1
|
Kolisnyk M, Laforge G, Gagnon MÈ, Erez J, Owen AM. Total recall: Detecting autobiographical memory retrieval in the absence of behaviour. Neuropsychologia 2025; 211:109129. [PMID: 40112910 DOI: 10.1016/j.neuropsychologia.2025.109129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Functional neuroimaging has fundamentally changed our understanding of disorders of consciousness (DoC). While many DoC patients exhibit minimal to no behavioural responsiveness, a significant minority show neural evidence of awareness and preserved cognitive functioning. Although several cognitive functions have been explored in DoC patients, autobiographical memory -- the ability to form and retrieve personal memories -- has yet to be investigated. To address this gap, we used functional magnetic resonance imaging (fMRI) to investigate autobiographical memory in one DoC patient. The patient viewed video clips across three conditions: (1) Own - clips recorded from their perspective during a recent mall visit; (2) Other - clips from a healthy control's visit to the same mall; and (3) Bookstore - novel clips from an entirely different store that had not been visited. We trained a linear support vector classifier to associate fMRI activity in canonical autobiographical memory regions with each condition using data from twelve healthy participants. We then applied the trained model to the patient's data to 'decode' which condition their fMRI activity predicted. The model accurately distinguished between Own, Other, and Bookstore conditions in the patient (Balanced Accuracy = 0.448, p = .032), with performance within the control group range (p = .068). Similarly, the model distinguished between the Own and Other conditions above chance (Balanced Accuracy = 0.609, p = .032) and within the control group's distribution (p = .620), suggesting that the patient was still able to differentiate personal experiences from visually similar scenes, despite being behaviourally unable to report that this was the case. These findings provide preliminary evidence that autobiographical memory processes, critical to conscious awareness and identity, remain intact in some DoC patients, shedding further light on their covert capabilities and inner experiences.
Collapse
Affiliation(s)
- Matthew Kolisnyk
- Graduate Program in Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Western Institute for Neuroscience, Western University, London, Ontario, Canada.
| | - Geoffrey Laforge
- Western Institute for Neuroscience, Western University, London, Ontario, Canada; Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Marie-Ève Gagnon
- Département de Psychologie, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Jonathan Erez
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Adrian M Owen
- Western Institute for Neuroscience, Western University, London, Ontario, Canada; Department of Physiology and Pharmacology, Western University, London, Ontario, Canada; Department of Psychology, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Turan N, Geocadin RG. Cardiac arrest and disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:67-74. [PMID: 39986728 DOI: 10.1016/b978-0-443-13408-1.00015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
As the second most common cause of coma and disorders of consciousness, cardiac arrest is defined as a cessation of cardiac mechanical activity and absence of circulation. Cardiac arrest can happen due to an intrinsic cardiac condition or secondary to noncardiac causes such as respiratory, neurologic, metabolic causes or external causes such as toxic ingestion, asphyxia, drowning, trauma, and other environmental exposures. While cardiac arrest resuscitation research and practice has evolved over decades, the overall survival to hospital discharge remains low across different types of cardiac arrest (about 9%-29%). This chapter focuses on disorders of consciousness after cardiac arrest and how it is different from other etiologies. It also discusses advances and controversies in diagnosis, management, prognostication and research.
Collapse
Affiliation(s)
- Nefize Turan
- Department of Neurology, Anesthesiology-Critical Care and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Romergryko G Geocadin
- Department of Neurology, Anesthesiology-Critical Care and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Le Cause M, Bonanno L, Alagna A, Bonanno C, De Caro J, Logiudice AL, Pollicino P, Corallo F, De Salvo S, Rifici C, Quartarone A, Marino S. Prognostic Evaluation of Disorders of Consciousness by Using Resting-State fMRI: A Systematic Review. J Clin Med 2024; 13:5704. [PMID: 39407763 PMCID: PMC11477135 DOI: 10.3390/jcm13195704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Background: This review focuses on the prognostic role of resting-state functional magnetic resonance imaging (fMRI) in disorders of consciousness (DOCs). Several studies were conducted to determine the diagnostic accuracy in DOC patients to identify prognostic markers and to understand the neural correlates of consciousness. A correct diagnosis of consciousness in unresponsive or minimally responsive patients is important for prognostic and therapeutic management. Functional connectivity is considered as an important tool for the formulation of cerebral networks; it takes into account the primary sensorimotor, language, visual and central executive areas, where fMRI studies show damage in brain connectivity in the areas of frontoparietal networks in DOC patients. Methods: The integration of neuroimaging or neurophysiological methods could improve our knowledge of the neural correlates of clinical response after an acquired brain injury. The use of MRI is widely reported in the literature in different neurological diseases. In particular, fMRI is the most widely used brain-imaging technique to investigate the neural mechanisms underlying cognition and motor function. We carried out a detailed literature search following the relevant guidelines (PRISMA), where we collected data and results on patients with disorders of consciousness from the studies performed. Results: In this review, 12 studies were selected, which showed the importance of the prognostic role of fMRI for DOCs. Conclusions: Currently there are still few studies on this topic. Future studies using fMRI are to be considered an added value for the prognosis and management of DOCs.
