1
|
Vernovsky S, Herning A, Wachman EM. The role of genetics in neonatal abstinence syndrome. Semin Perinatol 2024:152006. [PMID: 39613584 DOI: 10.1016/j.semperi.2024.152006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
Neonatal Abstinence Syndrome (NAS) after in-utero exposure to opioids remains a significant public health concern. NAS is a highly variable condition in which presentation and severity cannot be explained by clinical factors alone. Research in human subjects has identified both genetic and epigenetic associations with prenatal opioid exposure and NAS severity, including single nucleotide polymorphisms, DNA methylation differences, and gene expression modifications. Animal studies have also identified key gene pathways that are likely important contributors to NAS phenotype. The clinical significance of identified genetic associations with NAS are unclear and warrant further study to see how they could impact NAS management.
Collapse
Affiliation(s)
- Sarah Vernovsky
- Department of Pediatrics, Boston Medical Center, Boston, MA, United States
| | - Ana Herning
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Elisha M Wachman
- Department of Pediatrics, Boston Medical Center, Boston, MA, United States; Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States.
| |
Collapse
|
2
|
Li MD, Liu Q, Shi X, Wang Y, Zhu Z, Guan Y, He J, Han H, Mao Y, Ma Y, Yuan W, Yao J, Yang Z. Integrative analysis of genetics, epigenetics and RNA expression data reveal three susceptibility loci for smoking behavior in Chinese Han population. Mol Psychiatry 2024; 29:3516-3526. [PMID: 38789676 DOI: 10.1038/s41380-024-02599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Despite numerous studies demonstrate that genetics and epigenetics factors play important roles on smoking behavior, our understanding of their functional relevance and coordinated regulation remains largely unknown. Here we present a multiomics study on smoking behavior for Chinese smoker population with the goal of not only identifying smoking-associated functional variants but also deciphering the pathogenesis and mechanism underlying smoking behavior in this under-studied ethnic population. After whole-genome sequencing analysis of 1329 Chinese Han male samples in discovery phase and OpenArray analysis of 3744 samples in replication phase, we discovered that three novel variants located near FOXP1 (rs7635815), and between DGCR6 and PRODH (rs796774020), and in ARVCF (rs148582811) were significantly associated with smoking behavior. Subsequently cis-mQTL and cis-eQTL analysis indicated that these variants correlated significantly with the differential methylation regions (DMRs) or differential expressed genes (DEGs) located in the regions where these variants present. Finally, our in silico multiomics analysis revealed several hub genes, like DRD2, PTPRD, FOXP1, COMT, CTNNAP2, to be synergistic regulated each other in the etiology of smoking.
Collapse
Affiliation(s)
- Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.
| | - Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqiang Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhouhai Zhu
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Ying Guan
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Jingmin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- College of Biological Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Yao
- Joint Institute of Tobacco and Health, Kunming, Yunnan, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
McEvoy A, Chawar C, Lamri A, Hudson J, Minuzzi L, Marsh DC, Thabane L, Paterson AD, Samaan Z. A genome-wide association, polygenic risk score and sex study on opioid use disorder treatment outcomes. Sci Rep 2023; 13:22360. [PMID: 38102185 PMCID: PMC10724251 DOI: 10.1038/s41598-023-49605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
Opioid use disorder continues to be a health concern with a high rate of opioid related deaths occurring worldwide. Medication Assisted Treatments (MAT) have been shown to reduce opioid withdrawal, cravings and opioid use, however variability exists in individual's treatment outcomes. Sex-specific differences have been reported in opioid use patterns, polysubstance use and health and social functioning. Candidate gene studies investigating methadone dose as an outcome have identified several candidate genes and only five genome-wide associations studies have been conducted for MAT outcomes. This study aimed to identify genetic variants associated with MAT outcomes through genome-wide association study (GWAS) and test the association between genetic variants previously associated with methadone dose through a polygenic risk score (PRS). Study outcomes include: continued opioid use, relapse, methadone dose and opioid overdose. No genome-wide significance SNPs or sex-specific results were identified. The PRS identified statistically significant results (p < 0.05) for the outcome of methadone dose (R2 = 3.45 × 10-3). No other PRS was statistically significant. This study provides evidence for association between a PRS and methadone dose. More research on the PRS to increase the variance explained is needed before it can be used as a tool to help identify a suitable methadone dose within this population.
