1
|
Schniederjan MJ, Potnis C, Vasudevaraja V, Moser CD, Watson B, Snuderl M, MacDonald T, Rogers BB. DNA Methylation Profiles Are Stable in H3 K27M-Mutant Diffuse Midline Glioma Neurosphere Cell Lines. CHILDREN (BASEL, SWITZERLAND) 2024; 11:492. [PMID: 38671709 PMCID: PMC11049299 DOI: 10.3390/children11040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Diffuse midline gliomas are among the deadliest human cancers and have had little progress in treatment in the last 50 years. Cell cultures of these tumors have been developed recently, but the degree to which such cultures retain the characteristics of the source tumors is unknown. DNA methylation profiling offers a powerful tool to look at genome-wide epigenetic changes that are biologically meaningful and can help assess the similarity of cultured tumor cells to their in vivo progenitors. Paraffinized diagnostic tissue from three diffuse intrinsic pontine gliomas with H3 K27M mutations was compared with subsequent passages of neurosphere cell cultures from those tumors. Each cell line was passaged 3-4 times and analyzed with DNA methylation arrays and standard algorithms that provided a comparison of diagnostic classification and cluster analysis. All samples tested maintained high classifier scores and clustered within the reference group of H3 K27M-mutant diffuse midline gliomas. There was a gain of 1q in all cell lines, with two cell lines initially manifesting the gain of 1q only during culture. In vitro cell cultures of H3 K27M-mutant gliomas maintain high degrees of similarity in DNA methylation profiles to their source tumor, confirming their fidelity even with some chromosomal changes.
Collapse
Affiliation(s)
- Matthew J. Schniederjan
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA (B.W.)
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cahil Potnis
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA (B.W.)
| | - Varshini Vasudevaraja
- Department of Biomedical Informatics, New York University Langone Health, New York, NY 10016, USA;
| | - Catherine D. Moser
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA (B.W.)
| | - Bethany Watson
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA (B.W.)
| | - Matija Snuderl
- Department of Neuropathology, New York University Langone Health, New York, NY 10016, USA
| | - Tobey MacDonald
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Beverly B. Rogers
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA (B.W.)
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Rey V, Tornín J, Alba-Linares JJ, Robledo C, Murillo D, Rodríguez A, Gallego B, Huergo C, Viera C, Braña A, Astudillo A, Heymann D, Szuhai K, Bovée JVMG, Fernández AF, Fraga MF, Alonso J, Rodríguez R. A personalized medicine approach identifies enasidenib as an efficient treatment for IDH2 mutant chondrosarcoma. EBioMedicine 2024; 102:105090. [PMID: 38547578 PMCID: PMC10990714 DOI: 10.1016/j.ebiom.2024.105090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Sarcomas represent an extensive group of malignant diseases affecting mesodermal tissues. Among sarcomas, the clinical management of chondrosarcomas remains a complex challenge, as high-grade tumours do not respond to current therapies. Mutations in the isocitrate dehydrogenase (IDH) 1 and 2 genes are among the most common mutations detected in chondrosarcomas and may represent a therapeutic opportunity. The presence of mutated IDH (mIDH) enzymes results in the accumulation of the oncometabolite 2-HG leading to molecular alterations that contribute to drive tumour growth. METHODS We developed a personalized medicine strategy based on the targeted NGS/Sanger sequencing of sarcoma samples (n = 6) and the use of matched patient-derived cell lines as a drug-testing platform. The anti-tumour potential of IDH mutations found in two chondrosarcoma cases was analysed in vitro, in vivo and molecularly (transcriptomic and DNA methylation analyses). FINDINGS We treated several chondrosarcoma models with specific mIDH1/2 inhibitors. Among these treatments, only the mIDH2 inhibitor enasidenib was able to decrease 2-HG levels and efficiently reduce the viability of mIDH2 chondrosarcoma cells. Importantly, oral administration of enasidenib in xenografted mice resulted in a complete abrogation of tumour growth. Enasidenib induced a profound remodelling of the transcriptomic landscape not associated to changes in the 5 mC methylation levels and its anti-tumour effects were associated with the repression of proliferative pathways such as those controlled by E2F factors. INTERPRETATION Overall, this work provides preclinical evidence for the use of enasidenib to treat mIDH2 chondrosarcomas. FUNDING Supported by the Spanish Research Agency/FEDER (grants PID2022-142020OB-I00; PID2019-106666RB-I00), the ISC III/FEDER (PI20CIII/00020; DTS18CIII/00005; CB16/12/00390; CB06/07/1009; CB19/07/00057); the GEIS group (GEIS-62); and the PCTI (Asturias)/FEDER (IDI/2021/000027).
