1
|
Huh J, Chae MS. Paired Remote Ischemic Preconditioning in Recipients and Living Donors Can Mitigate Cardiovascular Stress in Recipients After Living-Donor Kidney Transplantation: A Propensity-Score-Matching Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1826. [PMID: 39597011 PMCID: PMC11596797 DOI: 10.3390/medicina60111826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives: This study explored the effect of paired remote ischemic preconditioning (RIPC), involving both recipients and living donors, on cardiovascular stress in recipients after living-donor kidney transplantation (LDKT). The analysis included an assessment of the impact on cardiovascular biomarkers and post-transplant cardiovascular clinical events. Materials and Methods: A retrospective observational cohort study of 520 adult LDKT patients was conducted, employing propensity score matching (PSM) to analyze perioperative factors. The patients were allocated to no-RIPC (n = 260) and paired-RIPC (n = 260) groups. The two groups were compared with respect to high-sensitivity troponin I (hsTnI) and B-type natriuretic peptide (BNP) levels, corrected QT (QTc) intervals, the occurrence of arrhythmia, and the requirement for cardiovascular interventions. Results: After PSM, there were no significant differences in perioperative parameters between the no-RIPC and paired-RIPC groups. However, on postoperative day (POD) 1, higher hsTnI levels and QTc interval prolongation, as well as higher incidences of arrhythmia and the need for percutaneous coronary intervention (PCI), were determined in the no-RIPC group than in the paired-RIPC group. The associations between paired RIPC and improved cardiovascular outcomes were significant, including reduced odds of elevated hsTnI levels, QTc prolongation, and arrhythmia. The no-RIPC group also had longer intensive care unit (ICU) stays, and higher rates of rescue dialysis. Conclusions: Paired-RIPC involving recipients and donors effectively reduces cardiovascular stress markers and improves postoperative cardiovascular outcomes in LDKT recipients, underscoring its potential as a protective strategy against perioperative cardiovascular risks.
Collapse
Affiliation(s)
| | - Min Suk Chae
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
2
|
Huh J, Chae MS. Impact of Paired Remote Ischemic Preconditioning on Postreperfusion Syndrome in Living-Donor Liver Transplantation: A Propensity-Score Matching Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1830. [PMID: 39597016 PMCID: PMC11596776 DOI: 10.3390/medicina60111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives: Postreperfusion syndrome (PRS) is a significant challenge in liver transplantation (LT), leading to severe circulatory and metabolic complications. Ischemic preconditioning (IPC), including remote IPC (RIPC), can mitigate ischemia-reperfusion injury, although its efficacy in LT remains unclear. This study evaluated the impact of paired RIPC, involving the application of RIPC to both the recipient and the living donor, on the incidence of PRS and the need for rescue epinephrine during living-donor LT (LDLT). Materials and Methods: This retrospective observational cohort analysis included 676 adult patients who had undergone elective LDLT between September 2012 and September 2022. After applying exclusion criteria and propensity score matching (PSM), 664 patients were categorized into the paired RIPC and non-RIPC groups. The primary outcomes were the occurrence of PRS and the need for rescue epinephrine during reperfusion. Results: The incidence of PRS and the need for rescue epinephrine were significantly lower in the paired RIPC group than in the non-RIPC group. Furthermore, the incidence of postoperative acute kidney injury was lower in the paired RIPC group. Multivariable logistic regression adjusted for propensity scores indicated that paired RIPC was significantly associated with a reduced occurrence of PRS (odds ratio: 0.672, 95% confidence interval: 0.479-0.953, p = 0.021). Conclusions: Paired RIPC, involving both the recipient and the living donor, effectively reduces the occurrence of PRS and the need for rescue epinephrine during LDLT. These findings suggest that paired RIPC protects against ischemia-reperfusion injury in LDLT. Future randomized controlled trials are needed to verify our results and to explore the underlying mechanisms of the protective effects of RIPC.