Collapse
Affiliation(s)
- Alannah McEvoy
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON, L8N 3K7, Canada
| | - Caroul Chawar
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON, L8N 3K7, Canada
| | - Amel Lamri
- Department of Medicine, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4L8, Canada
| | - Jacqueline Hudson
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON, L8N 3K7, Canada
| | - Luciano Minuzzi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON, L8N 3K7, Canada
| | - David C Marsh
- NOSM University, 935 Ramsey Lake Rd., Sudbury, ON, P3E 2C6, Canada
| | - Lehana Thabane
- Department of Health Research Method, Evidence & Impact, 1280 Main St. W., Hamilton, ON, L8S 4L8, Canada
| | - Andrew D Paterson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Divisions of Biostatistics and Epidemiology, Dalla Lana School of Public Health, University of Toronto, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Zainab Samaan
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th St., Hamilton, ON, L8N 3K7, Canada.
| |
Collapse
|
4
|
Hébert HL, Pascal MM, Smith BH, Wynick D, Bennett DL. Big data, big consortia, and pain: UK Biobank, PAINSTORM, and DOLORisk. Pain Rep 2023; 8:e1086. [PMID: 38225956 PMCID: PMC10789453 DOI: 10.1097/pr9.0000000000001086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 01/17/2024] Open
Abstract
Chronic pain (CP) is a common and often debilitating disorder that has major social and economic impacts. A subset of patients develop CP that significantly interferes with their activities of daily living and requires a high level of healthcare support. The challenge for treating physicians is in preventing the onset of refractory CP or effectively managing existing pain. To be able to do this, it is necessary to understand the risk factors, both genetic and environmental, for the onset of CP and response to treatment, as well as the pathogenesis of the disorder, which is highly heterogenous. However, studies of CP, particularly pain with neuropathic characteristics, have been hindered by a lack of consensus on phenotyping and data collection, making comparisons difficult. Furthermore, existing cohorts have suffered from small sample sizes meaning that analyses, especially genome-wide association studies, are insufficiently powered. The key to overcoming these issues is through the creation of large consortia such as DOLORisk and PAINSTORM and biorepositories, such as UK Biobank, where a common approach can be taken to CP phenotyping, which allows harmonisation across different cohorts and in turn increased study power. This review describes the approach that was used for studying neuropathic pain in DOLORisk and how this has informed current projects such as PAINSTORM, the rephenotyping of UK Biobank, and other endeavours. Moreover, an overview is provided of the outputs from these studies and the lessons learnt for future projects.
Collapse
Affiliation(s)
- Harry L. Hébert
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Mathilde M.V. Pascal
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Blair H. Smith
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - David Wynick
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - David L.H. Bennett
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Uhl GR. Selecting the appropriate hurdles and endpoints for pentilludin, a novel antiaddiction pharmacotherapeutic targeting the receptor type protein tyrosine phosphatase D. Front Psychiatry 2023; 14:1031283. [PMID: 37139308 PMCID: PMC10149857 DOI: 10.3389/fpsyt.2023.1031283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/30/2023] [Indexed: 05/05/2023] Open
Abstract
Substance use disorders provide challenges for development of effective medications. Use of abused substances is likely initiated, sustained and "quit" by complex brain and pharmacological mechanisms that have both genetic and environmental determinants. Medical utilities of prescribed stimulants and opioids provide complex challenges for prevention: how can we minimize their contribution to substance use disorders while retaining medical benefits for pain, restless leg syndrome, attention deficit hyperactivity disorder, narcolepsy and other indications. Data required to support assessments of reduced abuse liability and resulting regulatory scheduling differs from information required to support licensing of novel prophylactic or therapeutic anti-addiction medications, adding further complexity and challenges. I describe some of these challenges in the context of our current efforts to develop pentilludin as a novel anti-addiction therapeutic for a target that is strongly supported by human and mouse genetic and pharmacologic studies, the receptor type protein tyrosine phosphatase D (PTPRD).
Collapse
Affiliation(s)
- George R. Uhl
- Departments of Neurology and Pharmacology, University of Maryland School of Medicine, Neurology Service, VA Maryland Healthcare System, Baltimore, MD, United States
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- *Correspondence: George R. Uhl
| |
Collapse
|
6
|
Sanchez-Roige S, Kember RL, Agrawal A. Substance use and common contributors to morbidity: A genetics perspective. EBioMedicine 2022; 83:104212. [PMID: 35970022 PMCID: PMC9399262 DOI: 10.1016/j.ebiom.2022.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Excessive substance use and substance use disorders (SUDs) are common, serious and relapsing medical conditions. They frequently co-occur with other diseases that are leading contributors to disability worldwide. While heavy substance use may potentiate the course of some of these illnesses, there is accumulating evidence suggesting common genetic architectures. In this narrative review, we focus on four heritable medical conditions - cardiometabolic disease, chronic pain, depression and COVID-19, which are commonly overlapping with, but not necessarily a direct consequence of, SUDs. We find persuasive evidence of underlying genetic liability that predisposes to both SUDs and chronic pain, depression, and COVID-19. For cardiometabolic disease, there is greater support for a potential causal influence of problematic substance use. Our review encourages de-stigmatization of SUDs and the assessment of substance use in clinical settings. We assert that identifying shared pathways of risk has high translational potential, allowing tailoring of treatments for multiple medical conditions. FUNDING: SSR acknowledges T29KT0526, T32IR5226 and DP1DA054394; RLK acknowledges AA028292; AA acknowledges DA054869 & K02DA032573. The funders had no role in the conceptualization or writing of the paper.
