1
|
Pan YH, Tsai HW, Lin HA, Chen CY, Chao CC, Lin SF, Hou SK. Early Identification of Sepsis-Induced Acute Kidney Injury by Using Monocyte Distribution Width, Red-Blood-Cell Distribution, and Neutrophil-to-Lymphocyte Ratio. Diagnostics (Basel) 2024; 14:918. [PMID: 38732331 PMCID: PMC11083534 DOI: 10.3390/diagnostics14090918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis-induced acute kidney injury (AKI) is a common complication in patients with severe illness and leads to increased risks of mortality and chronic kidney disease. We investigated the association between monocyte distribution width (MDW), red-blood-cell volume distribution width (RDW), neutrophil-to-lymphocyte ratio (NLR), sepsis-related organ-failure assessment (SOFA) score, mean arterial pressure (MAP), and other risk factors and sepsis-induced AKI in patients presenting to the emergency department (ED). This retrospective study, spanning 1 January 2020, to 30 November 2020, was conducted at a university-affiliated teaching hospital. Patients meeting the Sepsis-2 consensus criteria upon presentation to our ED were categorized into sepsis-induced AKI and non-AKI groups. Clinical parameters (i.e., initial SOFA score and MAP) and laboratory markers (i.e., MDW, RDW, and NLR) were measured upon ED admission. A logistic regression model was developed, with sepsis-induced AKI as the dependent variable and laboratory parameters as independent variables. Three multivariable logistic regression models were constructed. In Model 1, MDW, initial SOFA score, and MAP exhibited significant associations with sepsis-induced AKI (area under the curve [AUC]: 0.728, 95% confidence interval [CI]: 0.668-0.789). In Model 2, RDW, initial SOFA score, and MAP were significantly correlated with sepsis-induced AKI (AUC: 0.712, 95% CI: 0.651-0.774). In Model 3, NLR, initial SOFA score, and MAP were significantly correlated with sepsis-induced AKI (AUC: 0.719, 95% CI: 0.658-0.780). Our novel models, integrating MDW, RDW, and NLR with initial SOFA score and MAP, can assist with the identification of sepsis-induced AKI among patients with sepsis presenting to the ED.
Collapse
Affiliation(s)
- Yi-Hsiang Pan
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-H.P.); (H.-W.T.); (H.-A.L.); (C.-C.C.)
| | - Hung-Wei Tsai
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-H.P.); (H.-W.T.); (H.-A.L.); (C.-C.C.)
| | - Hui-An Lin
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-H.P.); (H.-W.T.); (H.-A.L.); (C.-C.C.)
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei 110, Taiwan
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Yi Chen
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chun-Chieh Chao
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-H.P.); (H.-W.T.); (H.-A.L.); (C.-C.C.)
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Sheng-Feng Lin
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-H.P.); (H.-W.T.); (H.-A.L.); (C.-C.C.)
- School of Public Health, College of Public Health, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Center of Evidence-Based Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Sen-Kuang Hou
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-H.P.); (H.-W.T.); (H.-A.L.); (C.-C.C.)
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
2
|
Yu ZX, Pi Y, Chen MK, Dong DJ, Gu Q. Clozapine-Induced Severe Toxicity: Exploring the Pharmacokinetic Profile of Clozapine and Its Significance in Hemodynamic Instability - A Case Report. Int Med Case Rep J 2024; 17:111-120. [PMID: 38348428 PMCID: PMC10860498 DOI: 10.2147/imcrj.s444685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
Hemodynamic instability in patients with clozapine intoxication can indirectly reflect the serum concentration of clozapine.We have described a case of a 32-year-old pregnant woman who developed life-threatening clozapine toxicity at 28 weeks of gestation. The levels of clozapine and norclozapine in the serum were high. We initiated hemoperfusion(HP) and other detoxification therapies to remove the drug. The patient had severely dilated peripheral blood vessels, which led to cardiac symptoms such as fatal hypotension and uncontrollable tachycardia, resulting in very high cardiac output and elevated Central venous oxygen saturation (ScvO2). Pharmacological intervention significantly improved the hemodynamics.In light of our observations in the ongoing case, we posit that evaluating hemodynamic parameters before and after blood detoxification could serve as a valuable means to gauge effectiveness and provide guidance for treatment.