Collapse
Affiliation(s)
| | - Min Suk Chae
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
3
|
Nordström J, Badia-I-Mompel P, Witasp A, Schwarz A, Evenepoel P, Moor MB, Wennberg L, Saez-Rodriguez J, Wernerson A, Olauson H. Defining the molecular response to ischemia-reperfusion injury and remote ischemic preconditioning in human kidney transplantation. PLoS One 2024; 19:e0311613. [PMID: 39471208 PMCID: PMC11521294 DOI: 10.1371/journal.pone.0311613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/22/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) inevitably occurs during kidney transplantation and extended ischemia is associated with delayed graft function and poor outcomes. Remote ischemic preconditioning (RIPC) is a simple, noninvasive procedure aimed at reducing IRI and improving graft function. Experimental studies have implicated the kynurenine pathway as a protective mechanism behind RIPC. METHODS First, paired biopsies from 11 living kidney donors were analyzed to characterize the acute transcriptomic response to IRI. Second, 16 living kidney donors were subjected to either RIPC (n = 9) or no pretreatment (n = 7) to evaluate the impact of RIPC on the transcriptomic response to IRI. Finally, the effect of RIPC on plasma metabolites was analyzed in 49 healthy subjects. RESULTS There was a robust immediate response to IRI in the renal transcriptomes of living-donor kidney transplantation, including activation of the mitogen-activated protein kinase (MAPK) and epidermal growth factor receptor (EGFR) pathways. Preconditioning with RIPC did not significantly alter the transcriptomic response to IRI or the concentration of plasma metabolites. CONCLUSIONS The present data validate living-donor kidney transplantation as a suitable model for mechanistic studies of IRI in human kidneys. The failure of RIPC to alter transcriptomic responses or metabolites in the kynurenine pathway raises the question of the robustness of the standard procedure used to induce RIPC, and might explain the mixed results in clinical trials evaluating RIPC as a method to attenuate IRI.
Collapse
Affiliation(s)
- Johan Nordström
- Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Pau Badia-I-Mompel
- Institute for Computational Biomedicine, Bioquant, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Angelina Schwarz
- Division of Renal Medicine, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Pieter Evenepoel
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, KU Leuven, Belgium
| | - Matthias B. Moor
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Wennberg
- Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Annika Wernerson
- Division of Renal Medicine, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Olauson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Zhang Y, Long Y, Li Y, Liao D, Hu L, Peng K, Liu H, Ji F, Shan X. Remote ischemic conditioning may improve graft function following kidney transplantation: a systematic review and meta-analysis with trial sequential analysis. BMC Anesthesiol 2024; 24:168. [PMID: 38702625 PMCID: PMC11067269 DOI: 10.1186/s12871-024-02549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Remote ischemic conditioning (RIC) has the potential to benefit graft function following kidney transplantation by reducing ischemia-reperfusion injury; however, the current clinical evidence is inconclusive. This meta-analysis with trial sequential analysis (TSA) aimed to determine whether RIC improves graft function after kidney transplantation. METHODS A comprehensive search was conducted on PubMed, Cochrane Library, and EMBASE databases until June 20, 2023, to identify all randomized controlled trials that examined the impact of RIC on graft function after kidney transplantation. The primary outcome was the incidence of delayed graft function (DGF) post-kidney transplantation. The secondary outcomes included the incidence of acute rejection, graft loss, 3- and 12-month estimated glomerular filtration rates (eGFR), and the length of hospital stay. Subgroup analyses were conducted based on RIC procedures (preconditioning, perconditioning, or postconditioning), implementation sites (upper or lower extremity), and graft source (living or deceased donor). RESULTS Our meta-analysis included eight trials involving 1038 patients. Compared with the control, RIC did not significantly reduce the incidence of DGF (8.8% vs. 15.3%; risk ratio = 0.76, 95% confidence interval [CI], 0.48-1.21, P = 0.25, I2 = 16%), and TSA results showed that the required information size was not reached. However, the RIC group had a significantly increased eGFR at 3 months after transplantation (mean difference = 2.74 ml/min/1.73 m2, 95% CI: 1.44-4.05 ml/min/1.73 m2, P < 0.0001, I2 = 0%), with a sufficient evidence suggested by TSA. The secondary outcomes were comparable between the other secondary outcomes. The treatment effect of RIC did not differ between the subgroup analyses. CONCLUSION In this meta-analysis with trial sequential analysis, RIC did not lead to a significant reduction in the incidence of DGF after kidney transplantation. Nonetheless, RIC demonstrated a positive correlation with 3-month eGFR. Given the limited number of patients included in this study, well-designed clinical trials with large sample sizes are required to validate the renoprotective benefits of RIC. TRIAL REGISTRATION This systematic review and meta-analysis was registered at the International Prospective Register of Systematic Reviews (Number CRD42023464447).