Collapse
Affiliation(s)
- Sandra Sanchez-Roige
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Rachel L Kember
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
7
|
Gunturkun MH, Flashner E, Wang T, Mulligan MK, Williams RW, Prins P, Chen H. GeneCup: mining PubMed and GWAS catalog for gene-keyword relationships. G3 (BETHESDA, MD.) 2022; 12:jkac059. [PMID: 35285473 PMCID: PMC9073678 DOI: 10.1093/g3journal/jkac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022]
Abstract
Interpreting and integrating results from omics studies typically requires a comprehensive and time consuming survey of extant literature. GeneCup is a literature mining web service that retrieves sentences containing user-provided gene symbols and keywords from PubMed abstracts. The keywords are organized into an ontology and can be extended to include results from human genome-wide association studies. We provide a drug addiction keyword ontology that contains over 300 keywords as an example. The literature search is conducted by querying the PubMed server using a programming interface, which is followed by retrieving abstracts from a local copy of the PubMed archive. The main results presented to the user are sentences where gene symbol and keywords co-occur. These sentences are presented through an interactive graphical interface or as tables. All results are linked to the original abstract in PubMed. In addition, a convolutional neural network is employed to distinguish sentences describing systemic stress from those describing cellular stress. The automated and comprehensive search strategy provided by GeneCup facilitates the integration of new discoveries from omic studies with existing literature. GeneCup is free and open source software. The source code of GeneCup and the link to a running instance is available at https://github.com/hakangunturkun/GeneCup.
Collapse
Affiliation(s)
- Mustafa H Gunturkun
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Efraim Flashner
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science, Memphis, TN 38103, USA
| |
Collapse
|
8
|
Abstract
This paper is the forty-third consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2020 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
9
|
Henderson IM, Marez C, Dokladny K, Smoake J, Martinez M, Johnson D, Uhl GR. Substrate-selective positive allosteric modulation of PTPRD’s phosphatase by flavonols. Biochem Pharmacol 2022; 202:115109. [PMID: 35636503 PMCID: PMC10184881 DOI: 10.1016/j.bcp.2022.115109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
The receptor type protein tyrosine phosphatase D (PTPRD) is expressed by neurons and implicated in interesting phenotypes that include reward from addictive substances, restless leg syndrome and neurofibrillary tangle densities in Alzheimer's disease (AD-NFTs). However, the brain phosphotyrosine phosphoprotein (PTPP) substrates for PTPRD's phosphatase have not been clearly defined. Although we have identified small molecule inhibitors of PTPRD's phosphatase that are candidates for reducing reward from addictive substances, no positive allosteric modulators of this phosphatase that might be candidates for reducing AD-NFTs have been reported. We now report identification of candidate brain substrates for PTPRD based on their increased phosphorylation in knockout vs wildtype animals, coexpression with PTPRD in neuronal subtypes and brisk dephosphorylation by recombinant human PTPRD phosphatase. We also report discovery that quercetin and other flavonols, though not closely-related flavones, enhance rates of PTPRD's dephosphorylation of a group of these candidate substrate PTPPs but not others. This substrate-selective positive allosteric modulation provides a novel pharmacological action. Flavonol-mediated increases in PTPRD's dephosphorylation of the GSK3 β and α kinases that hyperphosphorylate tau, the major component of AD-NFTs, could help to explain recent data concerning genetic and dietary impacts on Alzheimer's disease.
