1
|
Nasca V, Prinzi N, Coppa J, Prisciandaro M, Oldani S, Ghelardi F, Conca E, Capone I, Busico A, Perrone F, Tamborini E, Sabella G, Greco G, Greco FG, Tafuto S, Procopio G, Morano F, Niger M, Maccauro M, Milione M, de Braud F, Pietrantonio F, Pusceddu S. Sunitinib for the treatment of patients with advanced pheochromocytomas or paragangliomas: The phase 2 non-randomized SUTNET clinical trial. Eur J Cancer 2024; 209:114276. [PMID: 39128186 DOI: 10.1016/j.ejca.2024.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Metastatic Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors characterized by high morbidity and limited systemic treatment options, mainly based on radiometabolic treatments or chemotherapy. Based on the preclinical rationale that PGGLs carcinogenesis relies on angiogenesis, treatment with tyrosine kinase inhibitors (TKI) may represent another viable therapeutic option. METHODS We conducted a prospective phase II study in patients with metastatic or unresectable PGGLs. Patients received sunitinib (50 mg daily for 4 weeks, followed by a 2-week rest period) until progressive disease (PD), unacceptable toxicity or consent withdrawal. The primary endpoint was 12-month progression-free survival (PFS) rate; secondary endpoints were safety overall response rate (ORR) according to RECIST 1.1 criteria and overall survival (OS). EudraCT Number: 2011-002632-99. RESULTS Fifty patients were included. At a median follow-up of 71.7 months (IQR 35.4-100.1), the 1 year-PFS rate was 53.4 % (95 %CI 41.1-69.3) and median PFS was 14.1 months (95 % CI 8.9-25.7). ORR was 15.6 %, the median OS was 49.4 months (95 %CI 21.2-NA), and grade 3 or higher treatment-related adverse events were reported in 34 % patients. No significant correlation was found between specific genetic alterations or genomic clusters and sunitinib efficacy. CONCLUSION Sunitinib is an active drug in patients with advanced PGGLs, capable of inducing prolonged disease control with a manageable toxicity profile.
Collapse
Affiliation(s)
- Vincenzo Nasca
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Natalie Prinzi
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Jorgelina Coppa
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Prisciandaro
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Simone Oldani
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Filippo Ghelardi
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Elena Conca
- Diagnostic Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Iolanda Capone
- Diagnostic Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Adele Busico
- Diagnostic Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Perrone
- Diagnostic Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Tamborini
- Diagnostic Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sabella
- Diagnostic Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giorgio Greco
- Radiology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Salvatore Tafuto
- Sarcoma and Rare Tumors Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy; ENETs Center of Excellence, Naples, Italy
| | - Giuseppe Procopio
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Federica Morano
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Monica Niger
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Marco Maccauro
- Department of Nuclear Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, ENETS Center of Excellence, Milan, Italy
| | - Massimo Milione
- Diagnostic Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy; University of Milan, Milan, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Sara Pusceddu
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy; ENETS Center of Excellence, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy.
| |
Collapse
|
2
|
Rubino M, Di Stasio GD, Bodei L, Papi S, Rocca PA, Ferrari ME, Fodor CI, Bagnardi V, Frassoni S, Mei R, Fazio N, Ceci F, Grana CM. Peptide receptor radionuclide therapy with 177Lu- or 90Y-SSTR peptides in malignant pheochromocytomas (PCCs) and paragangliomas (PGLs): results from a single institutional retrospective analysis. Endocrine 2024; 84:704-710. [PMID: 38324106 DOI: 10.1007/s12020-024-03707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Malignant pheochromocytomas (PCCs) and paragangliomas (PGLs) are rare tumors and available systemic therapies are limited. AIM To explore the role of peptide receptor radionuclide therapy (PRRT) with Yttrium-90 (90Y) and Lutetium-177 (177Lu) peptides in pheochromocytomas (PCCs) and paragangliomas (PGLs). METHODS We retrospectively analyzed more than 1500 patients with histologically proven neuroendocrine tumors treated with 177Lu- or 90Y-DOTA-TATE or -TOC between 1999 to 2017 at our Institute. Overall, 30 patients with confirmed malignant PCCs and PGLs matched inclusion/exclusion criteria and were considered eligible for this analysis. RESULTS Thirty (n = 30) patients were treated: 22 with PGLs and 8 with PCCs (12 M and 18 F, median age 47 [IQR: 35-60 years]). Eighteen patients (n = 18) had head and neck PGLs, 3 patients thoracic PGLs and 1 patient abdominal PGL. Sixteen patients (53%) had locally advanced and fourteen (47%) had metastatic disease. Twenty-seven (90%) patients had disease progression at baseline. Four (13%) patients were treated with 90Y, sixteen (53%) with 177Lu and ten (33%) with 90Y + 177Lu respectively. The median total cumulative activity from treatment with 90Y- alone was 9.45 GBq (range 5.11-14.02 GBq), from 177Lu- alone was 21.9 GBq (7.55-32.12 GBq) and from the combination treatment was 4.94 GBq from 90Y- and 6.83 GBq from 177Lu- (ranges 1.04-10.1 and 2.66-20.13 GBq, respectively). Seven out of 30 (23%) patients had partial response and 19 (63%) stable disease. Median follow up was 8.9 years (IQR: 2.9-12). The 5-y and 10-y PFS was 68% (95% CI: 48-82) and 53% (95% CI: 33-69), respectively, whereas 5-y and 10-y OS was 75% (95% CI: 54-87) and 59% (95% CI: 38-75), respectively. Grade 3 or 4 acute hematological toxicity occurred in three patients, two with leucopenia and one with thrombocytopenia, respectively. CONCLUSION PRRT with 177Lu- or 90Y-DOTA-TATE or -TOC is feasible and well tolerated in advanced PGLs and PCCs.
Collapse
Affiliation(s)
- Manila Rubino
- Onco-Endocrinology Unit, IEO European Institute of Oncology IRCCS, Milano, Italy
| | | | - Lisa Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stefano Papi
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milano, Italy
| | - Paola Anna Rocca
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milano, Italy
| | | | - Cristiana Iuliana Fodor
- Division of Radiotherapy, Data Management, IEO European Institute of Oncology IRCCS, Milano, Italy
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milano, Italy
| | - Samuele Frassoni
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milano, Italy
| | - Riccardo Mei
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milano, Italy
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumours, IEO European Institute of Oncology, IRCCS, Milano, Italy
| | - Francesco Ceci
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milano, Italy
| | - Chiara Maria Grana
- Radiometabolic Therapy Unit, Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milano, Italy.
| |
Collapse
|
3
|
Kornerup LS, Andreassen M, Knigge U, Arveschoug AK, Poulsen PL, Kjær A, Oturai PS, Grønbæk H, Dam G. Effects of Peptide Receptor Radiotherapy in Patients with Advanced Paraganglioma and Pheochromocytoma: A Nation-Wide Cohort Study. Cancers (Basel) 2024; 16:1349. [PMID: 38611027 PMCID: PMC11010872 DOI: 10.3390/cancers16071349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/16/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
INTRODUCTION Pheochromocytomas and paragangliomas are rare neuroendocrine tumours that originate from chromaffin cells within the adrenal medulla or extra-adrenal sympathetic ganglia. Management of disseminated or metastatic pheochromocytomas and paragangliomas continues to pose challenges and relies on limited evidence. METHOD In this study, we report retrospective data on median overall survival (OS) and median progression-free survival (PFS) for all Danish patients treated with peptide receptor radionuclide therapy (PRRT) with 177Lu-Dotatate or 90Y-Dotatate over the past 15 years. One standard treatment of PRRT consisted of 4 consecutive cycles with 8-14-week intervals. RESULTS We included 28 patients; 10 were diagnosed with pheochromocytoma and 18 with paraganglioma. Median age at first PRRT was 47 (IQR 15-76) years. The median follow-up time was 31 (IQR 17-37) months. Eight patients died during follow-up. Median OS was 72 months, and 5-year survival was 65% with no difference between pheochromocytoma and paraganglioma. Patients with germline mutations had better survival than patients without mutations (p = 0.041). Median PFS after the first cycle of PRRT was 30 months. For patients who previously received systemic treatment, the median PFS was 19 months, compared with 32 months for patients with no previous systemic treatment (p = 0.083). CONCLUSIONS The median OS of around 6 years and median PFS of around 2.5 years found in this study are comparable to those reported in previous studies employing PRRT. Based on historical data, the efficacy of PRRT may be superior to 131I-MIBG therapy, and targeted therapy with sunitinib and PRRT might therefore be considered as first-line treatment in this patient group.