Collapse
Affiliation(s)
- Yang Zhang
- Department of Anesthesiology, Institute of Anesthesiology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Yuqin Long
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongjun Li
- Department of Anesthesiology, Lianshui County People's Hospital, Huaian, China
| | - Dawei Liao
- Department of Anesthesiology, Tongren People's Hospital, Tongren, Guizhou, China
| | - Linkun Hu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ke Peng
- Department of Anesthesiology, Institute of Anesthesiology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Fuhai Ji
- Department of Anesthesiology, Institute of Anesthesiology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China.
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China.
| | - Xisheng Shan
- Department of Anesthesiology, Institute of Anesthesiology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China.
- Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Papadopoulou A, Dickinson M, Samuels TL, Heiss C, Forni L, Creagh-Brown B. Efficacy of remote ischaemic preconditioning on outcomes following non-cardiac non-vascular surgery: a systematic review and meta-analysis. Perioper Med (Lond) 2023; 12:9. [PMID: 37038219 PMCID: PMC10084674 DOI: 10.1186/s13741-023-00297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Remote ischaemic preconditioning (RIPC) has been investigated as a simple intervention to potentially mitigate the ischaemic effect of the surgical insult and reduce postoperative morbidity. This review systematically evaluates the effect of RIPC on morbidity, including duration of hospital stay and parameters reflective of cardiac, renal, respiratory, and hepatic dysfunction following non-cardiac non-vascular (NCNV) surgery. METHODS The electronic databases PubMed, Embase, and the Cochrane Central Register of Controlled Trials (CENTRAL) were searched from their inception date to November 2021. Studies investigating the effect of local preconditioning or postconditioning were excluded. Methodological quality and risk of bias were determined according to the Revised Cochrane risk-of-bias tool for randomised trials (RoB 2). Calculation of the odds ratios and a random effects model was used for dichotomous outcomes and mean differences or standardised mean differences as appropriate were used for continuous outcomes. The primary outcomes of interest were cardiac and renal morbidity, and the secondary outcomes included other organ function parameters and hospital length of stay. RESULTS A systematic review of the published literature identified 36 randomised controlled trials. There was no significant difference in postoperative troponin or acute kidney injury. RIPC was associated with lower postoperative serum creatinine (9 studies, 914 patients, mean difference (MD) - 3.81 µmol/L, 95% confidence interval (CI) - 6.79 to - 0.83, p = 0.01, I2 = 5%) and lower renal stress biomarker (neutrophil gelatinase-associated lipocalin (NGAL), 5 studies, 379 patients, standardized mean difference (SMD) - 0.66, 95% CI - 1.27 to - 0.06, p = 0.03, I2 = 86%). RIPC was also associated with improved oxygenation (higher PaO2/FiO2, 5 studies, 420 patients, MD 51.51 mmHg, 95% CI 27.32 to 75.69, p < 0.01, I2 = 89%), lower biomarker of oxidative stress (malondialdehyde (MDA), 3 studies, 100 patients, MD - 1.24 µmol/L, 95% CI - 2.4 to - 0.07, p = 0.04, I2 = 91%)) and shorter length of hospital stay (15 studies, 2110 patients, MD - 0.99 days, 95% CI - 1.75 to - 0.23, p = 0.01, I2 = 88%). CONCLUSIONS This meta-analysis did not show an improvement in the primary outcomes of interest with the use of RIPC. RIPC was associated with a small improvement in certain surrogate parameters of organ function and small reduction in hospital length of stay. Our results should be interpreted with caution due to the limited number of studies addressing individual outcomes and the considerable heterogeneity identified. TRIAL REGISTRATION PROSPERO CRD42019129503.
