1
|
DiNicola ES, Martinez AV, Walker L, Wu Y, Burnikel BG, Mercuri J. Cigarette smoke extract exacerbates progression of osteoarthritic-like changes in cartilage explant cultures. J Orthop Res 2024; 42:1682-1695. [PMID: 38460961 DOI: 10.1002/jor.25828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 03/11/2024]
Abstract
Established risk factors for osteoarthritis (OA) include obesity, joint injury, age, race, and genetics. However, the relationship between cigarette smoking and OA has yet to be established. In the present study, we have employed the use of cigarette smoke extract (CSE), the water-soluble vapor phase of cigarette smoke, with porcine cartilage explants to investigate the effects of cigarette smoking on cartilage catabolism at the tissue level. Articular cartilage explants were first exposed to 2.5%, 5%, and 10% CSE to assess its effects on cartilage homeostasis. Following, the effects of CSE on OA-like inflammation was observed by culturing explants with a combined treatment of IL-1β and TNF-α and 10% CSE (CSE + OA). Cartilage explants were assessed for changes in viability, biochemical composition, extracellular matrix (ECM) integrity, and equilibrium mechanical properties (aggregate modulus and hydraulic permeability). CSE alone leads to both a time- and dose-dependent decrease in chondrocyte viability but does not significantly affect sGAG content, percent sGAG loss, or the ECM integrity of cartilage explants. When IL-1β and TNF-α were combined with 10% CSE, this led to a synergistic effect with more significant losses in viability, significantly more sGAG loss, and significantly higher production of ROS than OA-like inflammation only. Cartilage explant equilibrium mechanical properties were unaffected. Within the timeframe of this study, CSE alone does not cause OA but when combined with OA-like inflammation leads to worsened articular cartilage degeneration as measured by chondrocyte viability, sGAG loss, proteoglycan staining, and ROS production.
Collapse
Affiliation(s)
- Emily Sawvell DiNicola
- Department of Bioengineering, The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, USA
- Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, South Carolina, USA
| | - Andrea Vera Martinez
- Department of Bioengineering, The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, USA
- Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, South Carolina, USA
| | - Lizzie Walker
- Orthopaedic Bioengineering Laboratory, Medical University of South Carolina, Department of Bioengineering, Clemson University, Charleston, South Carolina, USA
| | - Yongren Wu
- Orthopaedic Bioengineering Laboratory, Medical University of South Carolina, Department of Bioengineering, Clemson University, Charleston, South Carolina, USA
| | - Brian G Burnikel
- Prisma Health Steadman Hawkins Clinic of the Carolinas - Patewood, Greenville, South Carolina, USA
| | - Jeremy Mercuri
- Department of Bioengineering, The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, USA
- Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, South Carolina, USA
| |
Collapse
|
2
|
Gebhardt S, Vollmer M, Zimmerer A, Rochel I, Balcarek P, Niemeyer P, Wassilew GI. Factors Affecting Choice of Surgical Treatment of Cartilage Lesions of the Knee: An Analysis of Data From 5143 Patients From the German Cartilage Registry (KnorpelRegister DGOU). Orthop J Sports Med 2024; 12:23259671241255672. [PMID: 39070901 PMCID: PMC11273558 DOI: 10.1177/23259671241255672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/01/2024] [Indexed: 07/30/2024] Open
Abstract
Background Symptomatic full-thickness cartilage lesions of the knee joint are considered an indication for cartilage repair surgery. Patient- and lesion-specific factors like age, nutritional status, etiology of defect, or integrity of corresponding joint surface remain controversial in indicating cartilage repair surgery. Furthermore, the selection of the most suitable cartilage repair technique for a specific cartilage lesion remains debatable. Purpose To evaluate indications and choice of treatment method for cartilage repair surgery, depending on patient- and lesion-specific data from the German Cartilage Registry. Study Design Cross-sectional study; Level of evidence, 3. Methods A total of 6305 consecutive patients who underwent cartilage repair surgery of the knee evaluated and 5143 complete datasets were included in the analysis (follow-up rate, 81.5%). Patient-specific (age, body mass index, smoking status, previous operations, clinical leg axis) and lesion-specific (size, grading, location, etiology) data were provided by the attending surgeon at the time of surgery. Appropriate statistical tests were used to compare data depending on type and normality of data. Multivariable logistic regressions were calculated to investigate independent factors for the choice of specific cartilage repair techniques. Results The median size of treated cartilage lesions was 3.6 cm2, and most defects were of degenerative origin (54.8%). Of the registered patients, 39.2% were categorized as overweight and 19.6% as obese, while 23.3% were smokers. The most prevalently documented operative techniques were the autologous chondrocyte implantation (ACI) (52.4%), bone marrow stimulation (BMS) (17.3%), and BMS augmented with collagen scaffolds (9.3%). Independent factors that made the use of ACI more likely were bigger lesion size, previous surgery at the joint, and lesions located at the trochlea or the patella. On the contrary, BMS or augmented BMS were preferred in older patients, with damaged corresponding joint surface, and with more concomitant surgeries. Conclusion Cartilage repair surgery was indicated irrespective of nutritional status, smoking status, or etiology of the treated lesion. ACI was the most prevalent technique and was preferred for younger patients and patellar lesions. While older patients with degenerative changes to the joint were not excluded from cartilage repair surgery, the use of ACI was restricted.