Collapse
Affiliation(s)
- Ian M Henderson
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, United States; New Mexico VA Healthcare System, Albuquerque, NM 87108, United States
| | - Carlissa Marez
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, United States; New Mexico VA Healthcare System, Albuquerque, NM 87108, United States
| | - Karol Dokladny
- Department of Medicine, University of New Mexico, Albuquerque, NM 87131, United States
| | - Jane Smoake
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, United States; New Mexico VA Healthcare System, Albuquerque, NM 87108, United States
| | - Maria Martinez
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, United States; New Mexico VA Healthcare System, Albuquerque, NM 87108, United States
| | - David Johnson
- College of Pharmacy, University of Kansas, Lawrence, KS 66045, United States
| | - George R Uhl
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, United States; New Mexico VA Healthcare System, Albuquerque, NM 87108, United States; Departments of Neurology, Neuroscience and Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, United States; Departments of Neurology and Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Maryland VA Healthcare System, Baltimore, MD 21201, United States.
| |
Collapse
|
10
|
Okhuijsen-Pfeifer C, van der Horst MZ, Bousman CA, Lin B, van Eijk KR, Ripke S, Ayhan Y, Babaoglu MO, Bak M, Alink W, van Beek H, Beld E, Bouhuis A, Edlinger M, Erdogan IM, Ertuğrul A, Yoca G, Everall IP, Görlitz T, Grootens KP, Gutwinski S, Hallikainen T, Jeger-Land E, de Koning M, Lähteenvuo M, Legge SE, Leucht S, Morgenroth C, Müderrisoğlu A, Narang A, Pantelis C, Pardiñas AF, Oviedo-Salcedo T, Schneider-Thoma J, Schreiter S, Repo-Tiihonen E, Tuppurainen H, Veereschild M, Veerman S, de Vos M, Wagner E, Cohen D, Bogers JPAM, Walters JTR, Yağcıoğlu AEA, Tiihonen J, Hasan A, Luykx JJ. Genome-wide association analyses of symptom severity among clozapine-treated patients with schizophrenia spectrum disorders. Transl Psychiatry 2022; 12:145. [PMID: 35393395 PMCID: PMC8989876 DOI: 10.1038/s41398-022-01884-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022] Open
Abstract
Clozapine is the most effective antipsychotic for patients with treatment-resistant schizophrenia. However, response is highly variable and possible genetic underpinnings of this variability remain unknown. Here, we performed polygenic risk score (PRS) analyses to estimate the amount of variance in symptom severity among clozapine-treated patients explained by PRSs (R2) and examined the association between symptom severity and genotype-predicted CYP1A2, CYP2D6, and CYP2C19 enzyme activity. Genome-wide association (GWA) analyses were performed to explore loci associated with symptom severity. A multicenter cohort of 804 patients (after quality control N = 684) with schizophrenia spectrum disorder treated with clozapine were cross-sectionally assessed using the Positive and Negative Syndrome Scale and/or the Clinical Global Impression-Severity (CGI-S) scale. GWA and PRS regression analyses were conducted. Genotype-predicted CYP1A2, CYP2D6, and CYP2C19 enzyme activities were calculated. Schizophrenia-PRS was most significantly and positively associated with low symptom severity (p = 1.03 × 10-3; R2 = 1.85). Cross-disorder-PRS was also positively associated with lower CGI-S score (p = 0.01; R2 = 0.81). Compared to the lowest tertile, patients in the highest schizophrenia-PRS tertile had 1.94 times (p = 6.84×10-4) increased probability of low symptom severity. Higher genotype-predicted CYP2C19 enzyme activity was independently associated with lower symptom severity (p = 8.44×10-3). While no locus surpassed the genome-wide significance threshold, rs1923778 within NFIB showed a suggestive association (p = 3.78×10-7) with symptom severity. We show that high schizophrenia-PRS and genotype-predicted CYP2C19 enzyme activity are independently associated with lower symptom severity among individuals treated with clozapine. Our findings open avenues for future pharmacogenomic projects investigating the potential of PRS and genotype-predicted CYP-activity in schizophrenia.
