1
|
Nalesso F, Bertacco A, Bettin E, Cacciapuoti M, Bogo M, Cattarin L, Lanari J, Furlanetto A, Lanubile A, Gringeri E, Calò LA, Cillo U. The Rationale for Combining Normothermic Liver Machine Perfusion with Continuous Renal Replacement Therapy to Maintain Physiological Perfusate during Ex Vivo Organ Perfusion. J Clin Med 2024; 13:5214. [PMID: 39274427 PMCID: PMC11396463 DOI: 10.3390/jcm13175214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Background: The possibility of keeping liver grafts viable and functioning until transplantation has been explored since the 1950s. However, the current modalities of Normothermic Machine Perfusion (NMP) have shown several limitations, such as the inability to correct electrolytes and pH derangements efficiently. Combining NMP with continuous kidney replacement therapy (CKRT) might provide a promising new model to overcome these issues. Methods: An NMP that covers the organ perfusion, oxygenation, carbon dioxide removal, and thermal balance was connected to a CKRT circuit to ensure physiological hydro-electrolytes, acid-base balance, and catabolite removal from the perfusate. Results: The integration of NMP and CKRT maintains a neoplastic liver in a perfusion system with physiological perfusate for 100 h. CKRT re-established and maintained the hydro-electrolyte and acid-base status throughout the 100 h of perfusion. Significant limitations were the need for frequent monitoring of electrolytes and acid-base disorders and the loss of low molecular weight nutrients, which have to be replenished by manual infusion into the system. Conclusions: This novel CKRT-NMP integrated system may represent a practical and versatile model to support organs' perfusion and extend preservation times. Further experiments are needed to fix monitoring and adjusting processes.
Collapse
Affiliation(s)
- Federico Nalesso
- Nephrology, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy
| | - Alessandra Bertacco
- Hepato-Biliary-Pancreatic and Liver Transplant Unit "Chirurgia Generale 2", Padua University Hospital, 35128 Padova, Italy
| | - Elisabetta Bettin
- Nephrology, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy
| | - Martina Cacciapuoti
- Nephrology, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy
| | - Marco Bogo
- Nephrology, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy
| | - Leda Cattarin
- Nephrology, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy
| | - Jacopo Lanari
- Hepato-Biliary-Pancreatic and Liver Transplant Unit "Chirurgia Generale 2", Padua University Hospital, 35128 Padova, Italy
| | - Alessandro Furlanetto
- Hepato-Biliary-Pancreatic and Liver Transplant Unit "Chirurgia Generale 2", Padua University Hospital, 35128 Padova, Italy
| | - Alessia Lanubile
- Pharmaceutical Science Department (DSF), University of Padua, 35131 Padua, Italy
| | - Enrico Gringeri
- Hepato-Biliary-Pancreatic and Liver Transplant Unit "Chirurgia Generale 2", Padua University Hospital, 35128 Padova, Italy
| | - Lorenzo A Calò
- Nephrology, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy
| | - Umberto Cillo
- Hepato-Biliary-Pancreatic and Liver Transplant Unit "Chirurgia Generale 2", Padua University Hospital, 35128 Padova, Italy
| |
Collapse
|
2
|
Klein Nulend R, Hameed A, Singla A, Yuen L, Lee T, Yoon P, Nahm C, Wong G, Laurence J, Lim WH, Hawthorne WJ, Pleass H. Normothermic Machine Perfusion and Normothermic Regional Perfusion of DCD Kidneys Before Transplantation: A Systematic Review. Transplantation 2024:00007890-990000000-00815. [PMID: 39020460 DOI: 10.1097/tp.0000000000005132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
BACKGROUND To overcome organ shortages, donation after circulatory death (DCD) kidneys are being increasingly used for transplantation. Prior research suggests that DCD kidneys have inferior outcomes compared with kidneys donated after brain death. Normothermic machine perfusion (NMP) and normothermic regional perfusion (NRP) may enhance the preservation of DCD kidneys and improve transplant outcomes. This study aimed to review the evidence surrounding NMP and NRP in DCD kidney transplantation. METHODS Two independent reviewers conducted searches for all publications reporting outcomes for NMP and NRP-controlled DCD kidneys, focusing on delayed graft function, primary nonfunction, graft function, graft survival, and graft utilization. Weighted means were calculated for all relevant outcomes and controls. Formal meta-analyses could not be conducted because of significant heterogeneity. RESULTS Twenty studies were included for review (6 NMP studies and 14 NRP studies). Delayed graft function rates seemed to be lower for NRP kidneys (24.6%) compared with NMP kidneys (54.3%). Both modalities yielded similar outcomes with respect to primary nonfunction (NMP 3.3% and NRP 5.6%), graft function (12-mo creatinine 149.3 μmol/L for NMP and 129.9 μmol/L for NRP), and graft utilization (NMP 83.3% and NRP 89%). Although no direct comparisons exist, our evidence suggests that both modalities have good short- and medium-term graft outcomes and high graft survival rates. CONCLUSIONS Current literature demonstrates that both NMP and NRP are feasible strategies that may increase donor organ utilization while maintaining acceptable transplant outcomes and likely improved outcomes compared with cold-stored DCD kidneys. Further research is needed to directly compare NRP and NMP outcomes.