Collapse
Affiliation(s)
- Linda Skibsted Kornerup
- Department of Hepatology & Gastroenterology, ENETS Center of Excellence, Aarhus University Hospital, 8200 Aarhus, Denmark; (L.S.K.); (H.G.); (G.D.)
| | - Mikkel Andreassen
- Department of Endocrinology, ENETS Center of Excellence, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Ulrich Knigge
- Department of Endocrinology, ENETS Center of Excellence, Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Surgery and Transplantation, ENETS Center of Excellence, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Anne Kirstine Arveschoug
- Department of Nuclear Medicine & PET, ENETS Center of Excellence, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Per Løgstup Poulsen
- Department of Endocrinology, ENETS Center of Excellence, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Andreas Kjær
- Department of Clinical Physiology and Nuclear Medicine, ENETS Center of Excellence, Rigshospitalet, 2100 Copenhagen, Denmark; (A.K.); (P.S.O.)
| | - Peter Sandor Oturai
- Department of Clinical Physiology and Nuclear Medicine, ENETS Center of Excellence, Rigshospitalet, 2100 Copenhagen, Denmark; (A.K.); (P.S.O.)
| | - Henning Grønbæk
- Department of Hepatology & Gastroenterology, ENETS Center of Excellence, Aarhus University Hospital, 8200 Aarhus, Denmark; (L.S.K.); (H.G.); (G.D.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Gitte Dam
- Department of Hepatology & Gastroenterology, ENETS Center of Excellence, Aarhus University Hospital, 8200 Aarhus, Denmark; (L.S.K.); (H.G.); (G.D.)
| |
Collapse
|
4
|
Taïeb D, Nölting S, Perrier ND, Fassnacht M, Carrasquillo JA, Grossman AB, Clifton-Bligh R, Wanna GB, Schwam ZG, Amar L, Bourdeau I, Casey RT, Crona J, Deal CL, Del Rivero J, Duh QY, Eisenhofer G, Fojo T, Ghayee HK, Gimenez-Roqueplo AP, Gill AJ, Hicks R, Imperiale A, Jha A, Kerstens MN, de Krijger RR, Lacroix A, Lazurova I, Lin FI, Lussey-Lepoutre C, Maher ER, Mete O, Naruse M, Nilubol N, Robledo M, Sebag F, Shah NS, Tanabe A, Thompson GB, Timmers HJLM, Widimsky J, Young WJ, Meuter L, Lenders JWM, Pacak K. Management of phaeochromocytoma and paraganglioma in patients with germline SDHB pathogenic variants: an international expert Consensus statement. Nat Rev Endocrinol 2024; 20:168-184. [PMID: 38097671 DOI: 10.1038/s41574-023-00926-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 02/17/2024]
Abstract
Adult and paediatric patients with pathogenic variants in the gene encoding succinate dehydrogenase (SDH) subunit B (SDHB) often have locally aggressive, recurrent or metastatic phaeochromocytomas and paragangliomas (PPGLs). Furthermore, SDHB PPGLs have the highest rates of disease-specific morbidity and mortality compared with other hereditary PPGLs. PPGLs with SDHB pathogenic variants are often less differentiated and do not produce substantial amounts of catecholamines (in some patients, they produce only dopamine) compared with other hereditary subtypes, which enables these tumours to grow subclinically for a long time. In addition, SDHB pathogenic variants support tumour growth through high levels of the oncometabolite succinate and other mechanisms related to cancer initiation and progression. As a result, pseudohypoxia and upregulation of genes related to the hypoxia signalling pathway occur, promoting the growth, migration, invasiveness and metastasis of cancer cells. These factors, along with a high rate of metastasis, support early surgical intervention and total resection of PPGLs, regardless of the tumour size. The treatment of metastases is challenging and relies on either local or systemic therapies, or sometimes both. This Consensus statement should help guide clinicians in the diagnosis and management of patients with SDHB PPGLs.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, Aix-Marseille University, La Timone University Hospital, Marseille, France
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nancy D Perrier
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Fassnacht
- Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Jorge A Carrasquillo
- Molecular Imaging and Therapy Service, Radiology Department, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashley B Grossman
- Green Templeton College, University of Oxford, Oxford, UK
- NET Unit, Royal Free Hospital, London, UK
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital and Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | - George B Wanna
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zachary G Schwam
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laurence Amar
- Université Paris Cité, Inserm, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Hypertension Unit, Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Ruth T Casey
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Joakim Crona
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Cheri L Deal
- Research Center, CHU Sainte-Justine and Dept. of Paediatrics, University of Montreal, Montreal, Québec, Canada
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Quan-Yang Duh
- Department of Surgery, UCSF-Mount Zion, San Francisco, CA, USA
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at the TU Dresden, Dresden, Germany
| | - Tito Fojo
- Columbia University Irving Medical Center, New York City, NY, USA
- James J. Peters VA Medical Center, New York City, NY, USA
| | - Hans K Ghayee
- Division of Endocrinology & Metabolism, Department of Medicine, University of Florida, Gainesville, FL, USA
- Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Anne-Paule Gimenez-Roqueplo
- Université Paris Cité, Inserm, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Department of Oncogenetics and Cancer Genomic Medicine, AP-HP, Hôpital européen Georges Pompidou, Paris, France
| | - Antony J Gill
- University of Sydney, Sydney NSW Australia, Cancer Diagnosis and Pathology Group Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- NSW Health Pathology Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Rodney Hicks
- Department of Medicine, St Vincent's Hospital Medical School, Melbourne, Victoria, Australia
| | - Alessio Imperiale
- Department of Nuclear Medicine and Molecular Imaging - Institut de Cancérologie de Strasbourg Europe (ICANS), IPHC, UMR 7178, CNRS, University of Strasbourg, Strasbourg, France
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michiel N Kerstens
- Department of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| | - Ronald R de Krijger
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
- Princess Máxima Center for paediatric oncology, Utrecht, Netherlands
| | - André Lacroix
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Canada
| | - Ivica Lazurova
- Department of Internal Medicine 1, University Hospital, P.J. Šafárik University, Košice, Slovakia
| | - Frank I Lin
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charlotte Lussey-Lepoutre
- Université Paris Cité, Inserm, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Sorbonne University, Department of Nuclear Medicine, Pitié-Salpêtrière, Paris, France
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Ozgur Mete
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mitsuhide Naruse
- Clinical Research Institute of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center and Endocrine Center, Kyoto, Japan
- Clinical Research Center, Ijinkai Takeda General Hospital, Kyoto, Japan
| | - Naris Nilubol
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Frédéric Sebag
- Department of Endocrine Surgery, Aix-Marseille University, Conception Hospital, Marseille, France
| | - Nalini S Shah
- Department of Endocrinology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Akiyo Tanabe
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
| | - Geoffrey B Thompson
- Division of Endocrine Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Henri J L M Timmers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jiri Widimsky
- Third Department of Medicine, Department of Endocrinology and Metabolism of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - William J Young
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Leah Meuter
- Stanford University School of Medicine, Department of Physician Assistant Studies, Stanford, CA, USA
| | - Jacques W M Lenders
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Yadav MP, Raju S, Ballal S, Bal C. Complete Response to 177 Lu-DOTATATE PRRT in a 9-Year-Old Child With Metastatic Carotid Body Paraganglioma. Clin Nucl Med 2024; 49:e33-e34. [PMID: 37976428 DOI: 10.1097/rlu.0000000000004929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
ABSTRACT We present a case involving a 9-year-old boy diagnosed with metastatic carotid body paraganglioma. The metastases were detected in cervical lymph nodes and lungs using 68 Ga-DOTANOC PET/CT imaging. The patient received peptide receptor radionuclide therapy with 177 Lu-DOTATATE. Following 3 treatment cycles, a significant improvement was observed in the metastatic lesions. After 4 cycles, the patient achieved a complete response, with a cumulative administered activity of 16.65 GBq during the therapy. This case underscores the effectiveness of using 177 Lu-DOTATATE in managing metastatic carotid body paraganglioma, offering promising results in terms of tumor regression and overall therapeutic response.