Collapse
Affiliation(s)
- Sebastian Gebhardt
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Marcus Vollmer
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Zimmerer
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
- Orthopädische Klinik Paulinenhilfe, Diakonie-Klinikum Stuttgart, Stuttgart, Germany
| | - Ingo Rochel
- Klinik für Unfallchirurgie, Handchirurgie und Orthopädie, KRH Klinikum Nordstadt, Hannover, Germany
| | - Peter Balcarek
- ARCUS Sportklinik, Pforzheim, Germany
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Göttingen, Germany
| | - Philipp Niemeyer
- OCM-Orthopädische Chirurgie München, München, Germany
- Klinik für Orthopädie und Traumatologie, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Georgi I. Wassilew
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
3
|
Xie G, Huang C, Jiang S, Li H, Gao Y, Zhang T, Zhang Q, Pavel V, Rahmati M, Li Y. Smoking and osteoimmunology: Understanding the interplay between bone metabolism and immune homeostasis. J Orthop Translat 2024; 46:33-45. [PMID: 38765605 PMCID: PMC11101877 DOI: 10.1016/j.jot.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Smoking continues to pose a global threat to morbidity and mortality in populations. The detrimental impact of smoking on health and disease includes bone destruction and immune disruption in various diseases. Osteoimmunology, which explores the communication between bone metabolism and immune homeostasis, aims to reveal the interaction between the osteoimmune systems in disease development. Smoking impairs the differentiation of mesenchymal stem cells and osteoblasts in bone formation while promoting osteoclast differentiation in bone resorption. Furthermore, smoking stimulates the Th17 response to increase inflammatory and osteoclastogenic cytokines that promote the receptor activator of NF-κB ligand (RANKL) signaling in osteoclasts, thus exacerbating bone destruction in periodontitis and rheumatoid arthritis. The pro-inflammatory role of smoking is also evident in delayed bone fracture healing and osteoarthritis development. The osteoimmunological therapies are promising in treating periodontitis and rheumatoid arthritis, but further research is still required to block the smoking-induced aggravation in these diseases. Translational potential This review summarizes the adverse effect of smoking on mesenchymal stem cells, osteoblasts, and osteoclasts and elucidates the smoking-induced exacerbation of periodontitis, rheumatoid arthritis, bone fracture healing, and osteoarthritis from an osteoimmune perspective. We also propose the therapeutic potential of osteoimmunological therapies for bone destruction aggravated by smoking.
Collapse
Affiliation(s)
- Guangyang Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Cheng Huang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou, 425000, China
| | - Hengzhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yihan Gao
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Tingwei Zhang
- Department of Orthopaedics, Wendeng Zhenggu Hospital of Shandong Province, Weihai, 264400, China
| | - Qidong Zhang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Yusheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
4
|
Brittberg M. Treatment of knee cartilage lesions in 2024: From hyaluronic acid to regenerative medicine. J Exp Orthop 2024; 11:e12016. [PMID: 38572391 PMCID: PMC10985633 DOI: 10.1002/jeo2.12016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Abstract Intact articular cartilage plays a vital role in joint homeostasis. Local cartilage repairs, where defects in the cartilage matrix are filled in and sealed to congruity, are therefore important treatments to restore a joint equilibrium. The base for all cartilage repairs is the cells; either chondrocytes or chondrogeneic cells from bone, synovia and fat tissue. The surgical options include bone marrow stimulation techniques alone or augmented with scaffolds, chondrogeneic cell implantations and osteochondral auto- or allografts. The current trend is to choose one-stage procedures being easier to use from a regulatory point of view. This narrative review provides an overview of the current nonoperative and surgical options available for the repair of various cartilage lesions. Level of Evidence Level IV.