Collapse
Affiliation(s)
- Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain
| | - Juan Tornín
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Juan Jose Alba-Linares
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Cristina Robledo
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
| | - Dzohara Murillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Aida Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Borja Gallego
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Carmen Huergo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain
| | - Cristina Viera
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain
| | - Alejandro Braña
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Department of Traumatology, University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Aurora Astudillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Department of Pathology, University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab. Université de Nantes, 44805, Saint-Herblain, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Agustín F Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Mario F Fraga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier Alonso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain; Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
| | - René Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
3
|
Emori M, Nakahashi N, Takasawa A, Murata K, Murahashi Y, Shimizu J, Tsukahara T, Sugita S, Takada K, Hasegawa T, Osanai M, Iba K. Establishment and characterization of a novel dedifferentiated chondrosarcoma cell line, SMU-DDCS, harboring an IDH1 mutation. Hum Cell 2023; 36:2195-2203. [PMID: 37454032 DOI: 10.1007/s13577-023-00944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Dedifferentiated chondrosarcoma (DDCS) is a high-grade subtype with a bi-morphic histological appearance of a conventional chondrosarcoma component and it can abruptly transition to a high-grade non-cartilaginous sarcoma. To better understand the biological features of DDCSs and to help develop new therapies, a novel DDCS cell line, SMU-DDCS, was established. Tissue from an open biopsy of a tumor resected from a 75-year-old patient was subjected to primary culture. The cell line was established and authenticated by assessing DNA microsatellite short tandem repeats. The cells maintained in monolayer cultures exhibited constant growth, spheroid formation, and high invasive capacity. Out of the four mice inoculated with SMU-DDCS cells, tumors developed in three mice after 2 weeks. R132C mutation was found in the IDH1 but not the IDH2 genomic DNA sequence of SMU-DDCS cells. SMU-DDCS cells exhibited low chemosensitivity to doxorubicin, methotrexate, and cisplatin. This SMU-DDCS cell line harboring an IDH1 mutation will be a useful tool for investigating DDCS development and for evaluating novel therapeutic agents against it.
Collapse
Affiliation(s)
- Makoto Emori
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan.
| | - Naoya Nakahashi
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
- Departments of Pathology, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Akira Takasawa
- Departments of Pathology, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Kenji Murata
- Departments of Pathology, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Yasutaka Murahashi
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Junya Shimizu
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Tomohide Tsukahara
- Departments of Pathology, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Shintaro Sugita
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Makoto Osanai
- Departments of Pathology, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Kosuke Iba
- Department of Musculoskeletal Anti-Aging Medicine, Sapporo Medical University, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| |
Collapse
|
4
|
Tornín J, Mateu-Sanz M, Rey V, Murillo D, Huergo C, Gallego B, Rodríguez A, Rodríguez R, Canal C. Cold plasma and inhibition of STAT3 selectively target tumorigenicity in osteosarcoma. Redox Biol 2023; 62:102685. [PMID: 36989573 PMCID: PMC10074989 DOI: 10.1016/j.redox.2023.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Osteosarcoma (OS) is a malignant type of bone cancer that arises in periods of increased bone formation. Curative strategies for these types of tumors have remained essentially unchanged for decades and the overall survival for most advanced cases is still dismally low. This is in part due to the existence of drug resistant Cancer Stem Cells (CSC) with progenitor properties that are responsible for tumor relapse and metastasis. In the quest for therapeutic alternatives for OS, Cold Atmospheric Plasmas and Plasma-Treated Liquids (PTL) have come to the limelight as a source of Reactive Oxygen and Nitrogen Species displaying selectivity towards a variety of cancer cell lines. However, their effects on CSC subpopulations and in vivo tumor growth have been barely studied to date. By employing bioengineered 3D tumor models and in vivo assays, here we show that low doses of PTL increase the levels of pro-stemness factors and the self-renewal ability of OS cells, coupled to an enhanced in vivo tumor growth potential. This could have critical implications to the field. By proposing a combined treatment, our results demonstrate that the deleterious pro-stemness signals mediated by PTL can be abrogated when this is combined with the STAT3 inhibitor S3I-201, resulting in a strong suppression of in vivo tumor growth. Overall, our study unveils an undesirable stem cell-promoting function of PTL in cancer and supports the use of combinatorial strategies with STAT3 inhibitors as an efficient treatment for OS avoiding critical side effects. We anticipate our work to be a starting point for wider studies using relevant 3D tumor models to evaluate the effects of plasma-based therapies on tumor subpopulations of different cancer types. Furthermore, combination with STAT3 inhibition or other suitable cancer type-specific targets can be relevant to consolidate the development of the field.
Collapse
|
5
|
Gilbert A, Tudor M, Montanari J, Commenchail K, Savu DI, Lesueur P, Chevalier F. Chondrosarcoma Resistance to Radiation Therapy: Origins and Potential Therapeutic Solutions. Cancers (Basel) 2023; 15:cancers15071962. [PMID: 37046623 PMCID: PMC10093143 DOI: 10.3390/cancers15071962] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Chondrosarcoma is a malignant cartilaginous tumor that is particularly chemoresistant and radioresistant to X-rays. The first line of treatment is surgery, though this is almost impossible in some specific locations. Such resistances can be explained by the particular composition of the tumor, which develops within a dense cartilaginous matrix, producing a resistant area where the oxygen tension is very low. This microenvironment forces the cells to adapt and dedifferentiate into cancer stem cells, which are described to be more resistant to conventional treatments. One of the main avenues considered to treat this type of tumor is hadrontherapy, in particular for its ballistic properties but also its greater biological effectiveness against tumor cells. In this review, we describe the different forms of chondrosarcoma resistance and how hadrontherapy, combined with other treatments involving targeted inhibitors, could help to better treat high-grade chondrosarcoma.