Collapse
Affiliation(s)
| | - Ahmer Hameed
- Department of Surgery, Westmead Hospital, Westmead, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Animesh Singla
- Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Lawrence Yuen
- Department of Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Taina Lee
- Department of Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Peter Yoon
- Department of Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Chris Nahm
- Department of Surgery, Westmead Hospital, Westmead, NSW, Australia
| | - Germaine Wong
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jerome Laurence
- Department of Surgery, Westmead Hospital, Westmead, NSW, Australia
- RPA Institute of Academic Surgery, University of Sydney, Sydney, NSW, Australia
| | - Wai H Lim
- Faculty of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Wayne J Hawthorne
- Department of Surgery, Westmead Hospital, Westmead, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Henry Pleass
- Department of Surgery, Westmead Hospital, Westmead, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Nguyen MC, Li X, Linares N, Jadlowiec C, Moss A, Reddy KS, Mathur AK. Ex-situ machine perfusion in clinical liver transplantation: Current practices and future directions. Liver Transpl 2024:01445473-990000000-00411. [PMID: 38967460 DOI: 10.1097/lvt.0000000000000428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Ex-situ machine perfusion of the liver has surmounted traditional limitations associated with static cold storage in the context of organ preservation. This innovative technology has changed the landscape of liver transplantation by mitigating ischemia perfusion injury, offering a platform for continuous assessment of organ quality, and providing an avenue for optimizing the use of traditionally marginal allografts. This review summarizes the contemporary clinical applications of machine perfusion devices and discusses potential future strategies for real-time viability assessment, therapeutic interventions, and modulation of organ function after recovery.
Collapse
Affiliation(s)
- Michelle C Nguyen
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Pheonix, Arizona, USA
| | - Xingjie Li
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Pheonix, Arizona, USA
| | | | - Caroline Jadlowiec
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Pheonix, Arizona, USA
| | - Adyr Moss
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Pheonix, Arizona, USA
| | - Kunam S Reddy
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Pheonix, Arizona, USA
| | - Amit K Mathur
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Pheonix, Arizona, USA
| |
Collapse
|
4
|
Lindemann J, Yu J, Doyle MM. Normothermic machine perfusion for liver transplantation: current state and future directions. Curr Opin Organ Transplant 2024; 29:186-194. [PMID: 38483109 DOI: 10.1097/mot.0000000000001141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
PURPOSE OF REVIEW The number of patients on the liver transplant waitlist continues to grow and far exceeds the number of livers available for transplantation. Normothermic machine perfusion (NMP) allows for ex-vivo perfusion under physiologic conditions with the potential to significantly increase organ yield and expand the donor pool. RECENT FINDINGS Several studies have found increased utilization of donation after cardiac death and extended criteria brain-dead donor livers with implementation of NMP, largely due to the ability to perform viability testing during machine perfusion. Recently, proposed viability criteria include lactate clearance, maintenance of perfusate pH more than 7.2, ALT less than 6000 u/l, evidence of glucose metabolism and bile production. Optimization of liver grafts during NMP is an active area of research and includes interventions for defatting steatotic livers, preventing ischemic cholangiopathy and rejection, and minimizing ischemia reperfusion injury. SUMMARY NMP has resulted in increased organ utilization from marginal donors with acceptable outcomes. The added flexibility of prolonged organ storage times has the potential to improve time constraints and transplant logistics. Further research to determine ideal viability criteria and investigate ways to optimize marginal and otherwise nontransplantable liver grafts during NMP is warranted.
Collapse
Affiliation(s)
- Jessica Lindemann
- Department of Surgery, Section of Abdominal Organ Transplantation, Washington University School of Medicine, Saint Louis, Missouri, USA
| | | | | |
Collapse
|
5
|
Mateo SV, Vidal-Correoso D, Muñoz-Morales AM, Jover-Aguilar M, Alconchel F, de la Peña J, Martínez-Alarcón L, López-López V, Ríos-Zambudio A, Cascales P, Pons JA, Ramírez P, Pelegrín P, Baroja-Mazo A. Detection of inflammasome activation in liver tissue during the donation process as potential biomarker for liver transplantation. Cell Death Discov 2024; 10:266. [PMID: 38816358 PMCID: PMC11139956 DOI: 10.1038/s41420-024-02042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
Deceased donor liver transplantation (LT) is a crucial lifesaving option for patients with end-stage liver diseases. Although donation after brain death (DBD) remains the main source of donated organs, exploration of donation after circulatory death (DCD) addresses donor scarcity but introduces challenges due to warm ischemia. While technical advances have improved outcomes, challenges persist, with a 13% mortality rate within the first year. Delving into liver transplantation complexities reveals the profound impact of molecular signaling on organ fate. NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation play a pivotal role, influencing inflammatory responses. The NLRP3 inflammasome, found in hepatocytes, contributes to inflammation, fibrosis, and liver cell death. This study explores these dynamics, shedding light on potential biomarkers and therapeutic targets. Samples from 36 liver transplant patients were analyzed for ASC specks detection and inflammasome-related gene expression. Liver biopsies, obtained before and after cold ischemia storage, were processed for immunofluorescence, qRT-PCR, and Western blot. One year post-LT clinical follow-up included diagnostic procedures for complications, and global survival was assessed. Immunofluorescence detected activated inflammasome complexes in fixed liver tissues. ASC specks were identified in hepatocytes, showing a trend toward more specks in DCD livers. Likewise, inflammasome-related gene expression analysis indicated higher expression in DCD livers, decreasing after cold ischemia. Similar results were found at protein level. Patients with increased ASC specks staining exhibited lower overall survival rates, correlating with IL1B expression after cold ischemia. Although preliminary, these findings offer novel insights into utilizing direct detection of inflammasome activation in liver tissue as a biomarker. They suggest its potential impact on post-transplant outcomes, potentially paving the way for improved diagnostic approaches and personalized treatment strategies in LT.