Collapse
Affiliation(s)
- C Okhuijsen-Pfeifer
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
| | - M Z van der Horst
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
- GGNet Mental Health, Warnsveld, The Netherlands
| | - C A Bousman
- Department of Medical Genetics, University of Calgary, Calgary, Canada
- Department of Psychiatry, University of Calgary, Calgary, Canada
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada
- Department of Psychiatry, University of Melbourne, Melbourne Neuropsychiatry Centre, Melbourne, Australia
| | - B Lin
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
| | - K R van Eijk
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
| | - S Ripke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Y Ayhan
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - M O Babaoglu
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - M Bak
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- Mondriaan, Mental Health Institute, Maastricht, The Netherlands
| | - W Alink
- Multicomplexe Zorg, Pro Persona, Wolfheze, The Netherlands
| | - H van Beek
- Clinical Recovery Clinic, Mental Health Services Rivierduinen, Leiden, The Netherlands
| | - E Beld
- Mental Health Organization North-Holland North location Den Helder, Den Helder, The Netherlands
| | - A Bouhuis
- Program for early psychosis & severe mental illness, Pro Persona Mental Healthcare, Wolfheze, The Netherlands
| | - M Edlinger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Division for Psychiatry I, Medical University Innsbruck, Innsbruck, Austria
| | - I M Erdogan
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - A Ertuğrul
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - G Yoca
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Şarkışla State Hospital, Ministry of Health, Sivas, Turkey
| | - I P Everall
- Department of Psychiatry, University of Melbourne, Melbourne Neuropsychiatry Centre, Melbourne, Australia
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - T Görlitz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty University Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - K P Grootens
- Reinier van Arkel, s-Hertogenbosch, The Netherlands
- Unit for Clinical Psychopharmacology and Neuropsychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - S Gutwinski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - T Hallikainen
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, Kuopio, Finland
| | - E Jeger-Land
- Arkin, Institute for Mental Health, Amsterdam, The Netherlands
| | - M de Koning
- Arkin, Institute for Mental Health, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, The Netherlands
| | - M Lähteenvuo
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, Kuopio, Finland
| | - S E Legge
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - S Leucht
- Department of Psychiatry and Psychotherapy, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - C Morgenroth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - A Müderrisoğlu
- Department of Pharmacology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - A Narang
- Department of Medical Genetics, University of Calgary, Calgary, Canada
| | - C Pantelis
- Department of Psychiatry, University of Melbourne, Melbourne Neuropsychiatry Centre, Melbourne, Australia
| | - A F Pardiñas
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - T Oviedo-Salcedo
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - J Schneider-Thoma
- Department of Psychiatry and Psychotherapy, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - S Schreiter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
- Berlin Institute of Health (BIH), BIH Biomedical Innovation Academy, Berlin, Germany
| | - E Repo-Tiihonen
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, Kuopio, Finland
| | - H Tuppurainen
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, Kuopio, Finland
| | | | - S Veerman
- Mental Health Organization North-Holland North location Alkmaar, Alkmaar, The Netherlands
| | - M de Vos
- GGNet Mental Health, Warnsveld, The Netherlands
| | - E Wagner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - D Cohen
- Mental Health Organization North-Holland North location Heerhugowaard, Heerhugowaard, The Netherlands
| | - J P A M Bogers
- High Care Clinics, Mental Health Services Rivierduinen, Leiden, The Netherlands
| | - J T R Walters
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - A E Anil Yağcıoğlu
- Department of Psychiatry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - J Tiihonen
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
- Center for Psychiatric Research, Stockholm City Council, Stockholm, Sweden
| | - A Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty University Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - J J Luykx
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands.
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands.
- GGNet Mental Health, Warnsveld, The Netherlands.
| |
Collapse
|
11
|
Henderson IM, Zeng F, Bhuiyan NH, Luo D, Martinez M, Smoake J, Bi F, Perera C, Johnson D, Prisinzano TE, Wang W, Uhl GR. Structure-activity studies of PTPRD phosphatase inhibitors identify a 7-cyclopentymethoxy illudalic acid analog candidate for development. Biochem Pharmacol 2022; 195:114868. [PMID: 34863978 PMCID: PMC9248268 DOI: 10.1016/j.bcp.2021.114868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022]
Abstract
Interest in development of potent, selective inhibitors of the phosphatase from the receptor type protein tyrosine phosphatase PTPRD as antiaddiction agents is supported by human genetics, mouse models and studies of our lead compound PTPRD phosphatase inhibitor, 7-butoxy illudalic acid analog 1 (7-BIA). We now report structure-activity relationships for almost 70 7-BIA-related compounds and results that nominate a 7- cyclopentyl methoxy analog as a candidate for further development. While efforts to design 7-BIA analogs with substitutions for other parts failed to yield potent inhibitors of PTPRD's phosphatase, ten 7-position substituted analogs displayed greater potency at PTPRD than 7-BIA. Several were more selective for PTPRD vs the receptor type protein tyrosine phosphatases S, F and J or the nonreceptor type protein tyrosine phosphatase N1 (PTPRS, PTPRF, PTPRJ or PTPN1/PTP1B), phosphatases at which 7-BIA displays activity. In silico studies aided design of novel analogs. A 7-position cyclopentyl methoxy substituted 7-BIA analog termed NHB1109 displayed 600-700 nM potencies in inhibiting PTPRD and PTPRS, improved selectivity vs PTPRS, PTPRF, PTPRJ or PTPN1/PTP1B phosphatases, no substantial potency at other protein tyrosine phosphatases screened, no significant potency at any of the targets of clinically-useful drugs identified in EUROFINS screens and significant oral bioavailability. Oral doses up to 200 mg/kg were well tolerated by mice, though higher doses resulted in reduced weight and apparent ileus without clear organ histopathology. NHB1109 provides a good candidate to advance to in vivo studies in addiction paradigms and toward human use to reduce reward from addictive substances.