Collapse
|
6
|
Gallego B, Murillo D, Rey V, Huergo C, Estupiñán Ó, Rodríguez A, Tornín J, Rodríguez R. Addressing Doxorubicin Resistance in Bone Sarcomas Using Novel Drug-Resistant Models. Int J Mol Sci 2022; 23:ijms23126425. [PMID: 35742867 PMCID: PMC9224263 DOI: 10.3390/ijms23126425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Bone sarcomas have not shown a significant improvement in survival for decades, due, in part, to the development of resistance to current systemic treatments, such as doxorubicin. To better understand those mechanisms mediating drug-resistance we generated three osteosarcoma and one chondrosarcoma cell lines with a stable doxorubicin-resistant phenotype, both in vitro and in vivo. These resistant strains include a pioneer model generated from a patient-derived chondrosarcoma line. The resistant phenotype was characterized by a weaker induction of apoptosis and DNA damage after doxorubicin treatment and a lower migratory capability. In addition, all resistant lines expressed higher levels of ABC pumps; meanwhile, no clear trends were found in the expression of anti-apoptotic and stem cell-related factors. Remarkably, upon the induction of resistance, the proliferation potential was reduced in osteosarcoma lines but enhanced in the chondrosarcoma model. The exposure of resistant lines to other anti-tumor drugs revealed an increased response to cisplatin and/or methotrexate in some models. Finally, the ability to retain the resistant phenotype in vivo was confirmed in an osteosarcoma model. Altogether, this work evidenced the co-existence of common and case-dependent phenotypic traits and mechanisms associated with the development of resistance to doxorubicin in bone sarcomas.
Collapse
Affiliation(s)
- Borja Gallego
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Dzohara Murillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Carmen Huergo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Óscar Estupiñán
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Aida Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
| | - Juan Tornín
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - René Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-985-101-399
| |
Collapse
|
7
|
Ortal A, Rodríguez A, Solis-Hernández MP, de Prado M, Rey V, Tornín J, Estupiñán Ó, Gallego B, Murillo D, Huergo C, García-Llano JL, Costilla S, Rodríguez R. Proof of concept for the use of trained sniffer dogs to detect osteosarcoma. Sci Rep 2022; 12:6911. [PMID: 35484295 PMCID: PMC9051207 DOI: 10.1038/s41598-022-11013-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Sarcomas are mesenchymal cancers which often show an aggressive behavior and patient survival largely depends on an early detection. In last years, much attention has been given to the fact that cancer patients release specific odorous volatile organic compounds (VOCs) that can be efficiently detected by properly trained sniffer dogs. Here, we have evaluated for the first time the ability of sniffer dogs (n = 2) to detect osteosarcoma cell cultures and patient samples. One of the two dogs was successfully trained to discriminate osteosarcoma patient-derived primary cells from mesenchymal stem/stromal cells (MSCs) obtained from healthy individuals. After the training phase, the dog was able to detect osteosarcoma specific odor cues in a different panel of 6 osteosarcoma cell lines with sensitivity and specificity rates between 95 and 100%. Moreover, the same VOCs were also detected by the sniffer dog in saliva samples from osteosarcoma patients (n = 2) and discriminated from samples from healthy individuals with a similar efficacy. Altogether, these results indicate that there are common odor profiles shared by cultures of osteosarcoma cells and body fluid samples from patients and provide a first proof of concept about the potential of canine odor detection as a non-invasive screening method to detect osteosarcomas.
Collapse
Affiliation(s)
- Agustín Ortal
- Canvida Detection Organization, CP 33212, Gijon, Spain
| | - Aida Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Av. de Roma s/n, 33011, Oviedo, Spain
| | - María Pilar Solis-Hernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Av. de Roma s/n, 33011, Oviedo, Spain.,Department of Medical Oncology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Av. de Roma s/n, 33011, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain.,CIBER en Oncología (CIBERONC), 28029, Madrid, Spain
| | - Juan Tornín
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Av. de Roma s/n, 33011, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Óscar Estupiñán
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Av. de Roma s/n, 33011, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Borja Gallego
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Av. de Roma s/n, 33011, Oviedo, Spain
| | - Dzohara Murillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Av. de Roma s/n, 33011, Oviedo, Spain
| | - Carmen Huergo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Av. de Roma s/n, 33011, Oviedo, Spain
| | - Juan Luis García-Llano
- Department of Medical Oncology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Serafín Costilla
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Av. de Roma s/n, 33011, Oviedo, Spain.,Department of Radiology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - René Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Av. de Roma s/n, 33011, Oviedo, Spain. .,Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain. .,CIBER en Oncología (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
8
|