Collapse
Affiliation(s)
- Sandra V Mateo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Daniel Vidal-Correoso
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Ana M Muñoz-Morales
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Marta Jover-Aguilar
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Felipe Alconchel
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Jesús de la Peña
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- Patology Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Laura Martínez-Alarcón
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Víctor López-López
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Antonio Ríos-Zambudio
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Pedro Cascales
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - José A Pons
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- Hepatology and Liver Transplant Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Pablo Ramírez
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120, Murcia, Spain
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain.
| |
Collapse
|
6
|
MacMillan S, Hosgood SA, Walker-Panse L, Rahfeld P, Macdonald SS, Kizhakkedathu JN, Withers SG, Nicholson ML. Enzymatic conversion of human blood group A kidneys to universal blood group O. Nat Commun 2024; 15:2795. [PMID: 38555382 PMCID: PMC10981661 DOI: 10.1038/s41467-024-47131-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024] Open
Abstract
ABO blood group compatibility restrictions present the first barrier to donor-recipient matching in kidney transplantation. Here, we present the use of two enzymes, FpGalNAc deacetylase and FpGalactosaminidase, from the bacterium Flavonifractor plautii to enzymatically convert blood group A antigens from the renal vasculature of human kidneys to 'universal' O-type. Using normothermic machine perfusion (NMP) and hypothermic machine perfusion (HMP) strategies, we demonstrate blood group A antigen loss of approximately 80% in as little as 2 h NMP and HMP. Furthermore, we show that treated kidneys do not bind circulating anti-A antibodies in an ex vivo model of ABO-incompatible transplantation and do not activate the classical complement pathway. This strategy presents a solution to the donor organ shortage crisis with the potential for direct clinical translation to reduce waiting times for patients with end stage renal disease.
Collapse
Affiliation(s)
| | - Sarah A Hosgood
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | | - Peter Rahfeld
- Avivo Biomedical Inc., Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Spence S Macdonald
- Avivo Biomedical Inc., Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Laboratory Medicine, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- The School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
7
|
Dondossola D, Lonati C, Battistin M, Vivona L, Zanella A, Maggioni M, Valentina V, Zizmare L, Trautwein C, Schlegel A, Gatti S. Twelve-hour normothermic liver perfusion in a rat model: characterization of the changes in the ex-situ bio-molecular phenotype and metabolism. Sci Rep 2024; 14:6040. [PMID: 38472309 DOI: 10.1038/s41598-024-56433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
The partial understanding of the biological events that occur during normothermic machine perfusion (NMP) and particularly during prolonged perfusion might hinder its deployment in clinical transplantation. The aim of our study was to implement a rat model of prolonged NMP to characterize the bio-molecular phenotype and metabolism of the perfused organs. Livers (n = 5/group) were procured and underwent 4 h (NMP4h) or 12 h (NMP12h) NMP, respectively, using a perfusion fluid supplemented with an acellular oxygen carrier. Organs that were not exposed to any procedure served as controls (Native). All perfused organs met clinically derived viability criteria at the end of NMP. Factors related to stress-response and survival were increased after prolonged perfusion. No signs of oxidative damage were detected in both NMP groups. Evaluation of metabolite profiles showed preserved mitochondrial function, activation of Cori cycle, induction of lipolysis, acetogenesis and ketogenesis in livers exposed to 12 h-NMP. Increased concentrations of metabolites involved in glycogen synthesis, glucuronidation, bile acid conjugation, and antioxidant response were likewise observed. In conclusion, our NMP12h model was able to sustain liver viability and function, thereby deeply changing cell homeostasis to maintain a newly developed equilibrium. Our findings provide valuable information for the implementation of optimized protocols for prolonged NMP.