Collapse
Affiliation(s)
| | - Lilla Bonanno
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (M.L.C.); (A.A.); (C.B.); (J.D.C.); (A.L.L.); (P.P.); (F.C.); (S.D.S.); (C.R.); (A.Q.); (S.M.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Mancuso M, Mencarelli L, Abbruzzese L, Basagni B, Zoccolotti P, Scarselli C, Capitani S, Neri F, Santarnecchi E, Rossi S. Modulation of Corticospinal Excitability during Action Observation in Patients with Disorders of Consciousness. Brain Sci 2024; 14:371. [PMID: 38672020 PMCID: PMC11048666 DOI: 10.3390/brainsci14040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Brain imaging studies have recently provided some evidence in favor of covert cognitive processes that are ongoing in patients with disorders of consciousness (DoC) (e.g., a minimally conscious state and vegetative state/unresponsive wakefulness syndrome) when engaged in passive sensory stimulation or active tasks such as motor imagery. In this exploratory study, we used transcranial magnetic stimulation (TMS) of the motor cortex to assess modulations of corticospinal excitability induced by action observation in eleven patients with DoC. Action observation is known to facilitate corticospinal excitability in healthy subjects, unveiling how the observer's motor system maps others' actions onto her/his motor repertoire. Additional stimuli were non-biological motion and acoustic startle stimuli, considering that sudden and loud acoustic stimulation is known to lower corticospinal excitability in healthy subjects. The results indicate that some form of motor resonance is spared in a subset of patients with DoC, with some significant difference between biological and non-biological motion stimuli. However, there was no covariation between corticospinal excitability and the type of DoC diagnosis (i.e., whether diagnosed with VS/UWS or MCS). Similarly, no covariation was detected with clinical changes between admission and discharge in clinical outcome measures. Both motor resonance and the difference between the resonance with biological/non-biological motion discrimination correlated with the amplitude of the N20 somatosensory evoked potentials, following the stimulation of the median nerve at the wrist (i.e., the temporal marker signaling the activation of the contralateral primary somatosensory cortex). Moreover, the startle-evoking stimulus produced an anomalous increase in corticospinal excitability, suggesting a functional dissociation between cortical and subcortical circuits in patients with DoC. Further work is needed to better comprehend the conditions in which corticospinal facilitation occurs and whether and how they may relate to individual clinical parameters.
Collapse
Affiliation(s)
- Mauro Mancuso
- Physical and Rehabilitative Medicine Unit, NHS-USL Tuscany South-Est, 58100 Grosseto, Italy;
- Tuscany Rehabilitation Clinic, 52025 Montevarchi, Italy; (L.A.); (P.Z.); (C.S.); (S.C.)
| | - Lucia Mencarelli
- Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze, Siena Brain Investigation and Neuromodulation (Si-BIN) Lab, University of Siena, 53100 Siena, Italy; (L.M.); (F.N.); (S.R.)
| | - Laura Abbruzzese
- Tuscany Rehabilitation Clinic, 52025 Montevarchi, Italy; (L.A.); (P.Z.); (C.S.); (S.C.)
| | - Benedetta Basagni
- Tuscany Rehabilitation Clinic, 52025 Montevarchi, Italy; (L.A.); (P.Z.); (C.S.); (S.C.)
| | - Pierluigi Zoccolotti
- Tuscany Rehabilitation Clinic, 52025 Montevarchi, Italy; (L.A.); (P.Z.); (C.S.); (S.C.)
| | - Cristiano Scarselli
- Tuscany Rehabilitation Clinic, 52025 Montevarchi, Italy; (L.A.); (P.Z.); (C.S.); (S.C.)
| | - Simone Capitani
- Tuscany Rehabilitation Clinic, 52025 Montevarchi, Italy; (L.A.); (P.Z.); (C.S.); (S.C.)
| | - Francesco Neri
- Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze, Siena Brain Investigation and Neuromodulation (Si-BIN) Lab, University of Siena, 53100 Siena, Italy; (L.M.); (F.N.); (S.R.)