Collapse
Affiliation(s)
- Zhu-Xi Yu
- Department of Critical Care Medicine, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 21008, People’s Republic of China
| | - Yang Pi
- Department of Critical Care Medicine, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 21008, People’s Republic of China
| | - Mei-Kai Chen
- Department of Critical Care Medicine, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 21008, People’s Republic of China
| | - Dan-Jiang Dong
- Department of Critical Care Medicine, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 21008, People’s Republic of China
| | - Qin Gu
- Department of Critical Care Medicine, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 21008, People’s Republic of China
| |
Collapse
|
3
|
Magoon R, Singh A, Kashav R, Kohli JK, Shri I, Bansal N, Grover V. Leucoglycemic index predicts post-operative vasopressor-inotropic requirement after adult cardiac surgery (LEUCOGLYPTICS): A retrospective single-center study. J Anaesthesiol Clin Pharmacol 2024; 40:48-55. [PMID: 38666176 PMCID: PMC11042078 DOI: 10.4103/joacp.joacp_100_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/17/2022] [Accepted: 04/17/2022] [Indexed: 04/28/2024] Open
Abstract
Background and Aims Cardiac surgery often necessitates considerable post-operative vasoactive-inotropic support. Given an encouraging literature on the prognostic potential of leucoglycemic index (LGI) [serum glucose (mg/dl) × total leucocytes count (cells/mm3)/1000], we aimed to evaluate whether intensive care unit (ICU)-admission LGI can predict post-operative vasopressor-inotropic requirements following cardiac surgery on cardio-pulmonary bypass (CPB). Material and Methods The data of patients undergoing cardiac surgery at our tertiary care center between January 2015 and December 2020 was retrospectively reviewed. The vasopressor-inotropic requirement was estimated using the VIS (vasoactive-inotropic score) values over the first post-operative 72 hrs. Subsequently, VISi (indexed VIS) was computed as maxVIS[0-24hrs] + maxVIS[24-48hrs] +2 × maxVIS[48-72hrs]/10), and the study participants were divided into h-VISi (VISi ≥3) and l-VISi (VISi <3). Results Out of 2138 patients, 479 (22.40%) patients categorized as h-VISi. On univariate analysis: LGI, age, European System for Cardiac Operative Risk Evaluation score (EuroSCORE II), left-ventricle ejection fraction, prior congestive heart failure (CHF), chronic renal failure, angiotensin-converting enzyme inhibitors, combined surgeries, CPB and aortic cross-clamp (ACC) duration, blood transfusion, and immediate post-operative glucose were significant h-VISi predictors. Subsequent to multi-variate analysis, the predictive performance of LGI (OR: 1.09; 95% CI: 1.03-1.14; P = 0.002) prior CHF (OR: 2.35; 95% CI: 1.44-3.82; P = 0.001), CPB time (OR: 1.08; 95% CI: 1.02-1.14; P = 0.019), ACC time (OR: 1.03; 95% CI: 1.02-1.04; P = 0.008), and EuroSCORE II (OR: 1.14; 95% CI: 1.06-1.21; P < 0.001) remained significant. With 1484.75 emerging as the h-VISi predictive cut-off, patients with LGI ≥ 1484.75 also had a higher incidence of vasoplegia, low-cardiac output syndrome, new-onset atrial fibrillation, acute kidney injury, and mortality. LGI additionally exhibited a significant positive correlation with duration of mechanical ventilation and ICU stay (R = 0.495 and 0.564, P value < 0.001). Conclusion An elevated LGI of greater than 1484.75 independently predicted a VISindex ≥3 following adult cardiac surgery on CPB.