Collapse
Affiliation(s)
- Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100, Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy.
| | - Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| | - Luigi Vivona
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zanella
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Maggioni
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vaira Valentina
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Eberhard Karls University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Eberhard Karls University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | - Andrea Schlegel
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
- Transplantation Center, Digestive Disease and Surgery Institute and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stefano Gatti
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Pace 9, 20100, Milan, Italy
| |
Collapse
|
8
|
Chen G, Hu X, Huang Y, Xiang X, Pan S, Chen R, Xu X. Role of the immune system in liver transplantation and its implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e444. [PMID: 38098611 PMCID: PMC10719430 DOI: 10.1002/mco2.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Liver transplantation (LT) stands as the gold standard for treating end-stage liver disease and hepatocellular carcinoma, yet postoperative complications continue to impact survival rates. The liver's unique immune system, governed by a microenvironment of diverse immune cells, is disrupted during processes like ischemia-reperfusion injury posttransplantation, leading to immune imbalance, inflammation, and subsequent complications. In the posttransplantation period, immune cells within the liver collaboratively foster a tolerant environment, crucial for immune tolerance and liver regeneration. While clinical trials exploring cell therapy for LT complications exist, a comprehensive summary is lacking. This review provides an insight into the intricacies of the liver's immune microenvironment, with a specific focus on macrophages and T cells as primary immune players. Delving into the immunological dynamics at different stages of LT, we explore the disruptions after LT and subsequent immune responses. Focusing on immune cell targeting for treating liver transplant complications, we provide a comprehensive summary of ongoing clinical trials in this domain, especially cell therapies. Furthermore, we offer innovative treatment strategies that leverage the opportunities and prospects identified in the therapeutic landscape. This review seeks to advance our understanding of LT immunology and steer the development of precise therapies for postoperative complications.
Collapse
Affiliation(s)
- Guanrong Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin Hu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Yingchen Huang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaonan Xiang
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Sheng Pan
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
9
|
Aguirre-Villarreal D, Servin-Rojas M, Sánchez-Cedillo A, Chávez-Villa M, Hernandez-Alejandro R, Arab JP, Ruiz I, Avendaño-Castro KP, Matamoros MA, Adames-Almengor E, Diaz-Ferrer J, Rodriguez-Aguilar EF, Paez-Zayas VM, Contreras AG, Alvares-da-Silva MR, Mendizabal M, Oliveira CP, Navasa M, García-Juárez I. Liver transplantation in Latin America: reality and challenges. LANCET REGIONAL HEALTH. AMERICAS 2023; 28:100633. [PMID: 38058662 PMCID: PMC10696109 DOI: 10.1016/j.lana.2023.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Healthcare systems in Latin America are broadly heterogeneous, but all of them are burdened by a dramatic rise in liver disease. Some challenges that these countries face include an increase in patients requiring a transplant, insufficient rates of organ donation, delayed referral, and inequitable or suboptimal access to liver transplant programs and post-transplant care. This could be improved by expanding the donor pool through the implementation of education programs for citizens and referring physicians, as well as the inclusion of extended criteria donors, living donors and split liver transplantation. Addressing these shortcomings will require national shifts aimed at improving infrastructure, increasing awareness of organ donation, training medical personnel, and providing equitable access to care for all patients.
Collapse
Affiliation(s)
- David Aguirre-Villarreal
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Maximiliano Servin-Rojas
- Liver Transplant Unit and Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Aczel Sánchez-Cedillo
- Department of Surgery, Hospital General de Mexico Dr. Eduardo Liceaga, Ciudad de Mexico, Mexico
| | - Mariana Chávez-Villa
- Division of Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Roberto Hernandez-Alejandro
- Division of Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Juan Pablo Arab
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
- Departament of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isaac Ruiz
- Department of Hepatology and Liver Transplantation, Centre Hospitalier de l’Université de Montréal (CHUM), Canada
| | | | - Maria A. Matamoros
- Centro de Trasplante Hepatico y Cirugía Hepatobiliar, San Jose, Costa Rica
| | | | - Javier Diaz-Ferrer
- Department of Hepatology, Hospital Nacional Edgardo Rebagliati, Lima, Perú
| | | | | | - Alan G. Contreras
- Transplant Surgery, Intermountain Transplant Clinic, Salt Lake City, UT, USA
| | - Mario R. Alvares-da-Silva
- GI/Liver Unit, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Manuel Mendizabal
- Unidad de Hígado y Trasplante Hepático, Hospital Universitario Austral, Pilar, Argentina
| | - Claudia P. Oliveira
- Department of Gastroenterology (LIM07), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Miquel Navasa
- Liver Transplant Unit, Hepatology Service, Hospital Clínic de Barcelona, IDIBAPS, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Ignacio García-Juárez
- Liver Transplant Unit and Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| |
Collapse
|
10
|