Estupiñán Ó, Niza E, Bravo I, Rey V, Tornín J, Gallego B, Clemente-Casares P, Moris F, Ocaña A, Blanco-Lorenzo V, Rodríguez-Santamaría M, Vallina-Álvarez A, González MV, Rodríguez A, Hermida-Merino D, Alonso-Moreno C, Rodríguez R. Mithramycin delivery systems to develop effective therapies in sarcomas. J Nanobiotechnology 2021; 19:267. [PMID: 34488783 PMCID: PMC8419920 DOI: 10.1186/s12951-021-01008-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sarcomas comprise a group of aggressive malignancies with very little treatment options beyond standard chemotherapy. Reposition of approved drugs represents an attractive approach to identify effective therapeutic compounds. One example is mithramycin (MTM), a natural antibiotic which has demonstrated a strong antitumour activity in several tumour types, including sarcomas. However, its widespread use in the clinic was limited by its poor toxicity profile. RESULTS In order to improve the therapeutic index of MTM, we have loaded MTM into newly developed nanocarrier formulations. First, polylactide (PLA) polymeric nanoparticles (NPs) were generated by nanoprecipitation. Also, liposomes (LIP) were prepared by ethanol injection and evaporation solvent method. Finally, MTM-loaded hydrogels (HG) were obtained by passive loading using a urea derivative non-peptidic hydrogelator. MTM-loaded NPs and LIP display optimal hydrodynamic radii between 80 and 105 nm with a very low polydispersity index (PdI) and encapsulation efficiencies (EE) of 92 and 30%, respectively. All formulations show a high stability and different release rates ranging from a fast release in HG (100% after 30 min) to more sustained release from NPs (100% after 24 h) and LIP (40% after 48 h). In vitro assays confirmed that all assayed MTM formulations retain the cytotoxic, anti-invasive and anti-stemness potential of free MTM in models of myxoid liposarcoma, undifferentiated pleomorphic sarcoma and chondrosarcoma. In addition, whole genome transcriptomic analysis evidenced the ability of MTM, both free and encapsulated, to act as a multi-repressor of several tumour-promoting pathways at once. Importantly, the treatment of mice bearing sarcoma xenografts showed that encapsulated MTM exhibited enhanced therapeutic effects and was better tolerated than free MTM. CONCLUSIONS Overall, these novel formulations may represent an efficient and safer MTM-delivering alternative for sarcoma treatment.
Collapse
Affiliation(s)
- Óscar Estupiñán
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain.,CIBER en Oncología (CIBERONC), 28029, Madrid, Spain
| | - Enrique Niza
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008, Albacete, Spain.,Universidad de Castilla-La Mancha, Facultad de Farmacia de Albacete, 02008, Albacete, Spain
| | - Iván Bravo
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008, Albacete, Spain.,Universidad de Castilla-La Mancha, Facultad de Farmacia de Albacete, 02008, Albacete, Spain
| | - Verónica Rey
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Juan Tornín
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain.,Materials Science and Engineering Department, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), 08019, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| | - Borja Gallego
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain
| | - Pilar Clemente-Casares
- Universidad de Castilla-La Mancha, Facultad de Farmacia de Albacete, 02008, Albacete, Spain.,Centro Regional de Investigaciones Biomédicas (CRIB), UCLM, 02008, Albacete, Spain
| | | | - Alberto Ocaña
- CIBER en Oncología (CIBERONC), 28029, Madrid, Spain.,Experimental Therapeutics Unit, Hospital Clínico San Carlos, IdISSC, 28040, Madrid, Spain
| | - Verónica Blanco-Lorenzo
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain.,Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, 33011, Oviedo, Spain
| | - Mar Rodríguez-Santamaría
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain
| | - Aitana Vallina-Álvarez
- Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain.,Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, 33011, Oviedo, Spain
| | - M Victoria González
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain.,CIBER en Oncología (CIBERONC), 28029, Madrid, Spain.,Departamento de Cirugía, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Aida Rodríguez
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain
| | - Daniel Hermida-Merino
- Netherlands Organisation for Scientific Research (NWO), DUBBLE@ESRF, 38000, Grenoble, France
| | - Carlos Alonso-Moreno
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008, Albacete, Spain. .,Universidad de Castilla-La Mancha, Facultad de Farmacia de Albacete, 02008, Albacete, Spain.
| | - René Rodríguez
- Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain. .,Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain. .,CIBER en Oncología (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
9
|
Menéndez ST, Gallego B, Murillo D, Rodríguez A, Rodríguez R. Cancer Stem Cells as a Source of Drug Resistance in Bone Sarcomas. J Clin Med 2021; 10:jcm10122621. [PMID: 34198693 PMCID: PMC8232081 DOI: 10.3390/jcm10122621] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
Bone sarcomas are commonly characterized by a high degree of intra-tumor heterogeneity, which in part is due to the presence of subpopulations of tumor cells presenting stem cell properties. Similar to normal stem cells, these cancer stem cells (CSCs) display a drug resistant phenotype and therefore are responsible for relapses and tumor dissemination. Drug resistance in bone sarcomas could be enhanced/modulated during tumor evolution though the acquisition of (epi)-genetic alterations and the adaptation to changing microenvironments, including drug treatments. Here we summarize findings supporting the involvement of pro-stemness signaling in the development of drug resistance in bone sarcomas. This include the activation of well-known pro-stemness pathways (Wnt/β-Cat, NOTCH or JAT/STAT pathways), changes in the metabolic and autophagic activities, the alteration of epigenetic pathways, the upregulation of specific non-coding RNAs and the crosstalk with different microenvironmental factors. This altered signaling is expected to be translated to the clinic in the form of biomarkers of response and new therapies able to overcome drug resistance.