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA;
| | - Simone Rossi
- Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze, Siena Brain Investigation and Neuromodulation (Si-BIN) Lab, University of Siena, 53100 Siena, Italy; (L.M.); (F.N.); (S.R.)
| |
Collapse
|
5
|
Riganello F, Vatrano M, Cortese MD, Tonin P, Soddu A. Central autonomic network and early prognosis in patients with disorders of consciousness. Sci Rep 2024; 14:1610. [PMID: 38238457 PMCID: PMC10796939 DOI: 10.1038/s41598-024-51457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
The central autonomic network (CAN) plays a crucial role in modulating the autonomic nervous system. Heart rate variability (HRV) is a valuable marker for assessing CAN function in disorders of consciousness (DOC) patients. We used HRV analysis for early prognosis in 58 DOC patients enrolled within ten days of hospitalization. They underwent a five-minute electrocardiogram during baseline and acoustic/visual stimulation. The coma recovery scale-revised (CRS-R) was used to define the patient's consciousness level and categorize the good/bad outcome at three months. The high-frequency Power Spectrum Density and the standard deviation of normal-to-normal peaks in baseline, the sample entropy during the stimulation, and the time from injury features were used in the support vector machine analysis (SVM) for outcome prediction. The SVM predicted the patients' outcome with an accuracy of 96% in the training test and 100% in the validation test, underscoring its potential to provide crucial clinical information about prognosis.
Collapse
Affiliation(s)
- Francesco Riganello
- Reseach in Advanced Neurorehabilitation, S. Anna Institute, 88900, Crotone, Italy.
| | - Martina Vatrano
- Reseach in Advanced Neurorehabilitation, S. Anna Institute, 88900, Crotone, Italy
| | | | - Paolo Tonin
- Reseach in Advanced Neurorehabilitation, S. Anna Institute, 88900, Crotone, Italy
| | - Andrea Soddu
- Physics & Astronomy Department and Western Institute for Neuroscience, University of Western Ontario, London, ON, Canada
| |
Collapse
|
6
|
Boerwinkle VL, Gillette K, Rubinos CA, Broman-Fulks J, Aseem F, DeHoff GK, Arhin M, Cediel E, Strohm T. Functional MRI for Acute Covert Consciousness: Emerging Data and Implementation Case Series. Semin Neurol 2023; 43:712-734. [PMID: 37788679 DOI: 10.1055/s-0043-1775845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Although research studies have begun to demonstrate relationships between disorders of consciousness and brain network biomarkers, there are limited data on the practical aspects of obtaining such network biomarkers to potentially guide care. As the state of knowledge continues to evolve, guidelines from professional societies such as the American and European Academies of Neurology and many experts have advocated that the risk-benefit ratio for the assessment of network biomarkers has begun to favor their application toward potentially detecting covert consciousness. Given the lack of detailed operationalization guidance and the context of the ethical implications, herein we offer a roadmap based on local institutional experience with the implementation of functional MRI in the neonatal, pediatric, and adult intensive care units of our local government-supported health system. We provide a case-based demonstrative approach intended to review the current literature and to assist with the initiation of such services at other facilities.
Collapse
Affiliation(s)
- Varina L Boerwinkle
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kirsten Gillette
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Clio A Rubinos
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jordan Broman-Fulks
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Fazila Aseem
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Grace K DeHoff
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Martin Arhin
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Emilio Cediel
- Division of Child Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Tamara Strohm
- Division of Neurocritical Care, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
7
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard JD, Williams GB, Craig MM, Finoia P, Peattie ARD, Coppola P, Menon DK, Bor D, Stamatakis EA. Reduced emergent character of neural dynamics in patients with a disrupted connectome. Neuroimage 2023; 269:119926. [PMID: 36740030 PMCID: PMC9989666 DOI: 10.1016/j.neuroimage.2023.119926] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023] Open
Abstract
High-level brain functions are widely believed to emerge from the orchestrated activity of multiple neural systems. However, lacking a formal definition and practical quantification of emergence for experimental data, neuroscientists have been unable to empirically test this long-standing conjecture. Here we investigate this fundamental question by leveraging a recently proposed framework known as "Integrated Information Decomposition," which establishes a principled information-theoretic approach to operationalise and quantify emergence in dynamical systems - including the human brain. By analysing functional MRI data, our results show that the emergent and hierarchical character of neural dynamics is significantly diminished in chronically unresponsive patients suffering from severe brain injury. At a functional level, we demonstrate that emergence capacity is positively correlated with the extent of hierarchical organisation in brain activity. Furthermore, by combining computational approaches from network control theory and whole-brain biophysical modelling, we show that the reduced capacity for emergent and hierarchical dynamics in severely brain-injured patients can be mechanistically explained by disruptions in the patients' structural connectome. Overall, our results suggest that chronic unresponsiveness resulting from severe brain injury may be related to structural impairment of the fundamental neural infrastructures required for brain dynamics to support emergence.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Leverhulme Centre for the Future of Intelligence, Cambridge, UK; The Alan Turing Institute, London, UK.