Villalba-López F, García-Bernal D, Mateo SV, Vidal-Correoso D, Jover-Aguilar M, Alconchel F, Martínez-Alarcón L, López-López V, Ríos-Zambudio A, Cascales P, Pons JA, Ramírez P, Pelegrín P, Baroja-Mazo A. Endothelial cell activation mediated by cold ischemia-released mitochondria is partially inhibited by defibrotide and impacts on early allograft function following liver transplantation. Biomed Pharmacother 2023; 167:115529. [PMID: 37729732 DOI: 10.1016/j.biopha.2023.115529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023] Open
Abstract
DAMPs (danger-associated molecular patterns) are self-molecules of the organism that appear after damage. The endothelium plays several roles in organ rejection, such as presenting alloantigens to T cells and contributing to the development of inflammation and thrombosis. This study aimed to assess whether DAMPs present in the organ preservation solution (OPS) after cold ischemic storage (CIS) contribute to exacerbating the endothelial response to an inflammatory challenge and whether defibrotide treatment could counteract this effect. The activation of cultured human umbilical vein endothelial cells (HUVECs) was analyzed after challenging with end-ischemic OPS (eiOPS) obtained after CIS. Additionally, transwell assays were performed to study the ability of eiOPS to attract lymphocytes across the endothelium. The study revealed that eiOPS upregulated the expression of MCP-1 and IL-6 in HUVECs. Moreover, eiOPS increased the membrane expression of ICAM-1and HLA-DR, which facilitated leukocyte migration toward a chemokine gradient. Furthermore, eiOPS demonstrated its chemoattractant ability. This activation was mediated by free mitochondria. Defibrotide was found to partially inhibit the eiOPS-mediated activation. Moreover, the eiOPS-mediated activation of endothelial cells (ECs) correlated with early allograft dysfunction in liver transplant patients. Our finding provide support for the hypothesis that mitochondria released during cold ischemia could trigger EC activation, leading to complications in graft outcomes. Therefore, the analysis and quantification of free mitochondria in the eiOPS samples obtained after CIS could provide a predictive value for monitoring the progression of transplantation. Moreover, defibrotide emerges as a promising therapeutic agent to mitigate the damage induced by ischemia in donated organs.
Collapse
Affiliation(s)
- Francisco Villalba-López
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain
| | - David García-Bernal
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain; Hematopoietic Transplant and Cell Therapy Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain.
| | - Sandra V Mateo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain
| | - Daniel Vidal-Correoso
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain
| | - Marta Jover-Aguilar
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain
| | - Felipe Alconchel
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain; General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Laura Martínez-Alarcón
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain
| | - Víctor López-López
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain; General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Antonio Ríos-Zambudio
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain; General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pedro Cascales
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain; General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - José A Pons
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain; Hepatology and Liver Transplant Unit, University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Pablo Ramírez
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain; General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain; Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain.
| |
Collapse
|
11
|
Shadrin KV, Pakhomova VG, Kryukova OV, Rupenko AP, Yaroslavtsev RN. Influence of oxygen uptake through the liver surface on the metabolism of ex vivo perfused liver during hypoxia. Biochim Biophys Acta Gen Subj 2023; 1867:130429. [PMID: 37532088 DOI: 10.1016/j.bbagen.2023.130429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
The low quality of transplants having undergone hypoxic injury can lead to postoperative complications. The aim of the present research is to estimate, by means of mathematical modeling, how the process of oxygen uptake through the liver surface influences the metabolism of ex vivo perfused liver under hypoxia. The value of oxygen uptake through the surface was established to depend on the degree of oxygenation of the perfusion medium. A decrease in the oxygenation of the perfusion medium resulted in a decreased oxygen uptake through the liver surface. Stoichiometric modeling of the liver metabolism shows that upon the decreased oxygenation of the perfusion medium more energy is required for the process of oxygen uptake through the surface even at a lower level as compared to the normal oxygen supply. The application of the Pareto optimality allows estimating the optimum distribution of the energy resources in liver under ex vivo conditions. Both upon the normal and decreased oxygenation of the perfusion medium, the phenomenon of "free competition" for the resource was observed, with the energy being optimally distributed among all the metabolic fluxes. Moreover, this energy is also spent on the accompanying processes, e.g. for the transport of interstitial fluid.
Collapse
Affiliation(s)
- K V Shadrin
- Krasnoyarsk Scientific Center, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia; Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - V G Pakhomova
- Krasnoyarsk Scientific Center, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia
| | - O V Kryukova
- Krasnoyarsk Scientific Center, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia
| | - A P Rupenko
- Krasnoyarsk Scientific Center, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia
| | - R N Yaroslavtsev
- Krasnoyarsk Scientific Center, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia.