Collapse
Affiliation(s)
| | - Matthew Dickinson
- Department of Anesthesia, Royal Surrey County Hospital, Guildford, UK
| | - Theophilus L Samuels
- Department of Critical Care, Surrey and Sussex Healthcare NHS Trust, Redhill, UK
| | - Christian Heiss
- Vascular Department, Surrey and Sussex Healthcare NHS Trust, Redhill, UK
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
| | - Lui Forni
- Department of Critical Care, Royal Surrey County Hospital, Guildford, UK
| | - Ben Creagh-Brown
- Department of Critical Care, Royal Surrey County Hospital, Guildford, UK
| |
Collapse
|
6
|
Zhang W, Wu Y, Zeng M, Yang C, Qiu Z, Liu R, Wang L, Zhong M, Chen Q, Liang W. Protective role of remote ischemic conditioning in renal transplantation and partial nephrectomy: A systematic review and meta-analysis of randomized controlled trials. Front Surg 2023; 10:1024650. [PMID: 37091267 PMCID: PMC10113469 DOI: 10.3389/fsurg.2023.1024650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Objective Studies have shown that remote ischemic conditioning (RIC) can effectively attenuate ischemic-reperfusion injury in the heart and brain, but the effect on ischemic-reperfusion injury in patients with kidney transplantation or partial nephrectomy remains controversial. The main objective of this systematic review and meta-analysis was to investigate whether RIC provides renal protection after renal ischemia-reperfusion injury in patients undergoing kidney transplantation or partial nephrectomy. Methods A computer-based search was conducted to retrieve relevant publications from the PubMed database, Embase database, Cochrane Library and Web of Science database. We then conducted a systematic review and meta-analysis of randomized controlled trials that met our study inclusion criteria. Results Eleven eligible studies included a total of 1,145 patients with kidney transplantation or partial nephrectomy for systematic review and meta-analysis, among whom 576 patients were randomly assigned to the RIC group and the remaining 569 to the control group. The 3-month estimated glomerular filtration rate (eGFR) was improved in the RIC group, which was statistically significant between the two groups on kidney transplantation [P < 0.001; mean difference (MD) = 2.74, confidence interval (CI): 1.41 to 4.06; I 2 = 14%], and the 1- and 2-day postoperative Scr levels in the RIC group decreased, which was statistically significant between the two groups on kidney transplantation (1-day postoperative: P < 0.001; MD = 0.10, CI: 0.05 to 0.15, I 2 = 0; 2-day postoperative: P = 0.006; MD = 0.41, CI: 0.12 to 0.70, I 2 = 0), but at other times, there was no significant difference between the two groups in Scr levels. The incidence of delayed graft function (DGF) decreased, but there was no significant difference (P = 0.60; 95% CI: 0.67 to 1.26). There was no significant difference between the two groups in terms of cross-clamp time, cold ischemia time, warm ischemic time, acute rejection (AR), graft loss or length of hospital stay. Conclusion Our meta-analysis showed that the effect of remote ischemia conditioning on reducing serum creatinine (Scr) and improving estimate glomerular filtration rate (eGFR) seemed to be very weak, and we did not observe a significant protective effect of RIC on renal ischemic-reperfusion. Due to small sample sizes, more studies using stricter inclusion criteria are needed to elucidate the nephroprotective effect of RIC in renal surgery in the future.
Collapse
Affiliation(s)
- Wenfu Zhang
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
- Department of Anesthesia, hospital of Traditional Chinese Medicine of Zhongshan, Zhongshan, China
| | - Yingting Wu
- Department of Critical Care Medicine Nursing, the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mingwang Zeng
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Chao Yang
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Zhengang Qiu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Rongrong Liu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lifeng Wang
- Anesthesia Surgery Center of the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Maolin Zhong
- Anesthesia Surgery Center of the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qiaoling Chen
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Weidong Liang
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
- Anesthesia Surgery Center of the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
7
|
Bell RM, Basalay M, Bøtker HE, Beikoghli Kalkhoran S, Carr RD, Cunningham J, Davidson SM, England TJ, Giesz S, Ghosh AK, Golforoush P, Gourine AV, Hausenloy DJ, Heusch G, Ibanez B, Kleinbongard P, Lecour S, Lukhna K, Ntsekhe M, Ovize M, Salama AD, Vilahur G, Walker JM, Yellon DM. Remote ischaemic conditioning: defining critical criteria for success-report from the 11th Hatter Cardiovascular Workshop. Basic Res Cardiol 2022; 117:39. [PMID: 35970954 PMCID: PMC9377667 DOI: 10.1007/s00395-022-00947-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 01/31/2023]
Abstract
The Hatter Cardiovascular Institute biennial workshop, originally scheduled for April 2020 but postponed for 2 years due to the Covid pandemic, was organised to debate and discuss the future of Remote Ischaemic Conditioning (RIC). This evolved from the large multicentre CONDI-2-ERIC-PPCI outcome study which demonstrated no additional benefit when using RIC in the setting of ST-elevation myocardial infarction (STEMI). The workshop discussed how conditioning has led to a significant and fundamental understanding of the mechanisms preventing cell death following ischaemia and reperfusion, and the key target cyto-protective pathways recruited by protective interventions, such as RIC. However, the obvious need to translate this protection to the clinical setting has not materialised largely due to the disconnect between preclinical and clinical studies. Discussion points included how to adapt preclinical animal studies to mirror the patient presenting with an acute myocardial infarction, as well as how to refine patient selection in clinical studies to account for co-morbidities and ongoing therapy. These latter scenarios can modify cytoprotective signalling and need to be taken into account to allow for a more robust outcome when powered appropriately. The workshop also discussed the potential for RIC in other disease settings including ischaemic stroke, cardio-oncology and COVID-19. The workshop, therefore, put forward specific classifications which could help identify so-called responders vs. non-responders in both the preclinical and clinical settings.