Collapse
Affiliation(s)
- Sofía T. Menéndez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
- Correspondence: (S.T.M.); (R.R.)
| | - Borja Gallego
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
| | - Dzohara Murillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
| | - Aida Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
| | - René Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
- Correspondence: (S.T.M.); (R.R.)
| |
Collapse
|
10
|
Estupiñán Ó, Rendueles C, Suárez P, Rey V, Murillo D, Morís F, Gutiérrez G, Blanco-López MDC, Matos M, Rodríguez R. Nano-Encapsulation of Mithramycin in Transfersomes and Polymeric Micelles for the Treatment of Sarcomas. J Clin Med 2021; 10:jcm10071358. [PMID: 33806182 PMCID: PMC8037461 DOI: 10.3390/jcm10071358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcomas are aggressive tumors which often show a poor response to current treatments. As a promising therapeutic alternative, we focused on mithramycin (MTM), a natural antibiotic with a promising anti-tumor activity but also a relevant systemic toxicity. Therefore, the encapsulation of MTM in nano-delivery systems may represent a way to increase its therapeutic window. Here, we designed novel transfersomes and PLGA polymeric micelles by combining different membrane components (phosphatidylcholine, Span 60, Tween 20 and cholesterol) to optimize the nanoparticle size, polydispersity index (PDI) and encapsulation efficiency (EE). Using both thin film hydration and the ethanol injection methods we obtained MTM-loaded transferosomes displaying an optimal hydrodynamic diameter of 100–130 nm and EE values higher than 50%. Additionally, we used the emulsion/solvent evaporation method to synthesize polymeric micelles with a mean size of 228 nm and a narrow PDI, capable of encapsulating MTM with EE values up to 87%. These MTM nano-delivery systems mimicked the potent anti-tumor activity of free MTM, both in adherent and cancer stem cell-enriched tumorsphere cultures of myxoid liposarcoma and chondrosarcoma models. Similarly to free MTM, nanocarrier-delivered MTM efficiently inhibits the signaling mediated by the pro-oncogenic factor SP1. In summary, we provide new formulations for the efficient encapsulation of MTM which may constitute a safer delivering alternative to be explored in future clinical uses.
Collapse
Affiliation(s)
- Óscar Estupiñán
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Ó.E.); (V.R.); (D.M.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain; (C.R.); (P.S.); (G.G.)
| | - Claudia Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain; (C.R.); (P.S.); (G.G.)
| | - Paula Suárez
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain; (C.R.); (P.S.); (G.G.)
| | - Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Ó.E.); (V.R.); (D.M.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Dzohara Murillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Ó.E.); (V.R.); (D.M.)
| | | | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain; (C.R.); (P.S.); (G.G.)
- Asturias University Institute of Biotechnology, University of Oviedo, 33006 Oviedo, Spain;
| | - María del Carmen Blanco-López
- Asturias University Institute of Biotechnology, University of Oviedo, 33006 Oviedo, Spain;
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, 33006 Oviedo, Spain; (C.R.); (P.S.); (G.G.)
- Asturias University Institute of Biotechnology, University of Oviedo, 33006 Oviedo, Spain;
- Correspondence: (M.M.); (R.R.)
| | - René Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (Ó.E.); (V.R.); (D.M.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
- Correspondence: (M.M.); (R.R.)
| |
Collapse
|
11
|
Zając A, Król SK, Rutkowski P, Czarnecka AM. Biological Heterogeneity of Chondrosarcoma: From (Epi) Genetics through Stemness and Deregulated Signaling to Immunophenotype. Cancers (Basel) 2021; 13:1317. [PMID: 33804155 PMCID: PMC8001927 DOI: 10.3390/cancers13061317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Chondrosarcoma (ChS) is a primary malignant bone tumor. Due to its heterogeneity in clinical outcomes and resistance to chemo- and radiotherapies, there is a need to develop new potential therapies and molecular targets of drugs. Many genes and pathways are involved in in ChS progression. The most frequently mutated genes are isocitrate dehydrogenase ½ (IDH1/2), collagen type II alpha 1 chain (COL2A1), and TP53. Besides the point mutations in ChS, chromosomal aberrations, such as 12q13 (MDM2) amplification, the loss of 9p21 (CDKN21/p16/INK4A and INK4A-p14ARF), and several gene fusions, commonly occurring in sarcomas, have been found. ChS involves the hypermethylation of histone H3 and the decreased methylation of some transcription factors. In ChS progression, changes in the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K-AKT-mTOR) and hedgehog pathways are known to play a role in tumor growth and chondrocyte proliferation. Due to recent discoveries regarding the potential of immunotherapy in many cancers, in this review we summarize the current state of knowledge concerning cellular markers of ChS and tumor-associated immune cells. This review compares the latest discoveries in ChS biology from gene alterations to specific cellular markers, including advanced molecular pathways and tumor microenvironment, which can help in discovering new potential checkpoints in inhibitory therapy.