Collapse
Affiliation(s)
- Ian M Henderson
- Biomedical Research Institute of New Mexico, Albuquerque, NM, United States; New Mexico VA Healthcare System, Albuquerque, NM, United States
| | - Fanxun Zeng
- College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Nazmul H Bhuiyan
- College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Dan Luo
- College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Maria Martinez
- Biomedical Research Institute of New Mexico, Albuquerque, NM, United States; New Mexico VA Healthcare System, Albuquerque, NM, United States
| | - Jane Smoake
- Biomedical Research Institute of New Mexico, Albuquerque, NM, United States; New Mexico VA Healthcare System, Albuquerque, NM, United States
| | - Fangchao Bi
- College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | | | | | | | - Wei Wang
- College of Pharmacy, University of Arizona, Tucson, AZ, United States.
| | - George R Uhl
- Biomedical Research Institute of New Mexico, Albuquerque, NM, United States; New Mexico VA Healthcare System, Albuquerque, NM, United States; Departments of Neurology, Neuroscience and Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, United States; Departments of Neurology and Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States; VA Maryland Healthcare System, Baltimore, MD, United States.
| |
Collapse
|
12
|
Chawar C, Hillmer A, Sanger S, D’Elia A, Panesar B, Guan L, Xie DX, Bansal N, Abdullah A, Kapczinski F, Pare G, Thabane L, Samaan Z. A systematic review of GWAS identified SNPs associated with outcomes of medications for opioid use disorder. Addict Sci Clin Pract 2021; 16:70. [PMID: 34838141 PMCID: PMC8627063 DOI: 10.1186/s13722-021-00278-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Patients with opioid use disorder (OUD) display an interindividual variability in their response to medications for opioid use disorder (MOUD). A genetic basis may explain the variability in this response. However, no consensus has been reached regarding which genetic variants significantly contribute to MOUD outcomes. OBJECTIVES This systematic review aims to summarize genome-wide significant findings on MOUD outcomes and critically appraise the quality of the studies involved. METHODS Databases searched from inception until August 21st, 2020 include: MEDLINE, Web of Science, EMBASE, CINAHL and Pre-CINAHL, GWAS Catalog and GWAS Central. The included studies had to be GWASs that assessed MOUD in an OUD population. All studies were screened in duplicate. The quality of the included studies was scored and assessed using the Q-Genie tool. Quantitative analysis, as planned in the protocol, was not feasible, so the studies were analyzed qualitatively. RESULTS Our search identified 7292 studies. Five studies meeting the eligibility criteria were included. However, only three studies reported results that met our significance threshold of p ≤ 1.0 × 10-7. In total, 43 genetic variants were identified. Variants corresponding to CNIH3 were reported to be associated with daily heroin injection in Europeans, OPRM1, TRIB2, and ZNF146 with methadone dose in African Americans, EYS with methadone dose in Europeans, and SPON1 and intergenic regions in chromosomes 9 and 3 with plasma concentrations of S-methadone, R-methadone, and R-EDDP, respectively, in Han Chinese. LIMITATIONS The limitations of this study include not being able to synthesize the data in a quantitative way and a conservative eligibility and data collection model. CONCLUSION The results from this systematic review will aid in highlighting significant genetic variants that can be replicated in future OUD pharmacogenetics research to ascertain their role in patient-specific MOUD outcomes. Systematic review registration number CRD42020169121.