Collapse
Affiliation(s)
- R M Bell
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - M Basalay
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - H E Bøtker
- Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - S Beikoghli Kalkhoran
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - R D Carr
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | | | - S M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - T J England
- Stroke, Division of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - S Giesz
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - A K Ghosh
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - P Golforoush
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - D J Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- CVMD, Duke-NUS, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - G Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Duisburg, Germany
| | - B Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital & CIBERCV, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - P Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Duisburg, Germany
| | - S Lecour
- University of Cape Town, Cape Town, South Africa
| | - K Lukhna
- University of Cape Town, Cape Town, South Africa
| | - M Ntsekhe
- University of Cape Town, Cape Town, South Africa
| | - M Ovize
- INSERM U1060, CarMeN Laboratory, Université de Lyon, Groupement Hospitalier Est, Bâtiment B13, F-69500, Bron, France
| | | | - G Vilahur
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, CIBERCV, Barcelona, Spain
| | - J M Walker
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - D M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
8
|
Li Y, Wang B, Wang L, Shi K, Zhao W, Gao S, Chen J, Ding C, Du J, Gao W. Postoperative day 1 serum cystatin C level predicts postoperative delayed graft function after kidney transplantation. Front Med (Lausanne) 2022; 9:863962. [PMID: 36035383 PMCID: PMC9411520 DOI: 10.3389/fmed.2022.863962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Delayed graft function (DGF) commonly occurs after kidney transplantation, but no clinical predictors for guiding post-transplant management are available. Materials and methods Data including demographics, surgery, anesthesia, postoperative day 1 serum cystatin C (S-CysC) level, kidney functions, and postoperative complications in 603 kidney transplant recipients who met the enrollment criteria from January 2017 to December 2018 were collected and analyzed to form the Intention-To-Treat (ITT) set. All perioperative data were screened using the least absolute shrinkage and selection operator. The discrimination, calibration, and clinical effectiveness of the predictor were verified with area under curve (AUC), calibration plot, clinical decision curve, and impact curve. The predictor was trained in Per-Protocol set, validated in the ITT set, and its stability was further tested in the bootstrap resample data. Result Patients with DGF had significantly higher postoperative day 1 S-CysC level (4.2 ± 1.2 vs. 2.8 ± 0.9 mg/L; P < 0.001), serum creatinine level (821.1 ± 301.7 vs. 554.3 ± 223.2 μmol/L; P < 0.001) and dialysis postoperative (74 [82.2%] vs. 25 [5.9%]; P < 0.001) compared with patients without DGF. Among 41 potential predictors, S-CysC was the most effective in the parsimonious model, and its diagnostic cut-off value was 3.80 mg/L with the risk score (OR, 13.45; 95% CI, 8.02–22.57; P < 0.001). Its specificity and sensitivity indicated by AUC was 0.832 (95% CI, 0.779–0.884; P < 0.001) with well fit calibration. S-CysC yielded up to 50% of clinical benefit rate with 1:4 of cost/benefit ratio. Conclusion The postoperative day 1 S-CysC level predicts DGF and may be used as a predictor of DGF but warrants further study.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Anesthesiology and Center for Brain Science and Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Anesthesiology, 521 Hospital of Norinco Group, Xi’an, China
| | - Bo Wang
- Department of Anesthesiology and Center for Brain Science and Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Le Wang
- Department of Anesthesiology and Center for Brain Science and Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kewei Shi
- Department of Anesthesiology and Center for Brain Science and Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wangcheng Zhao
- Department of Anesthesiology and Center for Brain Science and Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Sai Gao
- Department of Anesthesiology and Center for Brain Science and Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiayu Chen
- Department of Anesthesiology and Center for Brain Science and Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chenguang Ding
- Department of Renal Transplantation, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Junkai Du