Collapse
Affiliation(s)
- Madhav Prasad Yadav
- From the Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | |
Collapse
|
6
|
Tang CYL, Chua WM, Huang HL, Lam WWC, Loh LM, Tai D, Ong SYK, Yan SX, Loke KSH, Ng DCE, Tham WY. Safety and efficacy of peptide receptor radionuclide therapy in patients with advanced pheochromocytoma and paraganglioma: A single-institution experience and review of the literature. J Neuroendocrinol 2023; 35:e13349. [PMID: 37937484 DOI: 10.1111/jne.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Despite advances in diagnosis and management, patients with advanced pheochromocytomas and paragangliomas (PPGL) face limited treatment options. This study aims to evaluate the safety and efficacy of peptide receptor radionuclide therapy (PRRT) in patients with advanced PPGL, based on a single-institution experience and provide a comprehensive review of the literature. METHODS A retrospective analysis was conducted on patients with advanced pheochromocytoma and paraganglioma who received PRRT at a single institution from April 2012 to March 2022. Clinical characteristics, treatment response, adverse events, and survival outcomes were assessed. A systematic literature review was also performed. RESULTS A total of 15 patients with advanced PPGL were included, the majority of whom had both metastatic and functional disease. Most patients received four infusions of 177Lu-DOTATATE (73%). The median therapeutic 177Lu-DOTATATE radioactivity for each infusion was 7.4 GBq. Only one patient was treated with one infusion of 90Y-DOTATATE (4.2 GBq) in addition to three infusions of Lu-177 DOTATATE. Overall, PRRT suggests a promising efficacy with disease control rate of 63.6% by RECIST v1.1. The median overall survival (OS) was not reached and the median progression free survival (PFS) was 25.9 months. In terms of safety, PRRT was well tolerated. Review of the literature revealed consistent findings, supporting the efficacy and safety of PRRT in PPGL. CONCLUSION This study suggests that PRRT is a safe and effective therapeutic option for patients with PPGL. Our findings align with the existing literature, providing additional evidence to support the use of PRRT in this challenging patient population.
Collapse
Affiliation(s)
- Charlene Yu Lin Tang
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Wei Ming Chua
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
- Department of Neuroradiology, Singapore General Hospital, Singapore, Singapore
| | - Hian Liang Huang
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Winnie Wing-Chuen Lam
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Lih Ming Loh
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - David Tai
- Duke-NUS Medical School, Singapore, Singapore
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Simon Yew Kuang Ong
- Duke-NUS Medical School, Singapore, Singapore
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Sean Xuexian Yan
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Kelvin S H Loke
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - David Chee-Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Wei Ying Tham
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
7
|
Fischer A, Kloos S, Remde H, Dischinger U, Pamporaki C, Timmers HJLM, Robledo M, Fliedner SMJ, Wang K, Maurer J, Reul A, Bechmann N, Hantel C, Mohr H, Pellegata NS, Bornstein SR, Kroiss M, Auernhammer CJ, Reincke M, Pacak K, Grossman AB, Beuschlein F, Nölting S. Responses to systemic therapy in metastatic pheochromocytoma/paraganglioma: a retrospective multicenter cohort study. Eur J Endocrinol 2023; 189:546-565. [PMID: 37949483 DOI: 10.1093/ejendo/lvad146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/02/2023] [Accepted: 09/19/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE The therapeutic options for metastatic pheochromocytomas/paragangliomas (mPPGLs) include chemotherapy with cyclophosphamide/vincristine/dacarbazine (CVD), temozolomide monotherapy, radionuclide therapies, and tyrosine kinase inhibitors such as sunitinib. The objective of this multicenter retrospective study was to evaluate and compare the responses of mPPGLs including those with pathogenic variants in succinate dehydrogenase subunit B (SDHB), to different systemic treatments. DESIGN This is a retrospective analysis of treatment responses of mPPGL patients (n = 74) to systemic therapies. METHODS Patients with mPPGLs treated at 6 specialized national centers were selected based on participation in the ENSAT registry. Survival until detected progression (SDP) and disease-control rates (DCRs) at 3 months were evaluated based on imaging reports. RESULTS For the group of patients with progressive disease at baseline (83.8% of 74 patients), the DCR with first-line CVD chemotherapy was 75.0% (n = 4, SDP 11 months; SDHB [n = 1]: DCR 100%, SDP 30 months), with somatostatin peptide receptor-based radionuclide therapy (PPRT) 85.7% (n = 21, SDP 17 months; SDHB [n = 10]: DCR 100%, SDP 14 months), with 131I-meta-iodobenzylguanidine (131I-MIBG) 82.6% (n = 23, SDP 43 months; SDHB [n = 4]: DCR 100%, SDP 24 months), with sunitinib 100% (n = 7, SDP 18 months; SDHB [n = 3]: DCR 100%, SDP 18 months), and with somatostatin analogs 100% (n = 4, SDP not reached). The DCR with temozolomide as second-line therapy was 60.0% (n = 5, SDP 10 months; SDHB [n = 4]: DCR 75%, SDP 10 months). CONCLUSIONS We demonstrate in a real-life clinical setting that all current therapies show reasonable efficacy in preventing disease progression, and this is equally true for patients with germline SDHB mutations.
Collapse
Affiliation(s)
- Alessa Fischer
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| | - Simon Kloos
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| | - Hanna Remde
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Ulrich Dischinger
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Christina Pamporaki
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Henri J L M Timmers
- Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Institute de Salud Carlos III, Madrid, Spain
| | - Stephanie M J Fliedner
- First Department of Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Katharina Wang
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Julian Maurer
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Astrid Reul
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse, Dresden, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Stefan R Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Matthias Kroiss
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christoph J Auernhammer
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martin Reincke
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Karel Pacak
- Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, United States
| | - Ashley B Grossman
- Green Templeton College, University of Oxford, Oxford, United Kingdom
- NET Unit, ENETS Center of Excellence, Royal Free Hospital, London, United Kingdom
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
8
|
Kiriakopoulos A, Giannakis P, Menenakos E. Pheochromocytoma: a changing perspective and current concepts. Ther Adv Endocrinol Metab 2023; 14:20420188231207544. [PMID: 37916027 PMCID: PMC10617285 DOI: 10.1177/20420188231207544] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
This article aims to review current concepts in diagnosing and managing pheochromocytoma and paraganglioma (PPGL). Personalized genetic testing is vital, as 40-60% of tumors are linked to a known mutation. Tumor DNA should be sampled first. Next-generation sequencing is the best and most cost-effective choice and also helps with the expansion of current knowledge. Recent advancements have also led to the increased incorporation of regulatory RNA, metabolome markers, and the NETest in PPGL workup. PPGL presentation is highly volatile and nonspecific due to its multifactorial etiology. Symptoms mainly derive from catecholamine (CMN) excess or mass effect, primarily affecting the cardiovascular system. However, paroxysmal nature, hypertension, and the classic triad are no longer perceived as telltale signs. Identifying high-risk subjects and diagnosing patients at the correct time by using appropriate personalized methods are essential. Free plasma/urine catecholamine metabolites must be first-line examinations using liquid chromatography with tandem mass spectrometry as the gold standard analytical method. Reference intervals should be personalized according to demographics and comorbidity. The same applies to result interpretation. Threefold increase from the upper limit is highly suggestive of PPGL. Computed tomography (CT) is preferred for pheochromocytoma due to better cost-effectiveness and spatial resolution. Unenhanced attenuation of >10HU in non-contrast CT is indicative. The choice of extra-adrenal tumor imaging is based on location. Functional imaging with positron emission tomography/computed tomography and radionuclide administration improves diagnostic accuracy, especially in extra-adrenal/malignant or familial cases. Surgery is the mainstay treatment when feasible. Preoperative α-adrenergic blockade reduces surgical morbidity. Aggressive metastatic PPGL benefits from systemic chemotherapy, while milder cases can be managed with radionuclides. Short-term postoperative follow-up evaluates the adequacy of resection. Long-term follow-up assesses the risk of recurrence or metastasis. Asymptomatic carriers and their families can benefit from surveillance, with intervals depending on the specific gene mutation. Trials primarily focusing on targeted therapy and radionuclides are currently active. A multidisciplinary approach, correct timing, and personalization are key for successful PPGL management.