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Fernando E Rosas
- Department of Brain Science, Center for Psychedelic Research, Imperial College London, London, UK; Data Science Institute, Imperial College London, London, UK; Centre for Complexity Science, Imperial College London, London, UK; Center for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK; Department of Informatics, University of Sussex, Brighton, UK
| | - Judith Allanson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Department of Neurosciences, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation, Cambridge, UK
| | - John D Pickard
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Michael M Craig
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Paola Finoia
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alexander R D Peattie
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Coppola
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge, UK; Department of Psychology, Queen Mary University of London, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Marino MH, Koffer J, Nalla S. Update on Disorders of Consciousness. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2023. [DOI: 10.1007/s40141-023-00384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
9
|
Xu C, Wu W, Zheng X, Liang Q, Huang X, Zhong H, Xiao Q, Lan Y, Bai Y, Xie Q. Repetitive transcranial magnetic stimulation over the posterior parietal cortex improves functional recovery in nonresponsive patients: A crossover, randomized, double-blind, sham-controlled study. Front Neurol 2023; 14:1059789. [PMID: 36873436 PMCID: PMC9978157 DOI: 10.3389/fneur.2023.1059789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/18/2023] [Indexed: 02/19/2023] Open
Abstract
Background Recent studies have shown that patients with disorders of consciousness (DoC) can benefit from repetitive transcranial magnetic stimulation (rTMS) therapy. The posterior parietal cortex (PPC) is becoming increasingly important in neuroscience research and clinical treatment for DoC as it plays a crucial role in the formation of human consciousness. However, the effect of rTMS on the PPC in improving consciousness recovery remains to be studied. Method We conducted a crossover, randomized, double-blind, sham-controlled clinical study to assess the efficacy and safety of 10 Hz rTMS over the left PPC in unresponsive patients. Twenty patients with unresponsive wakefulness syndrome were recruited. The participants were randomly divided into two groups: one group received active rTMS treatment for 10 consecutive days (n = 10) and the other group received sham treatment for the same period (n = 10). After a 10-day washout period, the groups crossed over and received the opposite treatment. The rTMS protocol involved the delivery of 2000 pulses/day at a frequency of 10 Hz, targeting the left PPC (P3 electrode sites) at 90% of the resting motor threshold. The primary outcome measure was the JFK Coma Recovery Scele-Revised (CRS-R), and evaluations were conducted blindly. EEG power spectrum assessments were also conducted simultaneously before and after each stage of the intervention. Result rTMS-active treatment resulted in a significant improvement in the CRS-R total score (F = 8.443, p = 0.009) and the relative alpha power (F = 11.166, p = 0.004) compared to sham treatment. Furthermore, 8 out of 20 patients classified as rTMS responders showed improvement and evolved to a minimally conscious state (MCS) as a result of active rTMS. The relative alpha power also significantly improved in responders (F = 26.372, p = 0.002) but not in non-responders (F = 0.704, p = 0.421). No adverse effects related to rTMS were reported in the study. Conclusions This study suggests that 10 Hz rTMS over the left PPC can significantly improve functional recovery in unresponsive patients with DoC, with no reported side effects. Clinical trial registration www.ClinicalTrials.gov, identifier: NCT05187000.