- Department of Emergency, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wei Gao,
| | - Wei Gao
- Department of Anesthesiology and Center for Brain Science and Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Junkai Du,
| |
Collapse
|
9
|
Krag AE, Hvas CL, Kiil BJ, Hvas AM. Effect of Remote Ischemic Conditioning on Bleeding Complications in Surgery: A Systematic Review and Meta-Analysis. Semin Thromb Hemost 2021; 48:229-239. [PMID: 34428800 DOI: 10.1055/s-0041-1732468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Remote ischemic conditioning (RIC) is administered with an inflatable tourniquet by inducing brief, alternating cycles of limb ischemia and reperfusion. RIC possibly impacts the hemostatic system, and the intervention has been tested as protective therapy against ischemia-reperfusion injury and thrombotic complications in cardiac surgery and other surgical procedures. In the present systematic review, we aimed to investigate the effect of RIC on intraoperative and postoperative bleeding complications in meta-analyses of randomized controlled trials including adult patients undergoing surgery. A systematic search was performed on November 7, 2020 in PubMed, Embase, and the Cochrane Central Register of Controlled Trials. Randomized controlled trials comparing RIC versus no RIC in adult patients undergoing surgery that reported bleeding outcomes in English publications were included. Effect estimates with 95% confidence intervals were calculated using the random-effects model for intraoperative and postoperative bleeding outcomes. Thirty-two randomized controlled trials with 3,804 patients were eligible for inclusion. RIC did not affect intraoperative bleeding volume (nine trials; 392 RIC patients, 399 controls) with the effect estimate -0.95 [-9.90; 7.99] mL (p = 0.83). RIC significantly reduced postoperative drainage volume (seven trials; 367 RIC patients, 365 controls) with mean difference -83.6 [-134.9; -32.4] mL (p = 0.001). The risk of re-operation for bleeding was reduced in the RIC group (16 trials; 838 RIC patients, 839 controls), albeit not significantly, with the relative risk 0.65 [0.39; 1.09] (p = 0.10). In conclusion, RIC reduced postoperative bleeding measured by postoperative drainage volume in this meta-analysis of adult patients undergoing surgery.
Collapse
Affiliation(s)
- Andreas E Krag
- Thrombosis and Hemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Plastic and Breast Surgery, Aarhus University Hospital, Denmark
| | - Christine L Hvas
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Denmark
| | - Birgitte J Kiil
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Denmark
| | - Anne-Mette Hvas
- Thrombosis and Hemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Franzin R, Stasi A, Fiorentino M, Simone S, Oberbauer R, Castellano G, Gesualdo L. Renal Delivery of Pharmacologic Agents During Machine Perfusion to Prevent Ischaemia-Reperfusion Injury: From Murine Model to Clinical Trials. Front Immunol 2021; 12:673562. [PMID: 34295329 PMCID: PMC8290413 DOI: 10.3389/fimmu.2021.673562] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Donor organ shortage still remains a serious obstacle for the access of wait-list patients to kidney transplantation, the best treatment for End-Stage Kidney Disease (ESKD). To expand the number of transplants, the use of lower quality organs from older ECD or DCD donors has become an established routine but at the price of increased incidence of Primary Non-Function, Delay Graft Function and lower-long term graft survival. In the last years, several improvements have been made in the field of renal transplantation from surgical procedure to preservation strategies. To improve renal outcomes, research has focused on development of innovative and dynamic preservation techniques, in order to assess graft function and promote regeneration by pharmacological intervention before transplantation. This review provides an overview of the current knowledge of these new preservation strategies by machine perfusions and pharmacological interventions at different timing possibilities: in the organ donor, ex-vivo during perfusion machine reconditioning or after implementation in the recipient. We will report therapies as anti-oxidant and anti-inflammatory agents, senolytics agents, complement inhibitors, HDL, siRNA and H2S supplementation. Renal delivery of pharmacologic agents during preservation state provides a window of opportunity to treat the organ in an isolated manner and a crucial route of administration. Even if few studies have been reported of transplantation after ex-vivo drugs administration, targeting the biological pathway associated to kidney failure (i.e. oxidative stress, complement system, fibrosis) might be a promising therapeutic strategy to improve the quality of various donor organs and expand organ availability.