| |
Collapse
|
12
|
Ruppelt A, Pijnenburg I, Pappers C, Samsom RA, Kock L, Grinwis GCM, Spee B, Rasponi M, Stijnen M. Are slaughterhouse-obtained livers suitable for use in ex vivo perfusion research? J Int Med Res 2023; 51:3000605231189651. [PMID: 37565647 PMCID: PMC10422909 DOI: 10.1177/03000605231189651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVES The success of the ex vivo machine perfusion of pig livers used for preclinical research depends on organ quality and availability. In this study, we investigated whether livers obtained from slaughterhouses are suitable and equivalent to livers obtained from laboratory pigs. METHODS Livers were obtained from slaughterhouse pigs stunned by electrocution or CO2 inhalation and from laboratory pigs. For the latter group, 45 minutes of warm ischemia was mimicked for a subgroup, ensuring a valid comparison with slaughterhouse-derived livers. RESULTS Livers from CO2-stunned pigs showed lower indocyanine green clearance and bile production, higher blood lactate and potassium concentrations, and higher alanine aminotransferase activities than electrically stunned pigs. Furthermore, livers from electrically stunned pigs, and livers from laboratory pigs, subjected or not to warm ischemia, showed similar performance in terms of perfusion and metabolism. CONCLUSION For an ex vivo liver model generated using slaughterhouse pigs, electrical stunning is preferable to CO2 stunning. Livers from electrically stunned slaughterhouse pigs performed similarly to laboratory pig livers. These findings support the use of livers from electrically stunned slaughterhouse pigs, which may therefore provide an alternative to livers obtained from laboratory pigs, consistent with the principle of the 3Rs.
Collapse
Affiliation(s)
- Alicia Ruppelt
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- LifeTec Group, Eindhoven, The Netherlands
| | | | | | - Roos-Anne Samsom
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Linda Kock
- LifeTec Group, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Guy C. M. Grinwis
- Veterinary Pathology Diagnostic Centre, Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | |
Collapse
|
13
|
Shi JH, Cheng N, Zhang W, Jin Q, Guo WZ, Ge GB, Zhang SJ, Line PD, Wang Y. Air-ventilated normothermic machine perfusion alleviates hepatic injury from DCD rat through CYP1A2. Heliyon 2023; 9:e19150. [PMID: 37654459 PMCID: PMC10465863 DOI: 10.1016/j.heliyon.2023.e19150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Normothermic machine perfusion (NMP) could provide protection to organs from donation after circulatory death (DCD) before transplantation, and its molecular mechanism remains unclear. Our previous study discovered that the air-ventilated NMP confers a better DCD liver recovery than oxygen-ventilated NMP. The purpose in the current study was to investigate the protective mechanism of air-ventilated NMP in a rat model of DCD liver by metabolomics, and to select biomarker to predict liver function recovery. MATERIALS AND METHODS Peroxisome proliferator activator receptor-α (PPARα) agonist or antagonist was administered via the perfusion circuit in the air-ventilated NMP. Perfusate samples were taken for measurements of aminotransferases using standard biochemical methods, tumor necrosis factor-alpha and interleukin-6. Liver biopsies were allocated for detection of metabolomics, PPARα and cytochrome P450 1A2 (CYP1A2). RESULTS Metabolomics analysis revealed the significant increased γ-linolenic acid and decreased adrenic acid during the air-ventilated NMP, indicating linoleic acid metabolism pathway was associated with a better DCD liver recovery; as a major enzyme involved in linolenic acid metabolism, CYP1A2 was found correlated with a less inflammation and better liver function with the air-ventilated NMP; PPARα agonist could increase CYP1A2 expression and activity, decrease inflammation response, and improve liver function with the air-ventilated NMP, while PPARα antagonist played the opposite. CONCLUSION Air-ventilated NMP confers a better liver recovery from DCD rats through the activated linoleic acid metabolism and CYP1A2 upregulation; CYP1A2 expression and activity might function as biomarker to predict DCD liver function recovery with NMP.
Collapse
Affiliation(s)
- Ji-Hua Shi
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation & Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Nuo Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation & Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation & Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qiang Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 200473, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation & Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 200473, China
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation & Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Pål-Dag Line
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yong Wang
- Department of Anesthesia Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Dery KJ, Yao S, Cheng B, Kupiec-Weglinski JW. New therapeutic concepts against ischemia-reperfusion injury in organ transplantation. Expert Rev Clin Immunol 2023; 19:1205-1224. [PMID: 37489289 PMCID: PMC10529400 DOI: 10.1080/1744666x.2023.2240516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Ischemia-reperfusion injury (IRI) involves a positive amplification feedback loop that stimulates innate immune-driven tissue damage associated with organ procurement from deceased donors and during transplantation surgery. As our appreciation of its basic immune mechanisms has improved in recent years, translating putative biomarkers into therapeutic interventions in clinical transplantation remains challenging. AREAS COVERED This review presents advances in translational/clinical studies targeting immune responses to reactive oxygen species in IRI-stressed solid organ transplants, especially livers. Here we focus on novel concepts to rejuvenate suboptimal donor organs and improve transplant function using pharmacologic and machine perfusion (MP) strategies. Cellular damage induced by cold ischemia/warm reperfusion and the latest mechanistic insights into the microenvironment's role that leads to reperfusion-induced sterile inflammation is critically discussed. EXPERT OPINION Efforts to improve clinical outcomes and increase the donor organ pool will depend on improving donor management and our better appreciation of the complex mechanisms encompassing organ IRI that govern the innate-adaptive immune interface triggered in the peritransplant period and subsequent allo-Ag challenge. Computational techniques and deep machine learning incorporating the vast cellular and molecular mechanisms will predict which peri-transplant signals and immune interactions are essential for improving access to the long-term function of life-saving transplants.
