1
|
Nicolaus HF, Klonisch T, Paulsen F, Garreis F. C1q/TNF-Related Proteins 1, 6 and 8 Are Involved in Corneal Epithelial Wound Closure by Targeting Relaxin Receptor RXFP1 In Vitro. Int J Mol Sci 2023; 24:ijms24076839. [PMID: 37047812 PMCID: PMC10095411 DOI: 10.3390/ijms24076839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Inadequate wound healing of ocular surface injuries can lead to permanent visual impairment. The relaxin ligand-receptor system has been demonstrated to promote corneal wound healing through increased cell migration and modulation of extracellular matrix formation. Recently, C1q/tumor necrosis factor-related protein (CTRP) 8 was identified as a novel interaction partner of relaxin receptor RXFP1. Additional data also suggest a role for CTRP1 and CTRP6 in RXFP1-mediated cAMP signaling. However, the role of CTRP1, CTRP6 and CTRP8 at the ocular surface remains unclear. In this study, we investigated the effects of CTRP1, CTRP6, and CTRP8 on epithelial ocular surface wound closure and their dependence on the RXFP1 receptor pathway. CTRP1, CTRP6, and CTRP8 expression was analyzed by RT-PCR and immunohistochemistry in human tissues and cell lines derived from the ocular surface and lacrimal apparatus. In vitro ocular surface wound modeling was performed using scratch assays. We analyzed the effects of recombinant CTRP1, CTRP6, and CTRP8 on cell proliferation and migration in human corneal and conjunctival epithelial cell lines. Dependence on RXFP1 signaling was established by inhibiting ligand binding to RXFP1 using a specific anti-RXFP1 antibody. We detected the expression of CTRP1, CTRP6, and CTRP8 in human tissue samples of the cornea, conjunctiva, meibomian gland, efferent tear ducts, and lacrimal gland, as well as in human corneal, conjunctival, and meibomian gland epithelial cell lines. Scratch assays revealed a dose-dependent increase in the closure rate of surface defects in human corneal epithelial cells after treatment with CTRP1, CTRP6, and CTRP8, but not in conjunctival epithelial cells. Inhibition of RXFP1 fully attenuated the effect of CTRP8 on the closure rate of surface defects in human corneal epithelial cells, whereas the CTRP1 and CTRP6 effects were not completely suppressed. Conclusions: Our findings demonstrate a novel role for CTRP1, CTRP6, and CTRP8 in corneal epithelial wound closure and suggest an involvement of the relaxin receptor RXFP1 signaling pathway. This could be a first step toward new approaches for pharmacological and therapeutic intervention.
Collapse
Affiliation(s)
- Hagen Fabian Nicolaus
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute in Oncology and Hematology (RIOH), Cancer Care Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Fabian Garreis
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
2
|
Li C, Ying S, Wu X, Zhu T, Zhou Q, Zhang Y, Liu Y, Zhu R, Hu H. CTRP1 Aggravates Cardiac Fibrosis by Regulating The NOX2/P38 Pathway in Macrophages. CELL JOURNAL 2022; 24:732-740. [PMID: 36527345 PMCID: PMC9790075 DOI: 10.22074/cellj.2022.557327.1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE C1q/TNF-related proteins 1 (CTRP1) is a recently identified adiponectin associated with obesity-linked disorders and adverse cardiovascular events. The effect of CTRP1 on cardiac fibrosis has not yet been fully elucidated; thus, we aimed to explore this association. MATERIALS AND METHODS In this experimental study, a mouse model of cardiac fibrosis was established by administering isoproterenol (ISO) (subcutaneously injecting 10 mg/kg/day for 3 days and then 5 mg/kg/day for 11 days). Mice were also injected with recombinant CTRP1 protein (200 μg/kg) 14 days after the final ISO administration. Adult mouse fibroblasts were isolated and stimulated with transforming growth factor (TGF) β1, followed by treatment with recombinant CTRP1. Primary bone marrow-derived macrophages were isolated from C57BL/6J mice and treated with recombinant CTRP1 as well. RESULTS CTRP1 level was increased in mouse plasma and heart tissue 2 weeks after ISO injection. Our findings indicated that recombinant CTRP1 injection aggravated ISO-induced cardiac fibrosis and dysfunction. However, recombinant CTRP1 did not alter TGFβ1-induced fibroblast proliferation and activation or collagen transcription. Recombinant CTRP1 exacerbated ISO-induced macrophage infiltration and inflammatory response. We determined that macrophages treated with recombinant CTRP1 showed increased pro-inflammatory cytokine release. Fibroblasts co-cultured with macrophages treated with recombinant CTRP1 showed increased proliferation and collagen transcription. We also found that CTRP1 upregulated the NADPH oxidase 2 (NOX2)/p38 pathway in macrophages. When we inhibited p38 signaling, the pro-inflammatory effect of CTRP1 on macrophages was counteracted. Fibroblasts co-cultured with macrophages treated with a p38 inhibitor also showed limited proliferation and collagen transcription. CONCLUSION Cardiac fibrosis was aggravated with the activation of the NOX2/p38 pathway in macrophages after CTRP1 treatment.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei,