Collapse
Affiliation(s)
- Rossana Franzin
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Marco Fiorentino
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Simona Simone
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Rainer Oberbauer
- Department of Nephrology and Dialysis, University Clinic for Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
11
|
Wahlstrøm KL, Bjerrum E, Gögenur I, Burcharth J, Ekeloef S. Effect of remote ischaemic preconditioning on mortality and morbidity after non-cardiac surgery: meta-analysis. BJS Open 2021; 5:zraa026. [PMID: 33733660 PMCID: PMC7970092 DOI: 10.1093/bjsopen/zraa026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/16/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Remote ischaemic preconditioning (RIPC) has been shown to have a protective role on vital organs exposed to reperfusion injury. The aim of this systematic review was to evaluate the effects of non-invasive RIPC on clinical and biochemical outcomes in patients undergoing non-cardiac surgery. METHODS A systematic literature search of PubMed, EMBASE, Scopus, and Cochrane databases was carried out in February 2020. RCTs investigating the effect of non-invasive RIPC in adults undergoing non-cardiac surgery were included. Meta-analyses and trial sequential analyses (TSAs) were performed on cardiovascular events, acute kidney injury, and short- and long-term mortality. RESULTS Some 43 RCTs including 3660 patients were included. The surgical areas comprised orthopaedic, vascular, abdominal, pulmonary, neurological, and urological surgery. Meta-analysis showed RIPC to be associated with fewer cardiovascular events in non-cardiac surgery (13 trials, 1968 patients, 421 events; odds ratio (OR) 0.68, 95 per cent c.i. 0.47 to 0.96; P = 0.03). Meta-analyses of the effect of RIPC on acute kidney injury (12 trials, 1208 patients, 211 events; OR 1.14, 0.78 to 1.69; P = 0.50; I2 = 9 per cent), short-term mortality (7 trials, 1239 patients, 65 events; OR 0.65, 0.37 to 1.12; P = 0.12; I2 = 0 per cent), and long-term mortality (4 trials, 1167 patients, 9 events; OR 0.67, 0.18 to 2.55; P = 0.56; I2 = 0 per cent) showed no significant differences for RIPC compared with standard perioperative care in non-cardiac surgery. However, TSAs showed that the required information sizes have not yet been reached. CONCLUSION Application of RIPC to non-cardiac surgery might reduce cardiovascular events, but not acute kidney injury or all-cause mortality, but currently available data are inadequate to confirm or reject an assumed intervention effect.