Collapse
Affiliation(s)
- Kenneth J. Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Siyuan Yao
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Brian Cheng
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
15
|
Staubli SM, Ceresa CDL, Pollok JM. The Current Role and Future Applications of Machine Perfusion in Liver Transplantation. Bioengineering (Basel) 2023; 10:bioengineering10050593. [PMID: 37237663 DOI: 10.3390/bioengineering10050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The relative paucity of donor livers suitable for transplantation has sparked innovations to preserve and recondition organs to expand the pool of transplantable organs. Currently, machine perfusion techniques have led to the improvement of the quality of marginal livers and to prolonged cold ischemia time and have allowed for the prediction of graft function through the analysis of the organ during perfusion, improving the rate of organ use. In the future, the implementation of organ modulation might expand the scope of machine perfusion beyond its current usage. The aim of this review was to provide an overview of the current clinical use of machine perfusion devices in liver transplantation and to provide a perspective for future clinical use, including therapeutic interventions in perfused donor liver grafts.
Collapse
Affiliation(s)
- Sebastian M Staubli
- HPB and Liver Transplantation Service, Royal Free London NHS Foundation Trust, Pond Street, London NW3 QG, UK
| | - Carlo D L Ceresa
- HPB and Liver Transplantation Service, Royal Free London NHS Foundation Trust, Pond Street, London NW3 QG, UK
- Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxfordshire OX3 9DU, UK
| | - Joerg M Pollok
- HPB and Liver Transplantation Service, Royal Free London NHS Foundation Trust, Pond Street, London NW3 QG, UK
- Division of Surgery & Interventional Science, University College London, London WC1E 6BT, UK
| |
Collapse
|
16
|
Salvaging the fatty liver for transplant: is short duration NMP enough? Liver Transpl 2023; 29:465-466. [PMID: 36695304 DOI: 10.1097/lvt.0000000000000073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
|
17
|
Riveros S, Marino C, Ochoa G, Soto D, Alegría L, Zenteno MJ, San Martín S, Brañes A, Achurra P, Rebolledo R. Customized normothermic machine perfusion decreases ischemia-reperfusion injury compared with static cold storage in a porcine model of liver transplantation. Artif Organs 2023; 47:148-159. [PMID: 36007920 DOI: 10.1111/aor.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Liver transplantation has been demonstrated to be the best treatment for several liver diseases, while grafts are limited. This has caused an increase in waiting lists, making it necessary to find ways to expand the number of organs available for transplantation. Normothermic perfusion (NMP) of liver grafts has been established as an alternative to static cold storage (SCS), but only a small number of perfusion machines are commercially available. METHODS Using a customized ex situ machine perfusion, we compared the results between ex situ NMP and SCS preservation in a porcine liver transplant model. RESULTS During NMP, lactate concentrations were 80% lower after the 3-h perfusion period, compared with SCS. Bile production had a 2.5-fold increase during the NMP period. After transplantation, aspartate transaminase (AST) and alanine transaminase (ALT) levels were 35% less in the NMP group, compared to the SCS group. In pathologic analyses of grafts after transplant, tissue oxidation did not change between groups, but the ischemia-reperfusion injury score was lower in the NMP group. CONCLUSION NMP reduced hepatocellular damage and ischemia-reperfusion injury when compared to SCS using a customized perfusion machine. This could be an alternative for low-income countries to include machine perfusion in their therapeutic options.
Collapse
Affiliation(s)
- Sergio Riveros
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlo Marino
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gabriela Ochoa
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dagoberto Soto
- Department of Intensive Care Unit, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leyla Alegría
- Department of Intensive Care Unit, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Sebastián San Martín
- Biomedical Research Center, School of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Alejandro Brañes
- Hepato-Pancreato-Biliary Surgery Unit, Surgery Service, Complejo Asistencial Dr. Sótero Del Río, Santiago, Chile
| | - Pablo Achurra
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rolando Rebolledo
- Hepato-Pancreato-Biliary Surgery Unit, Surgery Service, Complejo Asistencial Dr. Sótero Del Río, Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Azizieh Y, Westhaver LP, Badrudin D, Boudreau JE, Gala-Lopez BL. Changing liver utilization and discard rates in clinical transplantation in the ex-vivo machine preservation era. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1079003. [PMID: 36908294 PMCID: PMC9996101 DOI: 10.3389/fmedt.2023.1079003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Liver transplantation is a well-established treatment for many with end-stage liver disease. Unfortunately, the increasing organ demand has surpassed the donor supply, and approximately 30% of patients die while waiting for a suitable liver. Clinicians are often forced to consider livers of inferior quality to increase organ donation rates, but ultimately, many of those organs end up being discarded. Extensive testing in experimental animals and humans has shown that ex-vivo machine preservation allows for a more objective characterization of the graft outside the body, with particular benefit for suboptimal organs. This review focuses on the history of the implementation of ex-vivo liver machine preservation and how its enactment may modify our current concept of organ acceptability. We provide a brief overview of the major drivers of organ discard (age, ischemia time, steatosis, etc.) and how this technology may ultimately revert such a trend. We also discuss future directions for this technology, including the identification of new markers of injury and repair and the opportunity for other ex-vivo regenerative therapies. Finally, we discuss the value of this technology, considering current and future donor characteristics in the North American population that may result in a significant organ discard.