Collapse
Affiliation(s)
- Agnieszka Zając
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Sylwia K. Król
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-176 Warsaw, Poland
| |
Collapse
|
12
|
Tornín J, Villasante A, Solé-Martí X, Ginebra MP, Canal C. Osteosarcoma tissue-engineered model challenges oxidative stress therapy revealing promoted cancer stem cell properties. Free Radic Biol Med 2021; 164:107-118. [PMID: 33401009 PMCID: PMC7921834 DOI: 10.1016/j.freeradbiomed.2020.12.437] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/11/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
The use of oxidative stress generated by Cold Atmospheric Plasma (CAP) in oncology is being recently studied as a novel potential anti-cancer therapy. However, the beneficial effects of CAP for treating osteosarcoma have mostly been demonstrated in 2-dimensional cultures of cells, which do not mimic the complexity of the 3-dimensional (3D) bone microenvironment. In order to evaluate the effects of CAP in a relevant context of the human disease, we developed a 3D tissue-engineered model of osteosarcoma using a bone-like scaffold made of collagen type I and hydroxyapatite nanoparticles. Human osteosarcoma cells cultured within the scaffold showed a high capacity to infiltrate and proliferate and to exhibit osteomimicry in vitro. As expected, we observed significantly different functional behaviors between monolayer and 3D cultures when treated with Cold Plasma-Activated Ringer's Solution (PAR). Our data reveal that the 3D environment not only protects cells from PAR-induced lethality by scavenging and diminishing the amount of reactive oxygen and nitrogen species generated by CAP, but also favours the stemness phenotype of osteosarcoma cells. This is the first study that demonstrates the negative effect of PAR on cancer stem-like cell subpopulations in a 3D biomimetic model of cancer. These findings will allow to suitably re-focus research on plasma-based therapies in future.
Collapse
Affiliation(s)
- Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola D'Enginyeria Barcelona Est (EEBE), C/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Research Centre for Biomedical Engineering (CREB), UPC, 08019, Barcelona, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Av. de Roma S/n, Oviedo, Spain
| | - Aranzazu Villasante
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), C/Baldiri I Reixach 10-12, 08028, Barcelona, Spain
| | - Xavi Solé-Martí
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola D'Enginyeria Barcelona Est (EEBE), C/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Research Centre for Biomedical Engineering (CREB), UPC, 08019, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola D'Enginyeria Barcelona Est (EEBE), C/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Research Centre for Biomedical Engineering (CREB), UPC, 08019, Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), C/Baldiri I Reixach 10-12, 08028, Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola D'Enginyeria Barcelona Est (EEBE), C/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Research Centre for Biomedical Engineering (CREB), UPC, 08019, Barcelona, Spain.
| |
Collapse
|
13
|
Wang K, Michelakos T, Wang B, Shang Z, DeLeo AB, Duan Z, Hornicek FJ, Schwab JH, Wang X. Targeting cancer stem cells by disulfiram and copper sensitizes radioresistant chondrosarcoma to radiation. Cancer Lett 2021; 505:37-48. [PMID: 33582212 PMCID: PMC8969896 DOI: 10.1016/j.canlet.2021.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022]
Abstract
Overcoming the radiosensitivity of chondrosarcoma (CS), the second most common primary bone tumor, is needed. Radioresistance is attributed to cancer stem cells (CSCs) in many malignancies. Disulfiram (DSF), an FDA-approved anti-alcoholism drug, complexed with Cu (DSF/Cu) can radiosensitize epithelial CSCs. This prompted us to investigate the radiosensitizing effect of DSF/Cu on CS CSCs (CCSCs). The radiosensitizing effects of DSF/Cu on CCSCs were investigated in vitro using cell lines SW1353 and CS-1. Stemness was identified independently by flow cytometry for CCSCs (ALDH+CD133+), sphere-forming ability, and Western blot analysis of stemness gene protein expression. The radiosensitizing effect of DSF/Cu was studied in an orthotopic CS xenograft mouse model by analyzing xenograft growth and residual xenografts for stemness. CCSCs were found to be resistant to single-dose (IR) and fractionated irradiation (FIR). IR and FIR increased CS stemness. Combined with DSF/Cu in vitro and in vivo, IR and FIR eliminated CS stemness. RT + DSF/Cu was safer and more effective than either RT ± DSF in inhibiting growth of orthotopic CS xenografts. In conclusion, DSF/Cu radiosensitizes CCSCs. These results can be translated into clinical trials for CS patients requiring RT for improved outcomes.
Collapse
Affiliation(s)
- Kun Wang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Theodoros Michelakos
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zikun Shang
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Albert B DeLeo
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Zhenfeng Duan
- The Sarcoma and Chordoma Molecular Biology Laboratory, Orthopaedic Surgery, The University of California, Los Angeles, CA, 90095, USA
| | - Francis J Hornicek
- The Sarcoma and Chordoma Molecular Biology Laboratory, Orthopaedic Surgery, The University of California, Los Angeles, CA, 90095, USA
| | - Joseph H Schwab
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Xinhui Wang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
14
|
GARP promotes the proliferation and therapeutic resistance of bone sarcoma cancer cells through the activation of TGF-β. Cell Death Dis 2020; 11:985. [PMID: 33203838 PMCID: PMC7673987 DOI: 10.1038/s41419-020-03197-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 01/09/2023]
Abstract
Sarcomas are mesenchymal cancers with poor prognosis, representing about 20% of all solid malignancies in children, adolescents, and young adults. Radio- and chemoresistance are common features of sarcomas warranting the search for novel prognostic and predictive markers. GARP/LRRC32 is a TGF-β-activating protein that promotes immune escape and dissemination in various cancers. However, if GARP affects the tumorigenicity and treatment resistance of sarcomas is not known. We show that GARP is expressed by human osteo-, chondro-, and undifferentiated pleomorphic sarcomas and is associated with a significantly worse clinical prognosis. Silencing of GARP in bone sarcoma cell lines blocked their proliferation and induced apoptosis. In contrast, overexpression of GARP promoted their growth in vitro and in vivo and increased their resistance to DNA damage and cell death induced by etoposide, doxorubicin, and irradiation. Our data suggest that GARP could serve as a marker with therapeutic, prognostic, and predictive value in sarcoma. We propose that targeting GARP in bone sarcomas could reduce tumour burden while simultaneously improving the efficacy of chemo- and radiotherapy.