Collapse
Affiliation(s)
- K L Wahlstrøm
- Department of Surgery, Centre for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - E Bjerrum
- Department of Surgery, Centre for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - I Gögenur
- Department of Surgery, Centre for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - J Burcharth
- Department of Surgery, Centre for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - S Ekeloef
- Department of Surgery, Centre for Surgical Science, Zealand University Hospital, Koege, Denmark
| |
Collapse
|
12
|
Uutela A, Helanterä I, Lemström K, Passov A, Syrjälä S, Åberg F, Mäkisalo H, Nordin A, Lempinen M, Sallinen V. Randomised sham-controlled double-blind trial evaluating remote ischaemic preconditioning in solid organ transplantation: a study protocol for the RIPTRANS trial. BMJ Open 2020; 10:e038340. [PMID: 33199419 PMCID: PMC7670950 DOI: 10.1136/bmjopen-2020-038340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Remote ischaemic preconditioning (RIPC) using a non-invasive pneumatic tourniquet is a potential method for reducing ischaemia-reperfusion injury. RIPC has been extensively studied in animal models and cardiac surgery, but scarcely in solid organ transplantation. RIPC could be an inexpensive and simple method to improve function of transplanted organs. Accordingly, we aim to study whether RIPC performed in brain-dead organ donors improves function and longevity of transplanted organs. METHODS AND ANALYSES RIPTRANS is a multicentre, sham-controlled, parallel group, randomised superiority trial comparing RIPC intervention versus sham-intervention in brain-dead organ donors scheduled to donate at least one kidney. Recipients of the organs (kidney, liver, pancreas, heart, lungs) from a randomised donor will be included provided that they give written informed consent. The RIPC intervention is performed by inflating a thigh tourniquet to 300 mm Hg 4 times for 5 min. The intervention is done two times: first right after the declaration of brain death and second immediately before transferring the donor to the operating theatre. The sham group receives the tourniquet, but it is not inflated. The primary endpoint is delayed graft function (DGF) in kidney allografts. Secondary endpoints include short-term functional outcomes of transplanted organs, rejections and graft survival in various time points up to 20 years. We aim to show that RIPC reduces the incidence of DGF from 25% to 15%. According to this, the sample size is set to 500 kidney transplant recipients. ETHICS AND DISSEMINATION This study has been approved by Helsinki University Hospital Ethics Committee and Helsinki University Hospital's Institutional Review Board. The study protocol was be presented at the European Society of Organ Transplantation congress in Copenhagen 14-15 September 2019. The study results will be submitted to an international peer-reviewed scientific journal for publication. TRIAL REGISTRATION NUMBER NCT03855722.
Collapse
Affiliation(s)
- Aki Uutela
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ilkka Helanterä
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Karl Lemström
- Department of Cardiothoracic Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Arie Passov
- Department of Perioperative, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Simo Syrjälä
- Department of Cardiothoracic Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Fredrik Åberg
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Heikki Mäkisalo
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Arno Nordin
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Marko Lempinen
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ville Sallinen
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW To summarise recently published studies of donor pretreatment and machine perfusion strategies in kidney transplantation. RECENT FINDINGS The sparsity of donor pretreatment trials has resulted in the re-analysis of already existing data, and RCTs are urgently needed to reinvigorate this aspect of donor research. Uncontrolled donation after circulatory death kidney transplantation has the highest risk of delayed graft function and graft failure, and recent studies have reported that normothermic regional perfusion improves graft function and survival in this setting. Hypothermic machine perfusion reduces delayed graft function following deceased donor kidney transplantation across donor types but unanswered questions still remain regarding its use. The use of oxygenated hypothermic machine perfusion appears to improve graft function in controlled donation after circulatory death mediated by a reduction in acute rejection. Ex-situ normothermic perfusion is emerging and while technically challenging it may facilitate the delivery of pretreatments. SUMMARY RCTs are urgently needed to reinvigorate research into donor pretreatment and to establish the place of specific preservation techniques in deceased donor kidney transplantation.
Collapse
|
14
|
Abstract
Although kidney oxygen tensions are heterogenous, and mostly below renal vein level, the nephron is highly dependent on aerobic metabolism for active tubular transport. This renders the kidney particularly susceptible to hypoxia, which is considered a main characteristic and driver of acute and chronic kidney injury, albeit the evidence supporting this assumption is not entirely conclusive. Kidney transplants are exposed to several conditions that may interfere with the balance between oxygen supply and consumption, and enhance hypoxia and hypoxic injury. These include conditions leading to and resulting from brain death of kidney donors, ischemia and reperfusion during organ donation, storage and transplantation, postoperative vascular complications, vasoconstriction induced by immunosuppression, and impaired perfusion resulting from interstitial edema, inflammation, and fibrosis. Acute graft injury, the immediate consequence of hypoxia and reperfusion, results in delayed graft function and increased risk of chronic graft failure. Although current strategies to alleviate hypoxic/ischemic graft injury focus on limiting injury (eg, by reducing cold and warm ischemia times), experimental evidence suggests that preconditioning through local or remote ischemia, or activation of the hypoxia-inducible factor pathway, can decrease hypoxic injury. In combination with ex vivo machine perfusion such approaches hold significant promise for improving transplantation outcomes.
Collapse
Affiliation(s)
- Christian Rosenberger
- Department of Nephrology and Medical Intensive Care, Charité Universitaetsmedizin Berlin, Berlin, Germany.
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|