Collapse
Affiliation(s)
- Caroul Chawar
- Neuroscience Graduate Program, McMaster University, Hamilton, ON Canada
- Department of Psychiatry and Behavioural Neurosciences, St. Joseph’s Healthcare Hamilton, 100 West 5th St., Hamilton, ON L8N3K7 Canada
| | - Alannah Hillmer
- Neuroscience Graduate Program, McMaster University, Hamilton, ON Canada
- Department of Psychiatry and Behavioural Neurosciences, St. Joseph’s Healthcare Hamilton, 100 West 5th St., Hamilton, ON L8N3K7 Canada
| | - Stephanie Sanger
- Health Sciences Library, McMaster University, Hamilton, ON Canada
| | - Alessia D’Elia
- Neuroscience Graduate Program, McMaster University, Hamilton, ON Canada
- Department of Psychiatry and Behavioural Neurosciences, St. Joseph’s Healthcare Hamilton, 100 West 5th St., Hamilton, ON L8N3K7 Canada
| | - Balpreet Panesar
- Neuroscience Graduate Program, McMaster University, Hamilton, ON Canada
- Department of Psychiatry and Behavioural Neurosciences, St. Joseph’s Healthcare Hamilton, 100 West 5th St., Hamilton, ON L8N3K7 Canada
| | - Lucy Guan
- Department of Psychiatry and Behavioural Neurosciences, St. Joseph’s Healthcare Hamilton, 100 West 5th St., Hamilton, ON L8N3K7 Canada
- Health Sciences Program, McMaster University, Hamilton, ON Canada
| | - Dave Xiaofei Xie
- Department of Psychiatry and Behavioural Neurosciences, St. Joseph’s Healthcare Hamilton, 100 West 5th St., Hamilton, ON L8N3K7 Canada
- Health Sciences Program, McMaster University, Hamilton, ON Canada
| | - Nandini Bansal
- Department of Psychiatry and Behavioural Neurosciences, St. Joseph’s Healthcare Hamilton, 100 West 5th St., Hamilton, ON L8N3K7 Canada
- Health Sciences Program, McMaster University, Hamilton, ON Canada
| | - Aamna Abdullah
- Department of Psychiatry and Behavioural Neurosciences, St. Joseph’s Healthcare Hamilton, 100 West 5th St., Hamilton, ON L8N3K7 Canada
- Health Sciences Program, McMaster University, Hamilton, ON Canada
| | - Flavio Kapczinski
- Department of Psychiatry and Behavioural Neurosciences, St. Joseph’s Healthcare Hamilton, 100 West 5th St., Hamilton, ON L8N3K7 Canada
| | - Guillaume Pare
- Population Health Research Institute, Hamilton, ON Canada
- Department of Health Research Method, Evidence, and Impact, McMaster University, Hamilton, ON Canada
| | - Lehana Thabane
- Population Health Research Institute, Hamilton, ON Canada
- Department of Health Research Method, Evidence, and Impact, McMaster University, Hamilton, ON Canada
- Father Sean O’Sullivan Research Centre, St. Joseph’s Healthcare Hamilton, Hamilton, ON Canada
| | - Zainab Samaan
- Department of Psychiatry and Behavioural Neurosciences, St. Joseph’s Healthcare Hamilton, 100 West 5th St., Hamilton, ON L8N3K7 Canada
| |
Collapse
|
13
|
Biernacka JM, Coombes BJ, Batzler A, Ho AMC, Geske JR, Frank J, Hodgkinson C, Skime M, Colby C, Zillich L, Pozsonyiova S, Ho MF, Kiefer F, Rietschel M, Weinshilboum R, O'Malley SS, Mann K, Anton R, Goldman D, Karpyak VM. Genetic contributions to alcohol use disorder treatment outcomes: a genome-wide pharmacogenomics study. Neuropsychopharmacology 2021; 46:2132-2139. [PMID: 34302059 PMCID: PMC8505452 DOI: 10.1038/s41386-021-01097-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 01/09/2023]
Abstract
Naltrexone can aid in reducing alcohol consumption, while acamprosate supports abstinence; however, not all patients with alcohol use disorder (AUD) benefit from these treatments. Here we present the first genome-wide association study of AUD treatment outcomes based on data from the COMBINE and PREDICT studies of acamprosate and naltrexone, and the Mayo Clinic CITA study of acamprosate. Primary analyses focused on treatment outcomes regardless of pharmacological intervention and were followed by drug-stratified analyses to identify treatment-specific pharmacogenomic predictors of acamprosate and naltrexone response. Treatment outcomes were defined as: (1) time until relapse to any drinking (TR) and (2) time until relapse to heavy drinking (THR; ≥ 5 drinks for men, ≥4 drinks for women in a day), during the first 3 months of treatment. Analyses were performed within each dataset, followed by meta-analysis across the studies (N = 1083 European ancestry participants). Single nucleotide polymorphisms (SNPs) in the BRE gene were associated with THR (min p = 1.6E-8) in the entire sample, while two intergenic SNPs were associated with medication-specific outcomes (naltrexone THR: rs12749274, p = 3.9E-8; acamprosate TR: rs77583603, p = 3.1E-9). The top association signal for TR (p = 7.7E-8) and second strongest signal in the THR (p = 6.1E-8) analysis of naltrexone-treated patients maps to PTPRD, a gene previously implicated in addiction phenotypes in human and animal studies. Leave-one-out polygenic risk score analyses showed significant associations with TR (p = 3.7E-4) and THR (p = 2.6E-4). This study provides the first evidence of a polygenic effect on AUD treatment response, and identifies genetic variants associated with potentially medication-specific effects on AUD treatment response.