Collapse
Affiliation(s)
- Mats Brittberg
- Cartilage Research Unit, Team Orthopedic Research Region Halland‐TOR, Region Halland Orthopaedics, Varberg HospitalUniversity of GothenburgVarbergSweden
| |
Collapse
|
5
|
Wang J, Zhang B, Peng L, Wang J, Xu K, Xu P. The Causal Association between Alcohol, Smoking, Coffee Consumption, and the Risk of Arthritis: A Meta-Analysis of Mendelian Randomization Studies. Nutrients 2023; 15:5009. [PMID: 38068867 PMCID: PMC10707754 DOI: 10.3390/nu15235009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Objective: To evaluate the genetic causality between alcohol intake, smoking, coffee consumption, and arthritis. Methods: Mendelian randomization (MR) studies with alcohol, smoking, and coffee consumption behaviors as exposures, and osteoarthritis (OA) and rheumatoid arthritis (RA) as outcomes were retrieved from up to July 2023. Two researchers with relevant professional backgrounds independently assessed the quality and extracted data from the included studies. Meanwhile, we applied MR analyses of four lifestyle exposures and five arthritis outcomes (two for OA and three for RA) with gene-wide association study (GWAS) data that were different from the included studies, and the results were also included in the meta-analysis. Statistical analyses were performed using Stata 16.0 and R software version 4.3.1. Results: A total of 84 studies were assessed. Of these, 11 were selected for meta-analysis. As a whole, the included studies were considered to be at a low risk of bias and were of high quality. Results of the meta-analysis showed no significant genetic causality between alcohol intake and arthritis (odds ratio (OR): 1.02 (0.94-1.11)). Smoking and arthritis had a positive genetic causal association (OR: 1.44 (1.27-1.64)) with both OA (1.44 (1.22-1.71)) and RA (1.37 (1.26-1.50)). Coffee consumption and arthritis also had a positive genetic causal association (OR: 1.02 (1.01-1.03)). Results from the subgroup analysis showed a positive genetic causality between coffee consumption and both OA (OR: 1.02 (1.00-1.03)) and RA (OR: 1.56 (1.19-2.05)). Conclusion: There is positive genetic causality between smoking and coffee consumption and arthritis (OA and RA), while there is insufficient evidence for genetic causality between alcohol intake and arthritis.
Collapse
Affiliation(s)
- Junxiang Wang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (J.W.); (B.Z.); (J.W.); (K.X.)
- The School of Medicine, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Binfei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (J.W.); (B.Z.); (J.W.); (K.X.)
| | - Leixuan Peng
- The School of Medicine, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Jiachen Wang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (J.W.); (B.Z.); (J.W.); (K.X.)
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (J.W.); (B.Z.); (J.W.); (K.X.)
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (J.W.); (B.Z.); (J.W.); (K.X.)
| |
Collapse
|
6
|
Liu L, Han H, Li Q, Chen M, Zhou S, Wang H, Chen L. Selection and Validation of the Optimal Panel of Reference Genes for RT-qPCR Analysis in the Developing Rat Cartilage. Front Genet 2020; 11:590124. [PMID: 33391345 PMCID: PMC7772434 DOI: 10.3389/fgene.2020.590124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022] Open
Abstract
Real-time fluorescence quantitative PCR (RT-qPCR) is widely used to detect gene expression levels, and selection of reference genes is crucial to the accuracy of RT-qPCR results. Minimum Information for Publication of RT-qPCR Experiments (MIQE) proposes that using the panel of reference genes for RT-qPCR is conducive to obtaining accurate experimental results. However, the selection of the panel of reference genes for RT-qPCR in rat developing cartilage has not been well documented. In this study, we selected eight reference genes commonly used in rat cartilage from literature (GAPDH, ACTB, 18S, GUSB, HPRT1, RPL4, RPL5, and SDHA) as candidates. Then, we screened out the optimal panel of reference genes in female and male rat cartilage of fetus (GD20), juvenile (PW6), and puberty (PW12) in physiology with stability analysis software of genes expression. Finally, we verified the reliability of the selected panel of reference genes with the rat model of intrauterine growth retardation (IUGR) induced by prenatal dexamethasone exposure (PDE). The results showed that the optimal panel of reference genes in cartilage at GD20, PW6, and PW12 in physiology was RPL4 + RPL5, which was consistent with the IUGR model, and there was no significant gender difference. Further, the results of standardizing the target genes showed that RPL4 + RPL5 performed smaller intragroup differences than other panels of reference genes or single reference genes. In conclusion, we found that the optimal panel of reference genes in female and male rat developing cartilage was RPL4 + RPL5, and there was no noticeable difference before and after birth.
Collapse
Affiliation(s)
- Liang Liu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Han
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qingxian Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Siqi Zhou
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|