P.R. China
| | - Shaozhen Ying
- Department of Cardiology, Jiangxi provincial People’s Hospital, Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Xiaolin Wu
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei,
P.R. China
| | - Tongjian Zhu
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei,
P.R. China
| | - Qing Zhou
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei,
P.R. China
| | - Yue Zhang
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei,
P.R. China
| | - Yongsheng Liu
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei,
P.R. China
| | - Rui Zhu
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei,
P.R. China
| | - He Hu
- Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei,
P.R. China,Department of CardiologyXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and
ScienceXiangyangHubeiP.R. China
| |
Collapse
|
3
|
Decreased Epicardial CTRP3 mRNA Levels in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease Undergoing Elective Cardiac Surgery: A Possible Association with Coronary Atherosclerosis. Int J Mol Sci 2022; 23:ijms23179988. [PMID: 36077376 PMCID: PMC9456433 DOI: 10.3390/ijms23179988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: C1q TNF-related protein 3 (CTRP3) is an adipokine with anti-inflammatory and cardioprotective properties. In our study, we explored changes in serum CTRP3 and its gene expression in epicardial (EAT) and subcutaneous (SAT) adipose tissue in patients with and without coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM) undergoing elective cardiac surgery. (2) Methods: SAT, EAT, and blood samples were collected at the start and end of surgery from 34 patients: (i) 11 without CAD or T2DM, (ii) 14 with CAD and without T2DM, and (iii) 9 with both CAD and T2DM. mRNA levels of CTRP3 were assessed by quantitative reverse transcription PCR. Circulating levels of CTRP3 and other factors were measured using ELISA and Luminex Multiplex commercial kits. (3) Results: Baseline plasma levels of TNF-α and IL6 did not differ among the groups and increased at the end of surgery. Baseline circulating levels of CTRP3 did not differ among the groups and decreased after surgery. In contrast, baseline CTRP3 mRNA levels in EAT were significantly decreased in CAD/T2DM group, while no differences were found for TNF-α and IL6 gene expression. (4) Conclusions: Our data suggest that decreased EAT mRNA levels of CTRP3 could contribute to higher risk of atherosclerosis in patients with CAD and T2DM.
Collapse
|
4
|
Raeisy H, Bayati P, Noorbakhsh F, Hakim Shooshtari M, Eftekhar Ardebili M, Shekarabi M, Mojtabavi N. C1q/TNF-related protein-1: Potential biomarker for early diagnosis of autism spectrum disorder. Int J Immunopathol Pharmacol 2022; 36:3946320221079471. [PMID: 35202556 PMCID: PMC8883289 DOI: 10.1177/03946320221079471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Autism spectrum disorders (ASDs) are neurodevelopmental diseases characterized by communication inabilities, social interaction impairment, repetitive behavior, as well as learning problems. Although the exact mechanism underlying this disease is still obscure, researchers believe that several factors play a significant role in its development and pathogenesis. Some authors have reported an association between adipokines family and autism. C1q/TNF-related protein-1 (CTRP1) is a member of the adipokines family, and we hypothesized that this adipokine might have an influential role in the pathogenesis of ASDs. Since there is no specific marker for screening the disease, we evaluated CTRP1 as a potential marker for achieving this purpose. METHODS Blood samples were collected from 82 (41 ASDs boys, 41 healthy boys as controls) children aged 5-7 years old. CTRP1 gene expression and CTRP1 serum level were measured by quantitative realtime-PCR and enzyme-linked immunosorbent assay methods, respectively. RESULTS It was found that CTRP1 is significantly elevated in autistic children in comparison to healthy controls, both at the gene expression level, as well as at the serum level; demonstrating a good diagnostic value with a good range of sensitivity and specificity for detecting ASDs. CONCLUSION CTRP1 expression is elevated in ASDs boys aged 5-7 years old, suggesting a role for this adipokine in ASDs pathophysiology. Also, receiver operating characteristic curve analyses revealed that this adipokine could be utilized as a diagnostic biomarker for differentiating ASDs patients from healthy individuals along with other recently proposed biomarkers.