Collapse
Affiliation(s)
- Andreas Kiriakopoulos
- Department of Surgery, ‘Evgenidion Hospital’, National and Kapodistrian University of Athens School of Medicine, 5th Surgical Clinic, Papadiamantopoulou 20 Str, PO: 11528, Athens 11528, Greece
| | | | | |
Collapse
|
9
|
Su D, Yang H, Qiu C, Chen Y. Peptide receptor radionuclide therapy in advanced Pheochromocytomas and Paragangliomas: a systematic review and meta-analysis. Front Oncol 2023; 13:1141648. [PMID: 37483516 PMCID: PMC10358840 DOI: 10.3389/fonc.2023.1141648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Objective Peptide receptor radionuclide therapy (PRRT) for advanced pheochromocytomas and paragangliomas (PPGLs) has received increasing attention. The purpose of this article is to evaluate the efficacy and safety of PRRT in patients with metastatic or inoperable PPGLs by meta-analysis. Methods A literature search was conducted in PubMed, Embase, Scopus, and Cochrane Library databases up to November 2022. All articles on PRRT for PPGLs were searched, and appropriate data were included for analysis. The measures evaluated included objective response rate (ORR), disease control rate (DCR), clinical response rate, biochemical response rate, progression-free survival (PFS), overall survival (OS), and adverse events. Statistical analysis was performed using Stata 16.0 and the R programming language, data were combined using a random-effects model, and the results were presented using forest plots. Results A total of 20 studies with 330 patients were included in the analysis. The results showed that ORR and DCR were 20.0% (95% CI: 12.0%-28.0%) and 90.0% (95% CI: 85.0%-95.0%), respectively. Clinical and biochemical responses were 74.9% (95% CI: 56.3%-90.2%) and 69.5% (95%CI: 40.2%-92.9%). Median PFS and median OS were 31.79 (95% CI:21.25-42.33) months and 74.30 (95% CI: 0.75-147.84) months, respectively. Any grade of hematotoxicity and nephrotoxicity occurred in 22.3% (95% CI:12.5%-33.5%) and 4.3% (95% CI:0.2%-11.4%) patients. Grade 3-4 hemotoxicity occurred in 4.3% (95% CI:0.2%-11.4%) and grade 3-4 nephrotoxicity in 4/212 patients. Additionally, Treatment was discontinued in 9.0% (95% CI: 0.5%-23.3%) patients and one patient died as a result of a toxicity. Conclusion Patients with metastatic or inoperable PPGLs can be effectively treated with PRRT, and it has a favorable safety profile. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42022359232.
Collapse
Affiliation(s)
- Dan Su
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Hongyu Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Chen Qiu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Academician (expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
10
|
Mitjavila M, Jimenez-Fonseca P, Belló P, Pubul V, Percovich JC, Garcia-Burillo A, Hernando J, Arbizu J, Rodeño E, Estorch M, Llana B, Castellón M, García-Cañamaque L, Gajate P, Riesco MC, Miguel MB, Balaguer-Muñoz D, Custodio A, Cano JM, Repetto A, Garcia-Alonso P, Muros MA, Vercher-Conejero JL, Carmona-Bayonas A. Efficacy of [ 177Lu]Lu-DOTATATE in metastatic neuroendocrine neoplasms of different locations: data from the SEPTRALU study. Eur J Nucl Med Mol Imaging 2023; 50:2486-2500. [PMID: 36877234 PMCID: PMC10250456 DOI: 10.1007/s00259-023-06166-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/18/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Peptide receptor radionuclide therapy (PRRT) is one of the most promising therapeutic strategies in neuroendocrine neoplasms (NENs). Nevertheless, its role in certain tumor sites remains unclear. This study sought to elucidate the efficacy and safety of [177Lu]Lu-DOTATATE in NENs with different locations and evaluate the effect of the tumor origin, bearing in mind other prognostic variables. Advanced NENs overexpressing somatostatin receptors (SSTRs) on functional imaging, of any grade or location, treated at 24 centers were enrolled. The protocol consisted of four cycles of 177Lu-DOTATATE 7.4 GBq iv every 8 weeks (NCT04949282). RESULTS The sample comprised 522 subjects with pancreatic (35%), midgut (28%), bronchopulmonary (11%), pheochromocytoma/ paraganglioma (PPGL) (6%), other gastroenteropancreatic (GEP) (11%), and other non-gastroenteropancreatic (NGEP) (9%) NENs. The best RECIST 1.1 responses were complete response, 0.7%; partial response, 33.2%; stable disease, 52.1%; and tumor progression, 14%, with activity conditioned by the tumor subtype, but with benefit in all strata. Median progression-free survival (PFS) was 31.3 months (95% CI, 25.7-not reached [NR]) in midgut, 30.6 months (14.4-NR) in PPGL, 24.3 months (18.0-NR) in other GEP, 20.5 months (11.8-NR) in other NGEP, 19.8 months (16.8-28.1) in pancreatic, and 17.6 months (14.4-33.1) in bronchopulmonary NENs. [177Lu]Lu-DOTATATE exhibited scant severe toxicity. CONCLUSION This study confirms the efficacy and safety of [177Lu]Lu-DOTATATE in a wide range of SSTR-expressing NENs, regardless of location, with clinical benefit and superimposable survival outcomes between pNENs and other GEP and NGEP tumor subtypes different from midgut NENs.