Collapse
|
15
|
Grünewald TGP, Alonso M, Avnet S, Banito A, Burdach S, Cidre‐Aranaz F, Di Pompo G, Distel M, Dorado‐Garcia H, Garcia‐Castro J, González‐González L, Grigoriadis AE, Kasan M, Koelsche C, Krumbholz M, Lecanda F, Lemma S, Longo DL, Madrigal‐Esquivel C, Morales‐Molina Á, Musa J, Ohmura S, Ory B, Pereira‐Silva M, Perut F, Rodriguez R, Seeling C, Al Shaaili N, Shaabani S, Shiavone K, Sinha S, Tomazou EM, Trautmann M, Vela M, Versleijen‐Jonkers YMH, Visgauss J, Zalacain M, Schober SJ, Lissat A, English WR, Baldini N, Heymann D. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med 2020; 12:e11131. [PMID: 33047515 PMCID: PMC7645378 DOI: 10.15252/emmm.201911131] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.
Collapse
Affiliation(s)
- Thomas GP Grünewald
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Division of Translational Pediatric Sarcoma ResearchGerman Cancer Research Center (DKFZ), Hopp Children's Cancer Center (KiTZ), German Cancer Consortium (DKTK)HeidelbergGermany
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Marta Alonso
- Program in Solid Tumors and BiomarkersFoundation for the Applied Medical ResearchUniversity of Navarra PamplonaPamplonaSpain
| | - Sofia Avnet
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Ana Banito
- Pediatric Soft Tissue Sarcoma Research GroupGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Stefan Burdach
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Florencia Cidre‐Aranaz
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | - Gemma Di Pompo
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | | | | | | | | | | | - Merve Kasan
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | | | - Fernando Lecanda
- Division of OncologyAdhesion and Metastasis LaboratoryCenter for Applied Medical ResearchUniversity of NavarraPamplonaSpain
| | - Silvia Lemma
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Dario L Longo
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | | | | | - Julian Musa
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Shunya Ohmura
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | - Miguel Pereira‐Silva
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Francesca Perut
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Rene Rodriguez
- Instituto de Investigación Sanitaria del Principado de AsturiasOviedoSpain
- CIBER en oncología (CIBERONC)MadridSpain
| | | | - Nada Al Shaaili
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Shabnam Shaabani
- Department of Drug DesignUniversity of GroningenGroningenThe Netherlands
| | - Kristina Shiavone
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Snehadri Sinha
- Department of Oral and Maxillofacial DiseasesUniversity of HelsinkiHelsinkiFinland
| | | | - Marcel Trautmann
- Division of Translational PathologyGerhard‐Domagk‐Institute of PathologyMünster University HospitalMünsterGermany
| | - Maria Vela
- Hospital La Paz Institute for Health Research (IdiPAZ)MadridSpain
| | | | | | - Marta Zalacain
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | - Sebastian J Schober
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Andrej Lissat
- University Children′s Hospital Zurich – Eleonoren FoundationKanton ZürichZürichSwitzerland
| | - William R English
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Nicola Baldini
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Dominique Heymann
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
- Université de NantesInstitut de Cancérologie de l'OuestTumor Heterogeneity and Precision MedicineSaint‐HerblainFrance
| |
Collapse
|
16
|
Roche ME, Lin Z, Whitaker-Menezes D, Zhan T, Szuhai K, Bovee JVMG, Abraham JA, Jiang W, Martinez-Outschoorn U, Basu-Mallick A. Translocase of the outer mitochondrial membrane complex subunit 20 (TOMM20) facilitates cancer aggressiveness and therapeutic resistance in chondrosarcoma. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165962. [PMID: 32920118 DOI: 10.1016/j.bbadis.2020.165962] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023]
Abstract
Chondrosarcoma is the second most common primary bone malignancy, representing one fourth of all primary bone sarcomas. It is typically resistant to radiation and chemotherapy treatments. However, the molecular mechanisms that contribute to cancer aggressiveness in chondrosarcomas remain poorly characterized. Here, we studied the role of mitochondrial transporters in chondrosarcoma aggressiveness including chemotherapy resistance. Histological grade along with stage are the most important prognostic biomarkers in chondrosarcoma. We found that high-grade human chondrosarcoma tumors have higher expression of the mitochondrial protein, translocase of the outer mitochondrial membrane complex subunit 20 (TOMM20), compared to low-grade tumors. TOMM20 overexpression in human chondrosarcoma cells induces chondrosarcoma tumor growth in vivo. TOMM20 drives proliferation, resistance to apoptosis and chemotherapy resistance. Also, TOMM20 induces markers of epithelial to mesenchymal transition (EMT) and metabolic reprogramming in these mesenchymal tumors. In conclusion, TOMM20 drives chondrosarcoma aggressiveness and resistance to chemotherapy.