Collapse
Affiliation(s)
- Hamed Raeisy
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Hakim Shooshtari
- Department of Psychiatry, School of Behavioral Sciences and Mental Health, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Eftekhar Ardebili
- Mental Health Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shekarabi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
The effect of combined resistance aerobic exercise training on concentrations of asprosin and complement C1q tumor necrosis factor-related protein-1 in men with type 2 diabetes. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-021-00738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Fei H, Xiang P, Luo W, Tan X, Gu C, Liu M, Chen M, Wang Q, Yang J. CTRP1 Attenuates Cerebral Ischemia/Reperfusion Injury via the PERK Signaling Pathway. Front Cell Dev Biol 2021; 9:700854. [PMID: 34422821 PMCID: PMC8371340 DOI: 10.3389/fcell.2021.700854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemic stroke is one of the leading causes of death worldwide. Previous studies have shown that circulating levels of CTRP1 are upregulated in patients with acute ischemic stroke. However, the function of CTRP1 in neurons remains unclear. The purpose of this study was to explore the role of CTRP1 in cerebral ischemia reperfusion injury (CIRI) and to elucidate the underlying mechanism. Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) models were used to simulate cerebral ischemic stroke in vivo and in vitro, respectively. CTRP1 overexpression lentivirus and CTRP1 siRNA were used to observe the effect of CTRP1 expression, and the PERK selective activator CCT020312 was used to activate the PERK signaling pathway. We found the decreased expression of CTRP1 in the cortex of MCAO/R-treated rats and OGD/R-treated primary cortical neurons. CTRP1 overexpression attenuated CIRI, accompanied by the reduction of apoptosis and suppression of the PERK signaling pathway. Interference with CTRP1 expression in vitro aggravated apoptotic activity and increased the expression of proteins involved in the PERK signaling pathway. Moreover, activating the PERK signaling pathway abolished the protective effects of CTRP1 on neuron injury induced by CIRI in vivo and in vitro. In conclusion, CTRP1 protects against CIRI by reducing apoptosis and endoplasmic reticulum stress (ERS) through inhibiting the PERK-dependent signaling pathway, suggesting that CTRP1 plays a crucial role in the pathogenesis of CIRI.