Collapse
Affiliation(s)
- Mercedes Mitjavila
- Department of Nuclear Medicine, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Paula Jimenez-Fonseca
- Department of Medical Oncology, Hospital Universitario Central de Asturias, ISPA, Oviedo, Spain
| | - Pilar Belló
- Department of Nuclear Medicine, Hospital Universitario La Fe, Valencia, Spain
| | - Virginia Pubul
- Department of Nuclear Medicine, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Juan Carlos Percovich
- Department of Endocrinology and Nutrition, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Amparo Garcia-Burillo
- Department of Nuclear Medicine, Hospital Universitario Vall d’Hebron, Barcelona, Spain
| | - Jorge Hernando
- Department of Medical Oncology, Hospital Universitario Vall d’Hebron, Vall Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Javier Arbizu
- Department of Nuclear Medicine, Clínica Universidad de Navarra, Pamplona, Spain
| | - Emilia Rodeño
- Department of Nuclear Medicine, Hospital Universitario de Cruces, Bilbao, Spain
| | - Montserrat Estorch
- Department of Nuclear Medicine, Hospital de la Santa Creu i San Pau, Barcelona, Spain
| | - Belén Llana
- Department of Nuclear Medicine, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Maribel Castellón
- Department of Nuclear Medicine, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | | | - Pablo Gajate
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Maria Carmen Riesco
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Maria Begoña Miguel
- Department of Nuclear Medicine, Hospital Universitario de Burgos, Burgos, Spain
| | - David Balaguer-Muñoz
- Department of Nuclear Medicine, Hospital Universitario Doctor Peset, Valencia, Spain
| | - Ana Custodio
- Department of Medical Oncology, Hospital Universitario La Paz, CIBERONC CB16/12/00398, Madrid, Spain
| | - Juana María Cano
- Department of Medical Oncology, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Alexandra Repetto
- Department of Nuclear Medicine, Hospital Universitario Son Espases, Mallorca, Spain
| | - Pilar Garcia-Alonso
- Department of Nuclear Medicine, Hospital Universitario de Getafe, Madrid, Spain
| | - Maria Angustias Muros
- Department of Nuclear Medicine, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Jose Luis Vercher-Conejero
- Department of Nuclear Medicine-PET Unit, Hospital Universitario de Bellvitge - IDIBELL, Barcelona, Spain
| | - Alberto Carmona-Bayonas
- Department of Medical Oncology, Hospital Universitario Morales Meseguer, University de Murcia, IMIB, Murcia, Spain
| |
Collapse
|
11
|
Zhang X, Wakabayashi H, Hiromasa T, Kayano D, Kinuya S. Recent Advances in Radiopharmaceutical Theranostics of Pheochromocytoma and Paraganglioma. Semin Nucl Med 2023; 53:503-516. [PMID: 36641337 DOI: 10.1053/j.semnuclmed.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
As a rare kind of non-epithelial neuroendocrine neoplasms, paragangliomas (PGLs) exhibit various clinical characteristics with excessive catecholamine secretion and have been a research focus in recent years. Although several modalities are available nowadays, radiopharmaceuticals play an integral role in the management of PGLs. Theranostics utilises radiopharmaceuticals for diagnostic and therapeutic intentions by aiming at a specific target in tumour and has been considered a possible means in diagnosis, staging, monitoring and treatment planning. Numerous radiopharmaceuticals have been developed over the past decades. 123/131-Metaiodobenzylguanidine (123/131I-MIBG), the theranostics pair target on norepinephrine transporter system, has remained a fantastic protocol for patients with PGLs because of disease control with limited toxicity. The high-specific-activity 131I-MIBG was authorised by the Food and Drug Administration as a systemic treatment method for metastatic PGLs in 2018. Afterward, peptide receptor radionuclide therapy, which uses radiolabelled somatostatin (SST) analogues, has been exploited as a superior substitute. 68Ga-somatostatin analogue (SSA) PET showed significant performance in diagnosing PGLs than MIBG scintigraphy, especially in patients with head and neck PGLs or SDHx mutation. 90Y/177Lu-DOTA-SSA is highly successful and has preserved favourable safety with mounting evidence regarding objective response, disease stabilisation, symptomatic and hormonal management and quality of life preservation. Besides the ordinary beta emitters, alpha-emitters such as 211At-MABG and 225Ac-DOTATATE have been investigated intensively in recent years. However, many studies are still in the pre-clinical stage, and more research is necessary. This review summarises the developments and recent advances in radiopharmaceutical theranostics of PGLs.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan.
| | - Tomo Hiromasa
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Daiki Kayano
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| |
Collapse
|
12
|
Burkett BJ, Bartlett DJ, McGarrah PW, Lewis AR, Johnson DR, Berberoğlu K, Pandey MK, Packard AT, Halfdanarson TR, Hruska CB, Johnson GB, Kendi AT. A Review of Theranostics: Perspectives on Emerging Approaches and Clinical Advancements. Radiol Imaging Cancer 2023; 5:e220157. [PMID: 37477566 PMCID: PMC10413300 DOI: 10.1148/rycan.220157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
Theranostics is the combination of two approaches-diagnostics and therapeutics-applied for decades in cancer imaging using radiopharmaceuticals or paired radiopharmaceuticals to image and selectively treat various cancers. The clinical use of theranostics has increased in recent years, with U.S. Food and Drug Administration (FDA) approval of lutetium 177 (177Lu) tetraazacyclododecane tetraacetic acid octreotate (DOTATATE) and 177Lu-prostate-specific membrane antigen vector-based radionuclide therapies. The field of theranostics has imminent potential for emerging clinical applications. This article reviews critical areas of active clinical advancement in theranostics, including forthcoming clinical trials advancing FDA-approved and emerging radiopharmaceuticals, approaches to dosimetry calculations, imaging of different radionuclide therapies, expanded indications for currently used theranostic agents to treat a broader array of cancers, and emerging ideas in the field. Keywords: Molecular Imaging, Molecular Imaging-Cancer, Molecular Imaging-Clinical Translation, Molecular Imaging-Target Development, PET/CT, SPECT/CT, Radionuclide Therapy, Dosimetry, Oncology, Radiobiology © RSNA, 2023.
Collapse
Affiliation(s)
- Brian J. Burkett
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - David J. Bartlett
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Patrick W. McGarrah
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Akeem R. Lewis
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Derek R. Johnson
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Kezban Berberoğlu
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Mukesh K. Pandey
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Annie T. Packard
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Thorvardur R. Halfdanarson
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Carrie B. Hruska
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Geoffrey B. Johnson
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - A. Tuba Kendi
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| |
Collapse
|
13
|
Eid M, Foukal J, Sochorová D, Tuček Š, Starý K, Kala Z, Mayer J, Němeček R, Trna J, Kunovský L. Management of pheochromocytomas and paragangliomas: Review of current diagnosis and treatment options. Cancer Med 2023. [PMID: 37145019 DOI: 10.1002/cam4.6010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Pheochromocytomas (PCCs) are rare neuroendocrine tumors derived from the chromaffin cells of the adrenal medulla. When these tumors have an extra-adrenal location, they are called paragangliomas (PGLs) and arise from sympathetic and parasympathetic ganglia, particularly of the para-aortic location. Up to 25% of PCCs/PGLs are associated with inherited genetic disorders. The majority of PCCs/PGLs exhibit indolent behavior. However, according to their affiliation to molecular clusters based on underlying genetic aberrations, their tumorigenesis, location, clinical symptomatology, and potential to metastasize are heterogenous. Thus, PCCs/PGLs are often associated with diagnostic difficulties. In recent years, extensive research revealed a broad genetic background and multiple signaling pathways leading to tumor development. Along with this, the diagnostic and therapeutic options were also expanded. In this review, we focus on the current knowledge and recent advancements in the diagnosis and treatment of PCCs/PGLs with respect to the underlying gene alterations while also discussing future perspectives in this field.
Collapse
Affiliation(s)
- Michal Eid
- Department of Hematology, Oncology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jakub Foukal
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dana Sochorová
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Štěpán Tuček
- Department of Hematology, Oncology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karel Starý
- Department of Gastroenterology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdeněk Kala
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Mayer
- Department of Hematology, Oncology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radim Němeček
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Trna
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lumír Kunovský
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- 2nd Department of Internal Medicine - Gastroenterology and Geriatrics, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
14
|
Marretta AL, Ottaiano A, Iervolino D, Bracigliano A, Clemente O, Di Gennaro F, Tafuto R, Santorsola M, Lastoria S, Tafuto S. Response to Peptide Receptor Radionuclide Therapy in Pheocromocytomas and Paragangliomas: A Systematic Review and Meta-Analysis. J Clin Med 2023; 12:jcm12041494. [PMID: 36836029 PMCID: PMC9964778 DOI: 10.3390/jcm12041494] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/03/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
INTRODUCTION Peptide receptor radionuclide therapy (PRRT) with 177Lu-DOTATATE and 90Y-DOTATOC showed efficacy in the metastatic setting of pheocromocytomas (PCCs) and paragangliomas (PGLs) where no standard therapies have been established. BACKGROUND A search of peer-reviewed and English articles reporting on 177Lu-DOTATATE and 90Y-DOTATOC efficacy was performed through Medline and Scopus. A subsequent meta-analysis was performed to evaluate the pooled effect size on disease control rate (DCR) with PRRT. Secondary endpoints were description of patients' genetic characteristics, hematologic toxicity, and time-to-outcome. The pooled effect was estimated with both a mixed-effects model and a random-effects model. RESULTS Twelve studies met the criteria for this meta-analysis: ten with 177Lu- and two with 90Y-PRRTs (213 patients). The largest one included 46 patients. Median ages ranged from 32.5 to 60.4 years. When reported, mutations of SDHB were the most frequent genetic alterations. The pooled DCRs were 0.83 (95% CI: 0.75-0.88) and 0.76 (95% CI: 0.56-0.89) for 177Lu- and 90Y-PRRT, respectively. The pooled DCR for PRRT was 0.81 (95% CI: 0.74-0.87). CONCLUSIONS We report an updated and solid estimate of DCR achieved with 177Lu- and 90Y-PRRT in PCCs and PGLs, showing that these therapies can be considered in the multidisciplinary treatment of PCCs and PGLs as alternatives to I-131 MIBG and chemotherapy.
