, College of Medicine, Busan Paik Hospital, Inje University, Busan 47392, Republic of Korea
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| |
Collapse
|