Collapse
Affiliation(s)
- Joanna M Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA.
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Anthony Batzler
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ada Man-Choi Ho
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer R Geske
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Colin Hodgkinson
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - Michelle Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Colin Colby
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sofia Pozsonyiova
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ming-Fen Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Karl Mann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ray Anton
- Medical University of South Carolina, Charleston, SC, USA
| | - David Goldman
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - Victor M Karpyak
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Vorspan F, Marie-Claire C, Bellivier F, Bloch V. Biomarkers to predict staging and treatment response in opioid dependence: A narrative review. Drug Dev Res 2021; 82:668-677. [PMID: 33416203 DOI: 10.1002/ddr.21789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022]
Abstract
Opioid use disorder is a devastating disorder with a high burden in terms of overdose mortality, with an urgent need for more personalized prevention or therapeutic interventions. For this purpose, the description and validation of biological measures of staging or treatment response is a highly active research field. We conducted a narrative review on the pathophysiology of opioid use disorder to propose staging of the disease and search for research studies proposing or demonstrating the predictive value of biomarkers. We propose a IV stage description of opioid use disorder, from (I) vulnerability stage to (II) disease progression, (III) constituted opioid dependence and were several type of treatments can be applied, to the reach a (IV) modified health state. We classified biomarkers studies according to the stage of the disorder they were intended to predict, and to the three categories of methods they used: anatomical and functional aspects of the brain, genetic/transcriptomic/epigenetic studies, and lastly biomarkers of systemic modifications associated with opioid use disorder, especially regarding the immune system. Most studies predicting Stage III that we reviewed collected data from small samples sizes and were cross-sectional association studies comparing opioid dependent patients and control groups. Pharmacogenetic biomarkers are proposed to predict treatment response. Future research should now emphasize prospective studies, replication in independent samples, and predictive value calculation of each biomarker. The most promising results are multimodal evaluations to be able to measure the state of the brain reward system in living individuals.
Collapse
Affiliation(s)
- Florence Vorspan
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, INSERM UMRS 1144, Paris, France.,APHP, NORD, Département de Psychiatrie et de Médecine Addictologique, Hôpital Fernand Widal, Paris, France
| | - Cynthia Marie-Claire
- APHP, NORD, Département de Psychiatrie et de Médecine Addictologique, Hôpital Fernand Widal, Paris, France
| | - Frank Bellivier
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, INSERM UMRS 1144, Paris, France.,APHP, NORD, Département de Psychiatrie et de Médecine Addictologique, Hôpital Fernand Widal, Paris, France
| | - Vanessa Bloch
- APHP, NORD, Département de Psychiatrie et de Médecine Addictologique, Hôpital Fernand Widal, Paris, France.,APHP, NORD, Service de Pharmacie, Hôpital Fernand Widal, Paris, France
| |
Collapse
|
15
|
Sumitani M, Nishizawa D, Hozumi J, Ikeda K. Genetic implications in quality palliative care and preventing opioid crisis in cancer-related pain management. J Neurosci Res 2020; 100:362-372. [PMID: 33174646 DOI: 10.1002/jnr.24756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/23/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
The prevalence of cancer-related pain is 64% among patients with metastatic, advanced, or terminal cancer, 59% among patients undergoing anticancer treatment, and 33% among patients who completed curative treatment. According to the World Health Organization cancer pain relief guidelines, opioid analgesics are the mainstay analgesic therapy in addition to conventional first-step analgesics, such as non-steroidal anti-inflammatory drugs and acetaminophen. The indications for strong opioids have recently been expanded to include mild-to-moderate pain in addition to moderate-to-severe pain. The U.S. Centers for Disease Control and Prevention guidelines emphasize that realistic expectations should be weighed against potential serious harm from opioids, rather than relying on the unrealized long-term benefits of these drugs. Therefore, treatment strategies for both cancer-related chronic or acute pain have been unfortunately deviated from opioid analgesics. The barriers hindering adequate cancer-related pain management with opioid analgesics are related to the inadequate knowledge of opioid analgesics (e.g., effective dose, adverse effects, and likelihood of addiction or tolerance). To achieve adequate opioid availability, these barriers should be overcome in a clinically suitable manner. Genetic assessments could play an important role in overcoming challenges in opioid management. To balance the improvement in opioid availability and the prevention of opioid misuse and addiction, the following two considerations concerning opioids and genetic polymorphisms warrant attention: (A) pain severity, opioid sensitivity, and opioid tolerance; and (B) vulnerability to opioid dependence and addiction.
Collapse
Affiliation(s)
- Masahiko Sumitani
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Jun Hozumi
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|