Collapse
Affiliation(s)
- Antonella Lucia Marretta
- Department of Clinical and Surgery Oncology Unit, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Department of Abdominal Oncology, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Domenico Iervolino
- Pathology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Alessandra Bracigliano
- Nuclear Medicine Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Ottavia Clemente
- Sarcomas and Rare Tumours Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-329-9786209
| | - Francesca Di Gennaro
- Nuclear Medicine Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Roberto Tafuto
- Department of Neuroscience and Reproductive and Dental Sciences, Division of Neurosurgery, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariachiara Santorsola
- SSD Innovative Therapies for Abdominal Metastases, Department of Abdominal Oncology, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Secondo Lastoria
- Nuclear Medicine Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Salvatore Tafuto
- Sarcomas and Rare Tumours Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| |
Collapse
|
15
|
Provenzano A, Chetta M, De Filpo G, Cantini G, La Barbera A, Nesi G, Santi R, Martinelli S, Rapizzi E, Luconi M, Maggi M, Mannelli M, Ercolino T, Canu L. Novel Germline PHD2 Variant in a Metastatic Pheochromocytoma and Chronic Myeloid Leukemia, but in the Absence of Polycythemia. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58081113. [PMID: 36013579 PMCID: PMC9416477 DOI: 10.3390/medicina58081113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
Abstract
Background: Pheochromocytoma (Pheo) and paraganglioma (PGL) are rare tumors, mostly resulting from pathogenic variants of predisposing genes, with a genetic contribution that now stands at around 70%. Germline variants account for approximately 40%, while the remaining 30% is attributable to somatic variants. Objective: This study aimed to describe a new PHD2 (EGLN1) variant in a patient affected by metastatic Pheo and chronic myeloid leukemia (CML) without polycythemia and to emphasize the need to adopt a comprehensive next-generation sequencing (NGS) panel. Methods: Genetic analysis was carried out by NGS. This analysis was initially performed using a panel of genes known for tumor predisposition (EGLN1, EPAS1, FH, KIF1Bβ, MAX, NF1, RET, SDHA, SDHAF2, SDHB, SDHC, SDHD, TMEM127, and VHL), followed initially by SNP-CGH array, to exclude the presence of the pathogenic Copy Number Variants (CNVs) and the loss of heterozygosity (LOH) and subsequently by whole exome sequencing (WES) comparative sequence analysis of the DNA extracted from tumor fragments and peripheral blood. Results: We found a novel germline PHD2 (EGLN1) gene variant, c.153G>A, p.W51*, in a patient affected by metastatic Pheo and chronic myeloid leukemia (CML) in the absence of polycythemia. Conclusions: According to the latest guidelines, it is mandatory to perform genetic analysis in all Pheo/PGL cases regardless of phenotype. In patients with metastatic disease and no evidence of polycythemia, we propose testing for PHD2 (EGLN1) gene variants. A possible correlation between PHD2 (EGLN1) pathogenic variants and CML clinical course should be considered.
Collapse
Affiliation(s)
- Aldesia Provenzano
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Massimiliano Chetta
- Medical Genetics, Azienda Ospedaliera di Rilievo Nazionale (A.O.R.N.) Cardarelli, Padiglione, 80131 Naples, Italy
| | - Giuseppina De Filpo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Giulia Cantini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139 Florence, Italy
| | - Andrea La Barbera
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Gabriella Nesi
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Raffaella Santi
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139 Florence, Italy
| | - Elena Rapizzi
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139 Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139 Florence, Italy
- Endocrinology Unit, Azienda Ospedaliera-Universitaria Careggi, 50139 Florence, Italy
| | - Massimo Mannelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139 Florence, Italy
| | - Tonino Ercolino
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139 Florence, Italy
- Endocrinology Unit, Azienda Ospedaliera-Universitaria Careggi, 50139 Florence, Italy
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139 Florence, Italy
- Endocrinology Unit, Azienda Ospedaliera-Universitaria Careggi, 50139 Florence, Italy
- Correspondence:
| |
Collapse
|
16
|
O'Neill E, Cornelissen B. Know thy tumour: Biomarkers to improve treatment of molecular radionuclide therapy. Nucl Med Biol 2022; 108-109:44-53. [PMID: 35276447 DOI: 10.1016/j.nucmedbio.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
Molecular radionuclide therapy (MRT) is an effective treatment for both localised and disseminated tumours. Biomarkers can be used to identify potential subtypes of tumours that are known to respond better to standard MRT protocols. These enrolment-based biomarkers can further be used to develop dose-response relationships using image-based dosimetry within these defined subtypes. However, the biological identity of the cancers treated with MRT are commonly not well-defined, particularly for neuroendocrine neoplasms. The biological heterogeneity of such cancers has hindered the establishment of dose-responses and minimum tumour dose thresholds. Biomarkers could also be used to determine normal tissue MRT dose limits and permit greater injected doses of MRT in patients. An alternative approach is to understand the repair capacity limits of tumours using radiobiology-based biomarkers within and outside patient cohorts currently treated with MRT. It is hoped that by knowing more about tumours and how they respond to MRT, biomarkers can provide needed dimensionality to image-based biodosimetry to improve MRT with optimized protocols and personalised therapies.
Collapse
Affiliation(s)
- Edward O'Neill
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| | - Bart Cornelissen
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
17
|
New Directions in Treatment of Metastatic or Advanced Pheochromocytomas and Sympathetic Paragangliomas: an American, Contemporary, Pragmatic Approach. Curr Oncol Rep 2022; 24:89-98. [DOI: 10.1007/s11912-022-01197-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/17/2022]
|
18
|
Garcia-Carbonero R, Matute Teresa F, Mercader-Cidoncha E, Mitjavila-Casanovas M, Robledo M, Tena I, Alvarez-Escola C, Arístegui M, Bella-Cueto MR, Ferrer-Albiach C, Hanzu FA. Multidisciplinary practice guidelines for the diagnosis, genetic counseling and treatment of pheochromocytomas and paragangliomas. Clin Transl Oncol 2021; 23:1995-2019. [PMID: 33959901 PMCID: PMC8390422 DOI: 10.1007/s12094-021-02622-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors that arise from chromaffin cells of the adrenal medulla and the sympathetic/parasympathetic neural ganglia, respectively. The heterogeneity in its etiology makes PPGL diagnosis and treatment very complex. The aim of this article was to provide practical clinical guidelines for the diagnosis and treatment of PPGLs from a multidisciplinary perspective, with the involvement of the Spanish Societies of Endocrinology and Nutrition (SEEN), Medical Oncology (SEOM), Medical Radiology (SERAM), Nuclear Medicine and Molecular Imaging (SEMNIM), Otorhinolaryngology (SEORL), Pathology (SEAP), Radiation Oncology (SEOR), Surgery (AEC) and the Spanish National Cancer Research Center (CNIO). We will review the following topics: epidemiology; anatomy, pathology and molecular pathways; clinical presentation; hereditary predisposition syndromes and genetic counseling and testing; diagnostic procedures, including biochemical testing and imaging studies; treatment including catecholamine blockade, surgery, radiotherapy and radiometabolic therapy, systemic therapy, local ablative therapy and supportive care. Finally, we will provide follow-up recommendations.