Collapse
Affiliation(s)
- Megan E Roche
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Zhao Lin
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Diana Whitaker-Menezes
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Tingting Zhan
- Department of Pharmacology, Division of Biostatistics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Karoly Szuhai
- Department of Pathology, Leiden University, the Netherlands
| | | | - John A Abraham
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, USA
| | - Wei Jiang
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, USA
| | - Ubaldo Martinez-Outschoorn
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA.
| | - Atrayee Basu-Mallick
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
17
|
Cihlar JC, Peters D, Strobl C, Parson W, Budowle B. The lot-to-lot variability in the mitochondrial genome of controls. Forensic Sci Int Genet 2020; 47:102298. [PMID: 32464353 DOI: 10.1016/j.fsigen.2020.102298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/28/2022]
Abstract
Current research in the biomedical field has illustrated how cell lines used as reference standards can change over time and, more importantly, can affect research and diagnostic results obtained from these cell lines. With the use of increasingly sensitive and highly resolving technologies (e.g., massively parallel sequencing), forensic scientists must be aware of and account for potential variability in the cell lines used as controls in their validation studies and day-to-day casework. In this study, multiple lot numbers from four commonly-used control cell line DNAs were sequenced with massively parallel sequencing on the Ion S5. The variability among these different lots was evaluated, and the effect on forensic laboratory work discussed.
Collapse
Affiliation(s)
- Jennifer Churchill Cihlar
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA; Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| | - Dixie Peters
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Christina Strobl
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA
| | - Bruce Budowle
- Center for Human Identification, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA; Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| |
Collapse
|
18
|
Menendez ST, Rey V, Martinez-Cruzado L, Gonzalez MV, Morales-Molina A, Santos L, Blanco V, Alvarez C, Estupiñan O, Allonca E, Rodrigo JP, García-Castro J, Garcia-Pedrero JM, Rodriguez R. SOX2 Expression and Transcriptional Activity Identifies a Subpopulation of Cancer Stem Cells in Sarcoma with Prognostic Implications. Cancers (Basel) 2020; 12:cancers12040964. [PMID: 32295077 PMCID: PMC7226033 DOI: 10.3390/cancers12040964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Stemness in sarcomas is coordinated by the expression of pluripotency factors, like SOX2, in cancer stem cells (CSC). The role of SOX2 in tumor initiation and progression has been well characterized in osteosarcoma. However, the pro-tumorigenic features of SOX2 have been scarcely investigated in other sarcoma subtypes. Here, we show that SOX2 depletion dramatically reduced the ability of undifferentiated pleomorphic sarcoma (UPS) cells to form tumorspheres and to initiate tumor growth. Conversely, SOX2 overexpression resulted in increased in vivo tumorigenicity. Moreover, using a reporter system (SORE6) which allows to monitor viable cells expressing SOX2 and/or OCT4, we found that SORE6+ cells were significantly more tumorigenic than the SORE6- subpopulation. In agreement with this findings, SOX2 expression in sarcoma patients was associated to tumor grade, differentiation, invasive potential and lower patient survival. Finally, we studied the effect of a panel of anti-tumor drugs on the SORE6+ cells of the UPS model and patient-derived chondrosarcoma lines. We found that the mithramycin analogue EC-8042 was the most efficient in reducing SORE6+ cells in vitro and in vivo. Overall, this study demonstrates that SOX2 is a pro-tumorigenic factor with prognostic potential in sarcoma. Moreover, SORE6 transcriptional activity is a bona fide CSC marker in sarcoma and constitutes an excellent biomarker for evaluating the efficacy of anti-tumor treatments on CSC subpopulations.
Collapse
Affiliation(s)
- Sofia T. Menendez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en oncología (CIBERONC), 28029 Madrid, Spain
| | - Veronica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Lucia Martinez-Cruzado
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - M. Victoria Gonzalez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en oncología (CIBERONC), 28029 Madrid, Spain
- Departamento de Cirugía, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Alvaro Morales-Molina
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Laura Santos
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Verónica Blanco
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Servicio de Anatomía Patológica of the Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Carlos Alvarez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Servicio de Oncología Médica of the Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Oscar Estupiñan
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en oncología (CIBERONC), 28029 Madrid, Spain
| | - Eva Allonca
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en oncología (CIBERONC), 28029 Madrid, Spain
| | - Juan Pablo Rodrigo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en oncología (CIBERONC), 28029 Madrid, Spain
| | - Javier García-Castro
- Cellular Biotechnology Unit, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Juana Maria Garcia-Pedrero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en oncología (CIBERONC), 28029 Madrid, Spain
| | - Rene Rodriguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)—Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en oncología (CIBERONC), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
19
|
Preclinical Models: Boosting Synergies for Improved Translation. J Clin Med 2020; 9:jcm9041011. [PMID: 32260102 PMCID: PMC7230432 DOI: 10.3390/jcm9041011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 11/17/2022] Open
|