Collapse
Affiliation(s)
- Chengwei Xu
- Department of Rehabilitation Medicine, Joint Research Centre for Disorders of Consciousness, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wanchun Wu
- Department of Rehabilitation Medicine, Joint Research Centre for Disorders of Consciousness, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaochun Zheng
- Department of Rehabilitation Medicine, Joint Research Centre for Disorders of Consciousness, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qimei Liang
- Department of Rehabilitation Medicine, Joint Research Centre for Disorders of Consciousness, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiyan Huang
- Department of Rehabilitation Medicine, Joint Research Centre for Disorders of Consciousness, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Haili Zhong
- Department of Rehabilitation Medicine, Joint Research Centre for Disorders of Consciousness, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qiuyi Xiao
- Department of Rehabilitation Medicine, Joint Research Centre for Disorders of Consciousness, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation Medicine, Joint Research Centre for Disorders of Consciousness, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yang Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qiuyou Xie
- Department of Rehabilitation Medicine, Joint Research Centre for Disorders of Consciousness, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Medina JP, Nigri A, Stanziano M, D’Incerti L, Sattin D, Ferraro S, Rossi Sebastiano D, Pinardi C, Marotta G, Leonardi M, Bruzzone MG, Rosazza C. Resting-State fMRI in Chronic Patients with Disorders of Consciousness: The Role of Lower-Order Networks for Clinical Assessment. Brain Sci 2022; 12:brainsci12030355. [PMID: 35326311 PMCID: PMC8946756 DOI: 10.3390/brainsci12030355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Resting-state fMRI (rs-fMRI) is a widely used technique to investigate the residual brain functions of patients with Disorders of Consciousness (DoC). Nonetheless, it is unclear how the networks that are more associated with primary functions, such as the sensory–motor, medial/lateral visual and auditory networks, contribute to clinical assessment. In this study, we examined the rs-fMRI lower-order networks alongside their structural MRI data to clarify the corresponding association with clinical assessment. We studied 109 chronic patients with DoC and emerged from DoC with structural MRI and rs-fMRI: 65 in vegetative state/unresponsive wakefulness state (VS/UWS), 34 in minimally conscious state (MCS) and 10 with severe disability. rs-fMRI data were analyzed with independent component analyses and seed-based analyses, in relation to structural MRI and clinical data. The results showed that VS/UWS had fewer networks than MCS patients and the rs-fMRI activity in each network was decreased. Visual networks were correlated to the clinical status, and in cases where no clinical response occurred, rs-fMRI indicated distinctive networks conveying information in a similar way to other techniques. The information provided by single networks was limited, whereas the four networks together yielded better classification results, particularly when the model included rs-fMRI and structural MRI data (AUC = 0.80). Both quantitative and qualitative rs-fMRI analyses yielded converging results; vascular etiology might confound the results, and disease duration generally reduced the number of networks observed. The lower-order rs-fMRI networks could be used clinically to support and corroborate visual function assessments in DoC.
Collapse
Affiliation(s)
- Jean Paul Medina
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (J.P.M.); (M.S.); (L.D.); (S.F.); (C.P.); (M.G.B.)
| | - Anna Nigri
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (J.P.M.); (M.S.); (L.D.); (S.F.); (C.P.); (M.G.B.)
- Correspondence: (A.N.); (C.R.)
| | - Mario Stanziano
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (J.P.M.); (M.S.); (L.D.); (S.F.); (C.P.); (M.G.B.)
- Neurosciences Department “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy
| | - Ludovico D’Incerti
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (J.P.M.); (M.S.); (L.D.); (S.F.); (C.P.); (M.G.B.)
- Neuroradiology Unit, Children’s Hospital A. Meyer—University of Florence, 50139 Florence, Italy
| | - Davide Sattin
- IRCCS Istituti Clinici Scientifici Maugeri di Milano, 20138 Milan, Italy;
| | - Stefania Ferraro
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (J.P.M.); (M.S.); (L.D.); (S.F.); (C.P.); (M.G.B.)
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Davide Rossi Sebastiano
- Epileptology Unit, Department of Neurophysiology and Diagnostic, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Chiara Pinardi
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (J.P.M.); (M.S.); (L.D.); (S.F.); (C.P.); (M.G.B.)
- Medical Physics Unit, Asst Nord Milano, Sesto San Giovanni, 20099 Milan, Italy
| | - Giorgio Marotta
- Department of Nuclear Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Matilde Leonardi
- Neurology, Public Health, Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (J.P.M.); (M.S.); (L.D.); (S.F.); (C.P.); (M.G.B.)
| | - Cristina Rosazza
- Neuroradiology Unit, Diagnostic and Technology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (J.P.M.); (M.S.); (L.D.); (S.F.); (C.P.); (M.G.B.)
- Department of Humanistic Studies, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence: (A.N.); (C.R.)