Collapse
Affiliation(s)
- R Garcia-Carbonero
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), UCM, CNIO, CIBERONC, Avda Cordoba km 5.4, 28041, Madrid, Spain.
| | - F Matute Teresa
- Radiology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - E Mercader-Cidoncha
- Endocrine and Metabolic Surgery Unit, General and Digestive Surgery Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - M Mitjavila-Casanovas
- Nuclear Medicine Department, Hospital Universitario Puerta de Hierro, Majadahonda, Spain.,Grupo de Trabajo de Endocrino de la SEMNIM, Madrid, Spain
| | - M Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - I Tena
- Scientific Department, Medica Scientia Innovation Research (MedSIR CORP), Ridgewood, NJ, USA.,Medical Oncology Department, Hospital Provincial, Castellon, Spain
| | - C Alvarez-Escola
- Neuroendocrinology Unit, Endocrinology and Nutrition Department, Hospital Universitario la Paz, Madrid, Spain
| | - M Arístegui
- ENT Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - M R Bella-Cueto
- Pathology Department, Hospital Universitario Parc Taulí, Sabadell, Institut D'Investigació I Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - C Ferrer-Albiach
- Radiation Oncology Department, Hospital Provincial Castellón, Castellón, Spain
| | - F A Hanzu
- Endocrinology and Nutrition Department, Hospital Clinic Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
19
|
Ambrosini V, Kunikowska J, Baudin E, Bodei L, Bouvier C, Capdevila J, Cremonesi M, de Herder WW, Dromain C, Falconi M, Fani M, Fanti S, Hicks RJ, Kabasakal L, Kaltsas G, Lewington V, Minozzi S, Cinquini M, Öberg K, Oyen WJG, O'Toole D, Pavel M, Ruszniewski P, Scarpa A, Strosberg J, Sundin A, Taïeb D, Virgolini I, Wild D, Herrmann K, Yao J. Consensus on molecular imaging and theranostics in neuroendocrine neoplasms. Eur J Cancer 2021; 146:56-73. [PMID: 33588146 DOI: 10.1016/j.ejca.2021.01.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Nuclear medicine plays an increasingly important role in the management neuroendocrine neoplasms (NEN). Somatostatin analogue (SSA)-based positron emission tomography/computed tomography (PET/CT) and peptide receptor radionuclide therapy (PRRT) have been used in clinical trials and approved by the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA). European Association of Nuclear Medicine (EANM) Focus 3 performed a multidisciplinary Delphi process to deliver a balanced perspective on molecular imaging and radionuclide therapy in well-differentiated neuroendocrine tumours (NETs). NETs form in cells that interact with the nervous system or in glands that produce hormones. These cells, called neuroendocrine cells, can be found throughout the body, but NETs are most often found in the abdomen, especially in the gastrointestinal tract. These tumours may also be found in the lungs, pancreas and adrenal glands. In addition to being rare, NETs are also complex and may be difficult to diagnose. Most NETs are non-functioning; however, a minority present with symptoms related to hypersecretion of bioactive compounds. NETs often do not cause symptoms early in the disease process. When diagnosed, substantial number of patients are already found to have metastatic disease. Several societies' guidelines address Neuroendocrine neoplasms (NENs) management; however, many issues are still debated, due to both the difficulty in acquiring strong clinical evidence in a rare and heterogeneous disease and the different availability of diagnostic and therapeutic options across countries. EANM Focus 3 reached consensus on employing 68gallium-labelled somatostatin analogue ([68Ga]Ga-DOTA-SSA)-based PET/CT with diagnostic CT or magnetic resonance imaging (MRI) for unknown primary NET detection, metastatic NET, NET staging/restaging, suspected extra-adrenal pheochromocytoma/paraganglioma and suspected paraganglioma. Consensus was reached on employing 18fluorine-fluoro-2-deoxyglucose ([18F]FDG) PET/CT in neuroendocrine carcinoma, G3 NET and in G1-2 NET with mismatched lesions (CT-positive/[68Ga]Ga-DOTA-SSA-negative). Peptide receptor radionuclide therapy (PRRT) was recommended for second line treatment for gastrointestinal NET with [68Ga]Ga-DOTA-SSA uptake in all lesions, in G1/G2 NET at disease progression, and in a subset of G3 NET provided all lesions are positive at [18F]FDG and [68Ga]Ga-DOTA-SSA. PRRT rechallenge may be used for in patients with stable disease for at least 1 year after therapy completion. An international consensus is not only a prelude to a more standardised management across countries but also serves as a guide for the direction to follow when designing new research studies.
Collapse
Affiliation(s)
- Valentina Ambrosini
- IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Italy; Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
| | - Jolanta Kunikowska
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Eric Baudin
- Endocrine Oncolgy Unit, Institut Gustave Roussy, Villejuif Cedex, France
| | - Lisa Bodei
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Catherine Bouvier
- International Neuroendocrine Cancer Alliance (INCA), Leamington Spa, UK
| | - Jaume Capdevila
- Medical Oncology Department, Vall Hebron University Hospital, Vall Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Marta Cremonesi
- Radiation Research Unit, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
| | - Wouter W de Herder
- Erasmus MC & Erasmus MC Cancer Center, ENETS Center of Excellence Rotterdam, Rotterdam, the Netherlands
| | | | - Massimo Falconi
- Pancreas Translational & Research Institute, Scientific Institute San Raffaele Hospital and University Vita-Salute, Milan, Italy
| | - Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, Basel, Switzerland
| | - Stefano Fanti
- IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Italy; Nuclear Medicine, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
| | - Rodney J Hicks
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Levent Kabasakal
- Istanbul University-Cerrahpaşa, Faculty of Medicine, Department of Nuclear Medicine, Turkey
| | - Gregory Kaltsas
- National and Kapodistrian University of Athens, Athens, Greece
| | | | - Silvia Minozzi
- Laboratory of Clinical Research Methodology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Michela Cinquini
- Laboratory of Clinical Research Methodology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Kjell Öberg
- Dept of Endocrine Oncology, University Hospital Uppsala, Sweden
| | - Wim J G Oyen
- Humanitas University and Humanitas Clinical and Research Center, Milan, Italy; Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Radiology and Nuclear Medicine, Rijnstate Hospital Arnhem, the Netherlands
| | | | - Marianne Pavel
- Friedrich Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Philippe Ruszniewski
- Department of Pancreatology, Beaujon Hospital, Université de Paris, Clichy, France
| | - Aldo Scarpa
- ARC-NET Centre for Applied Research on Cancer and Department of Pathology, University of Verona, Italy
| | | | - Anders Sundin
- Department of Surgical Sciences, Uppsala University, University Hospital, Sweden
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Damian Wild
- Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Ken Herrmann
- Department of Nuclear Medicine, Universitätsklinikum, Essen, Germany.
| | - James Yao
- Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
20
|
Patel M, Tena I, Jha A, Taieb D, Pacak K. Somatostatin Receptors and Analogs in Pheochromocytoma and Paraganglioma: Old Players in a New Precision Medicine World. Front Endocrinol (Lausanne) 2021; 12:625312. [PMID: 33854479 PMCID: PMC8039528 DOI: 10.3389/fendo.2021.625312] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/04/2021] [Indexed: 12/16/2022] Open
Abstract
Neuroendocrine tumors overexpress somatostatin receptors, which serve as important and unique therapeutic targets for well-differentiated advanced disease. This overexpression is a well-established finding in gastroenteropancreatic neuroendocrine tumors which has guided new medical therapies in the administration of somatostatin analogs, both "cold", particularly octreotide and lanreotide, and "hot" analogs, chelated to radiolabeled isotopes. The binding of these analogs to somatostatin receptors effectively suppresses excess hormone secretion and tumor cell proliferation, leading to stabilization, and in some cases, tumor shrinkage. Radioisotope-labeled somatostatin analogs are utilized for both tumor localization and peptide radionuclide therapy, with 68Ga-DOTATATE and 177Lu-DOTATATE respectively. Benign and malignant pheochromocytomas and paragangliomas also overexpress somatostatin receptors, irrespective of embryological origin. The pattern of somatostatin receptor overexpression is more prominent in succinate dehydrogenase subunit B gene mutation, which is more aggressive than other subgroups of this disease. While the Food and Drug Administration has approved the use of 68Ga-DOTATATE as a radiopharmaceutical for somatostatin receptor imaging, the use of its radiotherapeutic counterpart still needs approval beyond gastroenteropancreatic neuroendocrine tumors. Thus, patients with pheochromocytoma and paraganglioma, especially those with inoperable or metastatic diseases, depend on the clinical trials of somatostatin analogs. The review summarizes the advances in the utilization of somatostatin receptor for diagnostic and therapeutic approaches in the neuroendocrine tumor subset of pheochromocytoma and paraganglioma; we hope to provide a positive perspective in using these receptors as targets for treatment in this rare condition.