Collapse
Affiliation(s)
- Huizhi Fei
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.,Chongqing Three Gorges Medical College, Chongqing, China
| | - Pu Xiang
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wen Luo
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiaodan Tan
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Chao Gu
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Maozhu Liu
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Mengyuan Chen
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qiong Wang
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Junqing Yang
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
CTRP-1 levels are related to insulin resistance in pregnancy and gestational diabetes mellitus. Sci Rep 2020; 10:17345. [PMID: 33060724 PMCID: PMC7562865 DOI: 10.1038/s41598-020-74413-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/28/2020] [Indexed: 01/13/2023] Open
Abstract
Recent studies have shown higher levels of CTRP-1 (C1QTNF-related protein) in patients with type 2 diabetes compared to controls. We aimed at investigating CTRP-1 in gestational diabetes mellitus (GDM). CTRP-1 levels were investigated in 167 women (93 with normal glucose tolerance (NGT), 74 GDM) of a high-risk population for GDM. GDM was further divided into GDM subtypes depending on a predominant insulin sensitivity issue (GDM-IR) or secretion deficit (GDM-IS). Glucose tolerance was assessed with indices [Matsuda index, Stumvoll first phase index, insulin-secretion-sensitivity-index 2 (ISSI-2), area-under-the-curve (AUC) insulin, AUC glucose] derived from an oral glucose tolerance test (oGTT) performed at < 21 and 24–28 weeks of gestation. In pregnancy, CTRP-1 levels of GDM (76.86 ± 37.81 ng/ml) and NGT (82.2 ± 35.34 ng/ml; p = 0.104) were similar. However, GDM-IR women (65.18 ± 42.18 ng/ml) had significantly lower CTRP-1 levels compared to GDM-IS (85.10 ± 28.14 ng/ml; p = 0.009) and NGT (p = 0.006). CTRP-1 levels correlated negatively with weight, AUC insulin, Stumvoll first phase index, bioavailable estradiol and positively with HbA1c, Matsuda Index and ISSI-2. A multiple regression analysis revealed bioavailable estradiol (β = − 0.280, p = 0.008) and HbA1c (β = 0.238; p = 0.018) as the main variables associated with CTRP-1 in GDM. Postpartum, waist and hip measurements were predictive of CRTP-1 levels instead. CTRP-1 levels were higher postpartum than during pregnancy (91.92 ± 47.27 vs.82.44 ± 38.99 ng/ml; p = 0.013). CTRP-1 is related to insulin resistance in pregnancy and might be a metabolic biomarker for insulin resistance in GDM. CTRP-1 levels were significantly lower during pregnancy than postpartum, probably due to rising insulin resistance during pregnancy.
Collapse
|
8
|
Janowska JD. C1q/TNF-related Protein 1, a Multifunctional Adipokine: An Overview of Current Data. Am J Med Sci 2020; 360:222-228. [PMID: 32591091 DOI: 10.1016/j.amjms.2020.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/10/2020] [Accepted: 05/20/2020] [Indexed: 01/10/2023]
Abstract
The present review aimed to present the research highlights on C1q/TNF-related protein 1 (CTRP1), a member of the recently discovered family of highly conserved adiponectin paralog proteins, C1q tumor necrosis factor-related proteins. CTRP1 plays an important role in regulating body energy homeostasis and sensitivity to insulin. Studies on animal models have shown that it lowers the concentration of glucose. Elevated concentrations of CTRP1 reduce weight gain and diet-induced insulin resistance. CTRP1 limits the extent of ischemia-reperfusion injury in acute myocardial infarction. It inhibits platelet aggregation by blocking von Willebrand factor binding to collagen. In patients with chronic kidney disease, an increase in CTRP1 levels is associated with a lesser degree of disease progression. CTRP1 stimulates aldosterone synthesis in the adrenal cortex by affecting aldosterone synthase expression. In dehydration, an increase in CTRP1 concentration helps to maintain normotension. It participates in processes related to the proliferation and maturation of chondrocytes. It also promotes atherosclerosis, and a surge in its concentration is correlated with a higher cardiovascular risk in patients with coronary atherosclerosis. In vascular smooth muscle cells, it induces the expression of proinflammatory cytokines. An increase in CTRP1 levels is correlated with the progression of the neoplastic process in patients with glioblastoma.
Collapse
Affiliation(s)
- Joanna Dorota Janowska
- Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
9
|
CTRP1 Attenuates UUO-induced Renal Fibrosis via AMPK/NOX4 Pathway in Mice. Curr Med Sci 2020; 40:48-54. [PMID: 32166664 DOI: 10.1007/s11596-020-2145-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Indexed: 01/08/2023]
Abstract
C1q/TNF-related protein 1 (CTRP1), a conserved protein of the C1q family, plays a key role in cardiovascular and metabolic diseases. However, the role of CTRP1 in renal injury is unclear. The purpose of this study is to explore the role of CTRP1 in unilateral ureteral obstruction (UUO)-induced renal fibrosis and to elucidate the underlying mechanism. Using gene delivery system, CTRP1 was overexpressed in the kidney, then the mice were operated to induce UUO model after adenovirus transfection. It was found that the expression of CTRP1 in the renal tissue was decreased in mice after UUO. CTRP1 overexpression decreased the kidney function and kidney weight index. Moreover, CTRP1 reduced oxidative stress and renal collagen deposition in vivo. As expected, we found that CTRP1 activated AMP-activated kinase (AMPK) and decreased NOX4 expression, while silencing AMPKα1 abolished the protective effects of CTRP1 overexpression in mice after UUO. In conclusion, CTRP1 may protect against UUO-induced renal injury via AMPK/NOX4 signaling. Our results indicate that CTRP1 exhibits potential effects to treat renal fibrosis caused by UUO.