Collapse
Affiliation(s)
- Rohan Magoon
- Department of Cardiac Anaesthesia, Atal Bihari Vajpayee Institute of Medical Sciences (ABVIMS) and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Armaanjeet Singh
- Department of Cardiac Anaesthesia, Atal Bihari Vajpayee Institute of Medical Sciences (ABVIMS) and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Ramesh Kashav
- Department of Cardiac Anaesthesia, Atal Bihari Vajpayee Institute of Medical Sciences (ABVIMS) and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Jasvinder K. Kohli
- Department of Cardiac Anaesthesia, Atal Bihari Vajpayee Institute of Medical Sciences (ABVIMS) and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Iti Shri
- Department of Cardiac Anaesthesia, Atal Bihari Vajpayee Institute of Medical Sciences (ABVIMS) and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Noopur Bansal
- Department of Cardiac Anaesthesia, Atal Bihari Vajpayee Institute of Medical Sciences (ABVIMS) and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Vijay Grover
- Cardiothoracic and Vascular Surgery, Atal Bihari Vajpayee Institute of Medical Sciences (ABVIMS) and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
4
|
Wang N, Wang M, Jiang L, Du B, Zhu B, Xi X. The predictive value of the Oxford Acute Severity of Illness Score for clinical outcomes in patients with acute kidney injury. Ren Fail 2022; 44:320-328. [PMID: 35168501 PMCID: PMC8856098 DOI: 10.1080/0886022x.2022.2027247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective To compare the performance of the Oxford Acute Severity of Illness Score (OASIS), the Acute Physiology and Chronic Health Evaluation II (APACHE II) score, the Simplified Acute Physiology Score II (SAPS II), and the Sequential Organ Failure Assessment (SOFA) score in predicting 28-day mortality in acute kidney injury (AKI) patients. Methods Data were extracted from the Beijing Acute Kidney Injury Trial (BAKIT). A total of 2954 patients with complete clinical data were included in this study. Receiver operating characteristic (ROC) curves were used to analyze and evaluate the predictive effects of the four scoring systems on the 28-day mortality risk of AKI patients and each subgroup. The best cutoff value was identified by the highest combined sensitivity and specificity using Youden’s index. Results Among the four scoring systems, the area under the curve (AUC) of OASIS was the highest. The comparison of AUC values of different scoring systems showed that there were no significant differences among OASIS, APACHE II, and SAPS II, which were better than SOFA. Moreover, logistic analysis revealed that OASIS was an independent risk factor for 28-day mortality in AKI patients. OASIS also had good predictive ability for the 28-day mortality of each subgroup of AKI patients. Conclusion OASIS, APACHE II, and SAPS II all presented good discrimination and calibration in predicting the 28-day mortality risk of AKI patients. OASIS, APACHE II, and SAPS II had better predictive accuracy than SOFA, but due to the complexity of APACHE II and SAPS II calculations, OASIS is a good substitute. Trial Registration This study was registered at www.chictr.org.cn (registration number Chi CTR-ONC-11001875). Registered on 14 December 2011.
Collapse
Affiliation(s)
- Na Wang
- Emergency Department of China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Meiping Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Li Jiang
- Department of Critical Care Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Bin Du
- Medical Intensive Care Unit, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Zhu
- Department of Critical Care Medicine, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Xiuming Xi
- Department of Critical Care Medicine, Fu Xing Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Zhang Y, Zhu J, Zhang C, Xiao J, Liu C, Wang S, Zhao P, Zhu Y, Wang L, Li Q, Luo Y. Non-invasive Early Prediction of Septic Acute Kidney Injury by Doppler-Based Renal Resistive Indexes Combined With Echocardiographic Parameters: An Experimental Study. Front Med (Lausanne) 2021; 8:723837. [PMID: 34926487 PMCID: PMC8671634 DOI: 10.3389/fmed.2021.723837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/27/2021] [Indexed: 11/15/2022] Open
Abstract
Non-invasive early prediction of septic acute kidney injury (S-AKI) is still urgent and challenging. Increased Doppler-based renal resistive index (RRI) has been shown to be associated with S-AKI, but its clinical use is limited, which may be explained by the complex effects of systemic circulation. Echocardiogram allows non-invasive assessment of systemic circulation, which may provide an effective supplement to RRI. To find the value of RRI combined with echocardiographic parameters in the non-invasive early prediction of S-AKI, we designed this experiment with repeated measurements of ultrasonographic parameters in the early stage of sepsis (3, 6, 12, and 24 h) in cecum ligation and puncture (CLP) rats (divided into AKI and non-AKI groups at 24 h based on serum creatinine), with sham-operated group serving as controls. Our results found that RRI alone could not effectively predict S-AKI, but when combined with echocardiographic parameters (heart rate, left ventricular end-diastolic internal diameter, and left ventricular end-systolic internal diameter), the predictive value was significantly improved, especially in the early stage of sepsis (3 h, AUC: 0.948, 95% CI 0.839–0.992, P < 0.001), and far earlier than the conventional renal function indicators (serum creatinine and blood urea nitrogen), which only significantly elevated at 24 h. Our method showed novel advances and potential in the early detection of S-AKI.