Collapse
Affiliation(s)
- Mayank Patel
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Isabel Tena
- Scientific Department, Medica Scientia Innovation Research (MedSIR), Barcelona, Spain
- Section of Medical Oncology, Consorcio Hospitalario Provincial of Castellon, Castellon, Spain
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Karel Pacak,
| |
Collapse
|
21
|
Jungels C, Karfis I. 131I-metaiodobenzylguanidine and peptide receptor radionuclide therapy in pheochromocytoma and paraganglioma. Curr Opin Oncol 2021; 33:33-39. [PMID: 33093336 DOI: 10.1097/cco.0000000000000691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Pheochromocytomas and paragangliomas are rare tumors arising, respectively, from the adrenal medulla and extra-adrenal sympathetic or parasympathetic paraganglia. The main therapeutic objectives in case of metastatic disease are the reduction of tumor burden and the control of symptoms resulting from excessive catecholamine secretion. Treatment choices constitute not only a wait and see attitude, locoregional approaches, chemotherapy regiments but also radiopharmaceutical agents, and they should be discussed in a specialized multidisciplinary board. This review will briefly discuss the radiopharmaceutical modalities in patients with pheochromocytomas and paragangliomas (I-MIBG and PRRT). RECENT FINDINGS I-MIBG (Azedra) has received FDA approval for patients with iobenguane-scan-positive, unresectable, locally advanced or metastatic pheochromocytomas and paragangliomas who require systemic anticancer therapy, whereas peptide receptor radionuclide therapy using radiolabelled somatostatin analogues is currently performed in compassionate use, with very promising results. No prospective head-to-head comparison between the modalities has been conducted to date. SUMMARY Promising results have been reported for both radiopharmaceutical agents, mostly in the setting of retrospective series. No prospective head-to-head comparison between the modalities is yet available.
Collapse
Affiliation(s)
| | - Ioannis Karfis
- Department of Nuclear Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
22
|
del Olmo-García MI, Muros MA, López-de-la-Torre M, Agudelo M, Bello P, Soriano JM, Merino-Torres JF. Prevention and Management of Hormonal Crisis during Theragnosis with LU-DOTA-TATE in Neuroendocrine Tumors. A Systematic Review and Approach Proposal. J Clin Med 2020; 9:E2203. [PMID: 32664679 PMCID: PMC7408760 DOI: 10.3390/jcm9072203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Neuroendocrine tumors (NETs) frequently overexpress somatostatin receptors (SSTR) on their cell surface. The first-line pharmacological treatment for inoperable metastatic functioning well-differentiated NETs are somatostatin analogs. On second line, Lu-DOTA-TATE (177Lu-DOTA0 Tyr 3 octreotate) has shown stabilization of the disease and an increase in progression free survival, as well as effectiveness in controlling symptoms and increasing quality of life. The management of functional NETs before and during LU-DOTA-TATE treatment is specially challenging, as several complications such as severe carcinoid and catecholamine crisis have been described. The aim of this review is to establish practical guidance for the management and prevention of the most common hormonal crises during radionuclide treatment with Lu-DOTA-TATE: carcinoid syndrome (CS) and catecholamine hypersecretion, as well as to provide a brief commentary on other infrequent metabolic complications. To establish a practical approach, a systematic review was performed. This systematic review was developed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and conducted using MEDLINE (accessed from PubMed), Google Scholar and ClinicalTrials.gov. Literature searches found 449 citations, and finally nine were considered for this systematic review.
Collapse
Affiliation(s)
| | - Maria Angustias Muros
- Nuclear Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - Martín López-de-la-Torre
- Endocrinology and Nutrition Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - Marc Agudelo
- Nuclear Medicine Department, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (M.A.); (P.B.)
| | - Pilar Bello
- Nuclear Medicine Department, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (M.A.); (P.B.)
| | - Jose M. Soriano
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Valencia, Spain;
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, 46026 Valencia, Spain
| | - Juan-Francisco Merino-Torres
- Endocrinology and Nutrition Department, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain;
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, 46026 Valencia, Spain
| |
Collapse
|
23
|
Natural History and Management of Familial Paraganglioma Syndrome Type 1: Long-Term Data from a Large Family. J Clin Med 2020; 9:jcm9020588. [PMID: 32098148 PMCID: PMC7074269 DOI: 10.3390/jcm9020588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
Head and neck paragangliomas are the most common clinical features of familial paraganglioma syndrome type 1 caused by succinate dehydrogenase complex subunit D (SDHD) mutation. The clinical management of this syndrome is still unclear. In this study we propose a diagnostic algorithm for SDHD mutation carriers based on our family case series and literature review. After genetic diagnosis, first evaluation should include biochemical examination and whole-body imaging. In case of lesion detection, nuclear medicine examination is required for staging and tumor characterization. The study summarizes the diagnostic accuracy of different functional imaging techniques in SDHD mutation carriers. 18F-3,4-dihydroxyphenylalanine (18F-DOPA) positron emission tomography (PET)-computed tomography (CT) is considered the gold standard. If it is not available, 123I-Metaiodobenzylguanidine (MIBG) could be used also for predicting response to radiometabolic therapy. 18F-fluoro-2-deoxy-D-glucose (18F-FDG) PET-CT has a prognostic role since high uptake identifies more aggressive cases. Finally, 68Ga-peptides PET-CT is a promising diagnostic technique, demonstrating the best diagnostic accuracy in our and in other published case series, even if this finding still needs to be confirmed in larger studies. Periodic follow-up should consist of annual biochemical and ultrasonographic screening and biannual magnetic resonance examination to identify biochemical silent tumors early.
Collapse
|
24
|
Taïeb D, Jha A, Treglia G, Pacak K. Molecular imaging and radionuclide therapy of pheochromocytoma and paraganglioma in the era of genomic characterization of disease subgroups. Endocr Relat Cancer 2019; 26:R627-R652. [PMID: 31561209 PMCID: PMC7002202 DOI: 10.1530/erc-19-0165] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
In recent years, advancement in genetics has profoundly helped to gain a more comprehensive molecular, pathogenic, and prognostic picture of pheochromocytomas and paragangliomas (PPGLs). Newly discovered molecular targets, particularly those that target cell membranes or signaling pathways have helped move nuclear medicine in the forefront of PPGL precision medicine. This is mainly based on the introduction and increasing experience of various PET radiopharmaceuticals across PPGL genotypes quickly followed by implementation of novel radiotherapies and revised imaging algorithms. Particularly, 68Ga-labeled-SSAs have shown excellent results in the diagnosis and staging of PPGLs and in selecting patients for PRRT as a potential alternative to 123/131I-MIBG theranostics. PRRT using 90Y/177Lu-DOTA-SSAs has shown promise for treatment of PPGLs with improvement of clinical symptoms and/or disease control. However, more well-designed prospective studies are required to confirm these findings, in order to fully exploit PRRT's antitumoral properties to obtain the final FDA approval. Such an approval has recently been obtained for high-specific-activity 131I-MIBG for inoperable/metastatic PPGL. The increasing experience and encouraging preliminary results of these radiotherapeutic approaches in PPGLs now raises an important question of how to further integrate them into PPGL management (e.g. monotherapy or in combination with other systemic therapies), carefully taking into account the PPGLs locations, genotypes, and growth rate. Thus, targeted radionuclide therapy (TRT) should preferably be performed at specialized centers with an experienced interdisciplinary team. Future perspectives include the introduction of dosimetry and biomarkers for therapeutic responses for more individualized treatment plans, α-emitting isotopes, and the combination of TRT with other systemic therapies.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Giorgio Treglia
- Clinic of Nuclear Medicine and PET/CT Center, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
- Health Technology Assessment Unit, General Directorate, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|