Collapse
|
10
|
Abstract
The Special Issue “Pathogenetic and Therapeutic Significance of Adipokines in Diabetes” focused on adipokines as shared diagnostic biomarkers and therapeutic targets for both obesity and type 2 diabetes. Experts discussed the pathological role of adipokines in their studies associated with diabetes. It provided new insights into the role of adipokines in diabetes. In this commentary and review, these studies will be summarized and the novel roles of adipokines will be discussed. This will also confirm the role of adipokines as biomarkers for diagnosis and prediction, and as therapeutic targets of diabetes and its related pathogenic phenomena.
Collapse
|
11
|
Loosen SH, Koch A, Tacke F, Roderburg C, Luedde T. The Role of Adipokines as Circulating Biomarkers in Critical Illness and Sepsis. Int J Mol Sci 2019; 20:ijms20194820. [PMID: 31569348 PMCID: PMC6801868 DOI: 10.3390/ijms20194820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
Sepsis represents a major global health burden. Early diagnosis of sepsis as well as guiding early therapeutic decisions in septic patients still represent major clinical challenges. In this context, a whole plethora of different clinical and serum-based markers have been tested regarding their potential for early detection of sepsis and their ability to stratify patients according to their probability to survive critical illness and sepsis. Adipokines represent a fast-growing class of proteins that have gained an increasing interest with respect to their potential to modulate immune responses in inflammatory and infectious diseases. We review current knowledge on the role of different adipokines in diagnostic work-up and risk stratification of sepsis as well as critical illness. We discuss recent data from animal models as well as from clinical studies and finally highlight the limitations of these analyses that currently prevent the use of adipokines as biomarkers in daily practice.
Collapse
Affiliation(s)
- Sven H. Loosen
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (A.K.); (T.L.)
| | - Alexander Koch
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (A.K.); (T.L.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Augustenburger Platz 1, 10117 Berlin, Germany;
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Augustenburger Platz 1, 10117 Berlin, Germany;
- Correspondence: ; Tel.: +49-3045-0653-022; Fax: +49-3045-0553-902
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (A.K.); (T.L.)
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
12
|
Decreased CTRP3 Plasma Concentrations Are Associated with Sepsis and Predict Mortality in Critically Ill Patients. Diagnostics (Basel) 2019; 9:diagnostics9020063. [PMID: 31234326 PMCID: PMC6628070 DOI: 10.3390/diagnostics9020063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/08/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
C1q/ tumor necrosis factor (TNF)-like protein 3 (CTRP3) represents a novel member of the adipokine family that exerts favorable metabolic actions in humans. However, the role of CTRP3 in critical illness and sepsis is currently unknown. Upon admission to the medical intensive care unit (ICU), we investigated CTRP3 plasma concentrations in 218 critically ill patients (145 with sepsis, 73 without sepsis). Results were compared with 66 healthy controls. CTRP3 plasma levels were significantly decreased in critically ill patients, when compared to healthy controls. In particular, low CTRP3 levels were highly associated with the presence of sepsis. CTRP3 levels were neither associated with obesity nor diabetes. In critically ill patients, CTRP3 plasma concentrations were inversely correlated with inflammatory cytokines and classical sepsis markers. Among a wide group of adipokines, CTRP3 only correlated with circulating resistin. Low CTRP3 plasma levels were associated with the overall mortality, and CTRP3 levels below 620.6 ng/mL indicated a particularly increased mortality risk in ICU patients. Our study demonstrates for the first time the role of circulating CTRP3 as a biomarker in critically ill patients that might facilitate diagnosis of sepsis as well as prognosis prediction. The association between low CTRP3 and increased inflammation warrants further pathophysiological investigations.
Collapse
|