Collapse
Affiliation(s)
- Ying Zhang
- School of Medicine, Nankai University, Tianjin, China.,Department of Ultrasound, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jianing Zhu
- Department of Ultrasound, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Chuyue Zhang
- School of Medicine, Nankai University, Tianjin, China.,Department of Nephrology, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jing Xiao
- School of Medicine, Nankai University, Tianjin, China.,Department of Ultrasound, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Chao Liu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Department of Nephrology, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Critical Care Medicine, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shuo Wang
- Department of Ultrasound, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Ping Zhao
- Department of Ultrasound, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Yaqiong Zhu
- Department of Ultrasound, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Li Wang
- Department of Critical Care Medicine, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Qiuyang Li
- Department of Ultrasound, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yukun Luo
- School of Medicine, Nankai University, Tianjin, China.,Department of Ultrasound, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
6
|
Affiliation(s)
- Wen-Ling Lee
- Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
- Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Fa-Kung Lee
- Department of Obstetrics and Gynecology, Cathy General Hospital, Taipei, Taiwan, ROC
| | - Peng-Hui Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
- Female Cancer Foundation, Taipei, Taiwan, ROC
| |
Collapse
|
7
|
Papadimitriou A, Romagnani P, Angelotti ML, Noor M, Corcoran J, Raby K, Wilson PD, Li J, Fraser D, Piedagnel R, Hendry BM, Xu Q. Collecting duct cells show differential retinoic acid responses to acute versus chronic kidney injury stimuli. Sci Rep 2020; 10:16683. [PMID: 33028882 PMCID: PMC7542174 DOI: 10.1038/s41598-020-73099-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/07/2020] [Indexed: 01/14/2023] Open
Abstract
Retinoic acid (RA) activates RA receptors (RAR), resulting in RA response element (RARE)-dependent gene expression in renal collecting duct (CD). Emerging evidence supports a protective role for this activity in acute kidney injury (AKI) and chronic kidney disease (CKD). Herein, we examined this activity in RARE-LacZ transgenic mice and by RARE-Luciferase reporter assays in CD cells, and investigated how this activity responds to neurotransmitters and mediators of kidney injury. In RARE-LacZ mice, Adriamycin-induced heavy albuminuria was associated with reduced RA/RAR activity in CD cells. In cultured CD cells, RA/RAR activity was repressed by acetylcholine, albumin, aldosterone, angiotensin II, high glucose, cisplatin and lipopolysaccharide, but was induced by aristolochic acid I, calcitonin gene-related peptide, endothelin-1, gentamicin, norepinephrine and vasopressin. Compared with age-matched normal human CD cells, CD-derived renal cystic epithelial cells from patients with autosomal recessive polycystic kidney disease (ARPKD) had significantly lower RA/RAR activity. Synthetic RAR agonist RA-568 was more potent than RA in rescuing RA/RAR activity repressed by albumin, high glucose, angiotensin II, aldosterone, cisplatin and lipopolysaccharide. Hence, RA/RAR in CD cells is a convergence point of regulation by neurotransmitters and mediators of kidney injury, and may be a novel therapeutic target.
Collapse
Affiliation(s)
- Alexandros Papadimitriou
- Renal Sciences and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Paola Romagnani
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Maria Lucia Angelotti
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Mazhar Noor
- Renal Sciences and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jonathan Corcoran
- The Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Katie Raby
- University College London, UCL Centre for Nephrology, Royal Free Hospital, London, UK
| | - Patricia D Wilson
- University College London, UCL Centre for Nephrology, Royal Free Hospital, London, UK
| | - Joan Li
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Donald Fraser
- Wales Kidney Research Unit, Heath Park Campus, Cardiff, UK
| | - Remi Piedagnel
- National Institute for Health and Medical Research (INSERM), Unité Mixte de Recherche (UMR)-S1155, Tenon Hospital, Sorbonne Universités, Paris, France
| | - Bruce M Hendry
- Renal Sciences and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Qihe Xu
- Renal Sciences and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
8
|
Thongprayoon C, Hansrivijit P, Kovvuru K, Kanduri SR, Torres-Ortiz A, Acharya P, Gonzalez-Suarez ML, Kaewput W, Bathini T, Cheungpasitporn W. Diagnostics, Risk Factors, Treatment and Outcomes of Acute Kidney Injury in a New Paradigm. J Clin Med 2020; 9:E1104. [PMID: 32294894 PMCID: PMC7230860 DOI: 10.3390/jcm9041104] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical condition among patients admitted in the hospitals. The condition is associated with both increased short-term and long-term mortality. With the development of a standardized definition for AKI and the acknowledgment of the impact of AKI on patient outcomes, there has been increased recognition of AKI. Two advances from past decades, the usage of computer decision support and the discovery of AKI biomarkers, have the ability to advance the diagnostic method to and further management of AKI. The increasingly widespread use of electronic health records across hospitals has substantially increased the amount of data available to investigators and has shown promise in advancing AKI research. In addition, progress in the finding and validation of different forms of biomarkers of AKI within diversified clinical environments and has provided information and insight on testing, etiology and further prognosis of AKI, leading to future of precision and personalized approach to AKI management. In this this article, we discussed the changing paradigms in AKI: from mechanisms to diagnostics, risk factors, and management of AKI.