| |
Collapse
|
11
|
Luppi AI, Cain J, Spindler LRB, Górska UJ, Toker D, Hudson AE, Brown EN, Diringer MN, Stevens RD, Massimini M, Monti MM, Stamatakis EA, Boly M. Mechanisms Underlying Disorders of Consciousness: Bridging Gaps to Move Toward an Integrated Translational Science. Neurocrit Care 2021; 35:37-54. [PMID: 34236622 PMCID: PMC8266690 DOI: 10.1007/s12028-021-01281-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023]
Abstract
AIM In order to successfully detect, classify, prognosticate, and develop targeted therapies for patients with disorders of consciousness (DOC), it is crucial to improve our mechanistic understanding of how severe brain injuries result in these disorders. METHODS To address this need, the Curing Coma Campaign convened a Mechanisms Sub-Group of the Coma Science Work Group (CSWG), aiming to identify the most pressing knowledge gaps and the most promising approaches to bridge them. RESULTS We identified a key conceptual gap in the need to differentiate the neural mechanisms of consciousness per se, from those underpinning connectedness to the environment and behavioral responsiveness. Further, we characterised three fundamental gaps in DOC research: (1) a lack of mechanistic integration between structural brain damage and abnormal brain function in DOC; (2) a lack of translational bridges between micro- and macro-scale neural phenomena; and (3) an incomplete exploration of possible synergies between data-driven and theory-driven approaches. CONCLUSION In this white paper, we discuss research priorities that would enable us to begin to close these knowledge gaps. We propose that a fundamental step towards this goal will be to combine translational, multi-scale, and multimodal data, with new biomarkers, theory-driven approaches, and computational models, to produce an integrated account of neural mechanisms in DOC. Importantly, we envision that reciprocal interaction between domains will establish a "virtuous cycle," leading towards a critical vantage point of integrated knowledge that will enable the advancement of the scientific understanding of DOC and consequently, an improvement of clinical practice.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Joshua Cain
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Lennart R B Spindler
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Urszula J Górska
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Daniel Toker
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrew E Hudson
- Department of Anesthesia and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emery N Brown
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael N Diringer
- Department of Neurology and Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Robert D Stevens
- Departments of Anesthesiology and Critical Care Medicine, Neurology and Neurosurgery, and Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università Degli Studi Di Milano, Milan, Italy
- Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Martin M Monti
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Melanie Boly
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
12
|
Aloi D, della Rocchetta AI, Ditchfield A, Coulborn S, Fernández-Espejo D. Therapeutic Use of Transcranial Direct Current Stimulation in the Rehabilitation of Prolonged Disorders of Consciousness. Front Neurol 2021; 12:632572. [PMID: 33897592 PMCID: PMC8058460 DOI: 10.3389/fneur.2021.632572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Patients with Prolonged Disorders of Consciousness (PDOC) have catastrophic disabilities and very complex needs for care. Therapeutic options are very limited, and patients often show little functional improvement over time. Neuroimaging studies have demonstrated that a significant number of PDOC patients retain a high level of cognitive functioning, and in some cases even awareness, and are simply unable to show this with their external behavior - a condition known as cognitive-motor dissociation (CMD). Despite vast implications for diagnosis, the discovery of covert cognition in PDOC patients is not typically associated with a more favorable prognosis, and the majority of patients will remain in a permanent state of low responsiveness. Recently, transcranial direct current stimulation (tDCS) has attracted attention as a potential therapeutic tool in PDOC. Research to date suggests that tDCS can lead to clinical improvements in patients with a minimally conscious state (MCS), especially when administered over multiple sessions. While promising, the outcomes of these studies have been highly inconsistent, partially due to small sample sizes, heterogeneous methodologies (in terms of both tDCS parameters and outcome measures), and limitations related to electrode placement and heterogeneity of brain damage inherent to PDOC. In addition, we argue that neuroimaging and electrophysiological assessments may serve as more sensitive biomarkers to identify changes after tDCS that are not yet apparent behaviorally. Finally, given the evidence that concurrent brain stimulation and physical therapy can enhance motor rehabilitation, we argue that future studies should focus on the integration of tDCS with conventional rehabilitation programmes from the subacute phase of care onwards, to ascertain whether any synergies exist.
Collapse
Affiliation(s)
- Davide Aloi
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | | | - Alice Ditchfield
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Sean Coulborn
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Davinia Fernández-Espejo
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Edlow BL, Claassen J, Schiff ND, Greer DM. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies. Nat Rev Neurol 2021; 17:135-156. [PMID: 33318675 PMCID: PMC7734616 DOI: 10.1038/s41582-020-00428-x] [Citation(s) in RCA: 344] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Substantial progress has been made over the past two decades in detecting, predicting and promoting recovery of consciousness in patients with disorders of consciousness (DoC) caused by severe brain injuries. Advanced neuroimaging and electrophysiological techniques have revealed new insights into the biological mechanisms underlying recovery of consciousness and have enabled the identification of preserved brain networks in patients who seem unresponsive, thus raising hope for more accurate diagnosis and prognosis. Emerging evidence suggests that covert consciousness, or cognitive motor dissociation (CMD), is present in up to 15-20% of patients with DoC and that detection of CMD in the intensive care unit can predict functional recovery at 1 year post injury. Although fundamental questions remain about which patients with DoC have the potential for recovery, novel pharmacological and electrophysiological therapies have shown the potential to reactivate injured neural networks and promote re-emergence of consciousness. In this Review, we focus on mechanisms of recovery from DoC in the acute and subacute-to-chronic stages, and we discuss recent progress in detecting and predicting recovery of consciousness. We also describe the developments in pharmacological and electrophysiological therapies that are creating new opportunities to improve the lives of patients with DoC.