Collapse
Affiliation(s)
- Charat Thongprayoon
- Division of Nephrology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Panupong Hansrivijit
- Department of Internal Medicine, University of Pittsburgh Medical Center Pinnacle, Harrisburg, PA 17105, USA;
| | - Karthik Kovvuru
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (K.K.); (S.R.K.); (M.L.G.-S.)
| | - Swetha R. Kanduri
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (K.K.); (S.R.K.); (M.L.G.-S.)
| | - Aldo Torres-Ortiz
- Department of Medicine, Ochsner Medical Center, New Orleans, LA 70121, USA;
| | - Prakrati Acharya
- Division of Nephrology, Department of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA;
| | - Maria L. Gonzalez-Suarez
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (K.K.); (S.R.K.); (M.L.G.-S.)
| | - Wisit Kaewput
- Department of Military and Community Medicine, Phramongkutklao College of Medicine, Bangkok 10400, Thailand;
| | - Tarun Bathini
- Department of Internal Medicine, University of Arizona, Tucson, AZ 85724, USA;
| | - Wisit Cheungpasitporn
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (K.K.); (S.R.K.); (M.L.G.-S.)
| |
Collapse
|
9
|
Wei W, Yao YY, Bi HY, Zhai Z, Gao Y. miR-21 protects against lipopolysaccharide-stimulated acute kidney injury and apoptosis by targeting CDK6. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:303. [PMID: 32355747 PMCID: PMC7186673 DOI: 10.21037/atm.2020.03.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Septic acute kidney injury (AKI) causes a sharp deterioration of renal function, and it is a major reason for mortality in intensive care units. Although miR-21 has been proven to be dysregulated in patients with sepsis, the evidence is scarce concerning its role in mediating cellular apoptosis in AKI. Methods Mice were injected intraperitoneally with 10 mg/kg of lipopolysaccharide (LPS) to establish septic AKI model, miR-21 mimic and inhibitor were used to manipulate the expression of miR-21, the creatinine levels were detected by a creatinine assay kit, the renal cell proliferation and apoptosis were detected by MTT assay, flow cytometry assay and acridine orange/ethidium bromide (AO/EB) fluorescence staining, the renal function was evaluated by renal histology and tubular injury score, western blot analysis was used to detect the target protein levels. Several bioinformatics tools were performed to show the downstream target of miR-21, and further confirmed by luciferase reporter assay and caspase-3 activity assay. Results miR-21 silencing was able to promote renal function and decrease LPS-stimulated renal cell apoptosis in vitro and in vivo, and it could decrease the Bax/Bcl-2 ratio and caspase-3 activity. On the contrary, miR-21 overexpression had the opposite effects. Cyclin-dependent kinase 6 (CDK6) was confirmed as a target gene of miR-21 and was associated with renal cell apoptosis. Moreover, miR-21 was also found to be up-regulated in septic AKI. Conclusions Current evidences suggest that miR-21 has a potential application in treating septic AKI.
Collapse
Affiliation(s)
- Wei Wei
- Department of Intensive Care Unit, The Fourth Affiliated Hospital of Harbin, Medical University, Harbin 150080, China
| | - Yuan-Yuan Yao
- Department of General Internal Medicine, Harbin Red Cross Center Hospital, Harbin 150080, China
| | - Hong-Yuan Bi
- Department of Intensive Care Unit, The Fourth Affiliated Hospital of Harbin, Medical University, Harbin 150080, China
| | - Zhe Zhai
- Department of Intensive Care Unit, The Fourth Affiliated Hospital of Harbin, Medical University, Harbin 150080, China
| | - Yan Gao
- Department of Intensive Care Unit, The Fourth Affiliated Hospital of Harbin, Medical University, Harbin 150080, China
| |
Collapse
|