Collapse
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Nicholas D Schiff
- Feil Family Brain Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - David M Greer
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
14
|
Peterson A, Owen AM, Karlawish J. Translating the Discovery of Covert Consciousness Into Clinical Practice. JAMA Neurol 2021; 77:541-542. [PMID: 32176251 DOI: 10.1001/jamaneurol.2020.0232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Andrew Peterson
- Institute for Philosophy and Public Policy, George Mason University, Fairfax, Virginia
| | - Adrian M Owen
- The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Jason Karlawish
- Penn Memory Center, University of Pennsylvania, Philadelphia.,Department of Medical Ethics and Health Policy, University of Pennsylvania, Philadelphia
| |
Collapse
|
15
|
Zhang XY, Li JJ, Lu HT, Teng WJ, Liu SH. Positive effects of music therapist's selected auditory stimulation on the autonomic nervous system of patients with disorder of consciousness: a randomized controlled trial. Neural Regen Res 2021; 16:1266-1272. [PMID: 33318404 PMCID: PMC8284264 DOI: 10.4103/1673-5374.301021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The current randomized controlled trial was performed at the China Rehabilitation Science Institute, China to test the hypothesis that musical auditory stimulation has positive effects on the autonomic nervous system of patients with disorder of consciousness. Although past studies have recommended that patients with disorder of consciousness listen to patient-preferred music, this practice is not universally accepted by researchers. Twenty patients with severe disorder of consciousness listened to either therapist-selected (n = 10, 6 males and 4 females; 43.33 ± 18.76 years old) or patient-preferred (n = 10, 5 males and 5 females, 48.83 ± 18.79 years old) musical therapy, 30 minutes/day, 5 times/week for 6 weeks. The results showed no obvious differences in heart rate variability-related parameters including heart rate, standard deviation of normal-to-normal R-R intervals, and the root-mean-square of successive heartbeat interval differences of successive heartbeat intervals between the two groups of patients. However, percentage of differences exceeding 50 ms between adjacent normal number of intervals, low-frequency power/high-frequency power, high-frequency power norm, low-frequency power norm, and total power were higher in patients receiving therapist-selected music than in patients receiving their own preferred music. In contrast, this relationship was reversed for the high-frequency power and very-low-frequency band. These results suggest that compared with preferred musical stimulation, therapist-selected musical stimulation resulted in higher interactive activity of the autonomic nervous system. Therefore, therapist-selected musical stimulation should be used to arouse the autonomic nervous system of patients with disorder of consciousness. This study was approved by the Institutional Ethics Committee of China Rehabilitation Research Center, China (approval No. 2018-022-1) on March 12, 2018 and registered with the Chinese Clinical Trial Registry (registration number ChiCTR1800017809) on August 15, 2018.
Collapse
Affiliation(s)
- Xiao-Ying Zhang
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders; Music Therapy Center, Department of Psychology, China Rehabilitation Research Center, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation Medicine, Capital Medical University; China Rehabilitation Science Institute; Beijing Key Laboratory of Neural Injury and Rehabilitation; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Hai-Tao Lu
- School of Rehabilitation Medicine, Capital Medical University; Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Wen-Jia Teng
- School of Rehabilitation Medicine, Capital Medical University; Music Therapy Center, Department of Psychology, China Rehabilitation Research Center, Beijing, China
| | - Song-Huai Liu
- School of Rehabilitation Medicine, Capital Medical University; Music Therapy Center, Department of Psychology, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
16
|
Salvato G, Berlingeri M, De Maio G, Curto F, Chieregato A, Magnani FG, Sberna M, Rosanova M, Paulesu E, Bottini G. Autonomic responses to emotional linguistic stimuli and amplitude of low-frequency fluctuations predict outcome after severe brain injury. NEUROIMAGE-CLINICAL 2020; 28:102356. [PMID: 32750635 PMCID: PMC7397392 DOI: 10.1016/j.nicl.2020.102356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/26/2020] [Accepted: 07/18/2020] [Indexed: 01/22/2023]
Abstract
Acute DOC patients with favourable outcome show preserved event-related electrodermal response. Acute DOC patients showed reduced fALFF in the posterior cingulate cortex. Event-related electrodermal activity correlated with the fALFFs in the PCC in the acute phase.
An accurate prognosis on the outcome of brain-injured patients with disorders of consciousness (DOC) remains a significant challenge, especially in the acute stage. In this study, we applied a multiple-technique approach to provide accurate predictions on functional outcome after 6 months in 15 acute DOC patients. Electrophysiological correlates of implicit cognitive processing of verbal stimuli and data-driven voxel-wise resting-state fMRI signals, such as the fractional amplitude of low-frequency fluctuations (fALFF), were employed. Event-related electrodermal activity, an index of autonomic activation, was recorded in response to emotional words and pseudo-words at baseline (T0). On the same day, patients also underwent a resting-state fMRI scan. Six months later (T1), patients were classified as outcome-negative and outcome-positive using a standard functional outcome scale. We then revisited the baseline measures to test their predictive power for the functional outcome measured at T1. We found that only outcome-positive patients had an earlier, higher autonomic response for words compared to pseudo-words, a pattern similar to that of healthy awake controls. Furthermore, DOC patients showed reduced fALFF in the posterior cingulate cortex (PCC), a brain region that contributes to autonomic regulation and awareness. The event-related electrodermal marker of residual cognitive functioning was found to have a significant correlation with residual local neuronal activity in the PCC. We propose that a residual autonomic response to cognitively salient stimuli, together with a preserved resting-state activity in the PCC, can provide a useful prognostic index in acute DOC.
Collapse
Affiliation(s)
- Gerardo Salvato
- Cognitive Neuropsychology Centre, ASST "Grande Ospedale Metropolitano" Niguarda, Milano, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; NeuroMi, Milan Center for Neuroscience, Milano, Italy.
| | - Manuela Berlingeri
- NeuroMi, Milan Center for Neuroscience, Milano, Italy; Department of Humanistic Studies, University of Urbino Carlo Bo, Urbino, Italy; Center of Developmental Neuropsychology, Area Vasta 1, ASUR Marche, Pesaro, Italy.
| | - Gabriele De Maio
- Cognitive Neuropsychology Centre, ASST "Grande Ospedale Metropolitano" Niguarda, Milano, Italy
| | - Francesco Curto
- Department of Neuroresuscitation and Intensive Care, ASST "Grande Ospedale Metropolitano" Niguarda, Milano, Italy
| | - Arturo Chieregato
- Department of Neuroresuscitation and Intensive Care, ASST "Grande Ospedale Metropolitano" Niguarda, Milano, Italy
| | - Francesca Giulia Magnani
- Cognitive Neuropsychology Centre, ASST "Grande Ospedale Metropolitano" Niguarda, Milano, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; NeuroMi, Milan Center for Neuroscience, Milano, Italy
| | - Maurizio Sberna
- Department of Neuroradiology, ASST "Grande Ospedale Metropolitano" Niguarda, Milano, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Italy; Fondazione Europea di Ricerca Biomedica, FERB Onlus, Milano, Italy
| | - Eraldo Paulesu
- Psychology Department and NeuroMI-Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy; fMRI Unit, I.R.C.C.S. Galeazzi, Milano, Italy
| | - Gabriella Bottini
- Cognitive Neuropsychology Centre, ASST "Grande Ospedale Metropolitano" Niguarda, Milano, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; NeuroMi, Milan Center for Neuroscience, Milano, Italy
| |
Collapse
|
17
|
Network Mapping of Connectivity Alterations in Disorder of Consciousness: Towards Targeted Neuromodulation. J Clin Med 2020; 9:jcm9030828. [PMID: 32197485 PMCID: PMC7141258 DOI: 10.3390/jcm9030828] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
Disorder of consciousness (DoC) refers to a group of clinical conditions that may emerge after brain injury, characterized by a varying decrease in the level of consciousness that can last from days to years. An understanding of its neural correlates is crucial for the conceptualization and application of effective therapeutic interventions. Here we propose a quantitative meta-analysis of the neural substrate of DoC emerging from functional magnetic resonance (fMRI) and positron emission tomography (PET) studies. We also map the relevant networks of resulting areas to highlight similarities with Resting State Networks (RSNs) and hypothesize potential therapeutic solutions leveraging network-targeted noninvasive brain stimulation. Available literature was reviewed and analyzed through the activation likelihood estimate (ALE) statistical framework to describe resting-state or task-dependent brain activation patterns in DoC patients. Results show that task-related activity is limited to temporal regions resembling the auditory cortex, whereas resting-state fMRI data reveal a diffuse decreased activation affecting two subgroups of cortical (angular gyrus, middle frontal gyrus) and subcortical (thalamus, cingulate cortex, caudate nucleus) regions. Clustering of their cortical functional connectivity projections identify two main altered functional networks, related to decreased activity of (i) the default mode and frontoparietal networks, as well as (ii) the anterior salience and visual/auditory networks. Based on the strength and topography of their connectivity profile, biophysical modeling of potential brain stimulation solutions suggests the first network as the most feasible target for tES, tDCS neuromodulation in DoC patients.
Collapse
|