Collapse
Affiliation(s)
- Yara Azizieh
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | - David Badrudin
- Department of Surgery, Université de Montréal, Montréal, QC, Canada
| | - Jeanette E Boudreau
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Boris L Gala-Lopez
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada.,Department of Surgery, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
19
|
Hypothermic Oxygenated Machine Perfusion (HOPE) Prior to Liver Transplantation Mitigates Post-Reperfusion Syndrome and Perioperative Electrolyte Shifts. J Clin Med 2022; 11:jcm11247381. [PMID: 36555997 PMCID: PMC9786550 DOI: 10.3390/jcm11247381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Post-reperfusion syndrome (PRS) and electrolyte shifts (ES) represent considerable challenges during liver transplantation (LT) being associated with significant morbidity. We aimed to investigate the impact of hypothermic oxygenated machine perfusion (HOPE) on PRS and ES in LT. (2) Methods: In this retrospective study, we compared intraoperative parameters of 100 LTs, with 50 HOPE preconditioned liver grafts and 50 grafts stored in static cold storage (SCS). During reperfusion phase, prospectively registered serum parameters and vasopressor administration were analyzed. (3) Results: Twelve percent of patients developed PRS in the HOPE cohort vs. 42% in the SCS group (p = 0.0013). Total vasopressor demand in the first hour after reperfusion was lower after HOPE pretreatment, with reduced usage of norepinephrine (−26%; p = 0.122) and significant reduction of epinephrine consumption (−52%; p = 0.018). Serum potassium concentration dropped by a mean of 14.1% in transplantations after HOPE, compared to a slight decrease of 1% (p < 0.001) after SCS. The overall incidence of early allograft dysfunction (EAD) was reduced by 44% in the HOPE group (p = 0.04). (4) Conclusions: Pre-transplant graft preconditioning with HOPE results in higher hemodynamic stability during reperfusion and lower incidence of PRS and EAD. HOPE has the potential to mitigate ES by preventing hyperpotassemic complications that need to be addressed in LT with HOPE-pre-treated grafts.
Collapse
|
20
|
Lucas-Ruiz F, Peñín-Franch A, Pons JA, Ramírez P, Pelegrín P, Cuevas S, Baroja-Mazo A. Emerging Role of NLRP3 Inflammasome and Pyroptosis in Liver Transplantation. Int J Mol Sci 2022; 23:ijms232214396. [PMID: 36430874 PMCID: PMC9698208 DOI: 10.3390/ijms232214396] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The nucleotide-binding domain leucine-rich repeat-receptor, pyrin domain-containing-3 (NLRP3) inflammasome contributes to the inflammatory response by activating caspase-1, which in turn participates in the maturation of interleukin (IL)-1β and IL-18, which are mainly secreted via pyroptosis. Pyroptosis is a lytic type of cell death that is controlled by caspase-1 processing gasdermin D. The amino-terminal fragment of gasdermin D inserts into the plasma membrane, creating stable pores and enabling the release of several proinflammatory factors. The activation of NLRP3 inflammasome and pyroptosis has been involved in the progression of liver fibrosis and its end-stage cirrhosis, which is among the main etiologies for liver transplantation (LT). Moreover, the NLRP3 inflammasome is involved in ischemia-reperfusion injury and early inflammation and rejection after LT. In this review, we summarize the recent literature addressing the role of the NLRP3 inflammasome and pyroptosis in all stages involved in LT and argue the potential targeting of this pathway as a future therapeutic strategy to improve LT outcomes. Likewise, we also discuss the impact of graft quality influenced by donation after circulatory death and the expected role of machine perfusion technology to modify the injury response related to inflammasome activation.
Collapse
Affiliation(s)
- Fernando Lucas-Ruiz
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Alejandro Peñín-Franch
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - José Antonio Pons
- Hepatology and Liver Transplant Unit, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Pablo Ramírez
- General Surgery and Abdominal Solid Organ Transplantation Unit, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
- Correspondence: (P.P.); (A.B.-M.); Tel.: +34-86-8885-031 (P.P.); Tel.: +34-86-8885-039 (A.B.-M.)
| | - Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain
- Correspondence: (P.P.); (A.B.-M.); Tel.: +34-86-8885-031 (P.P.); Tel.: +34-86-8885-039 (A.B.-M.)
| |
Collapse
|
21
|
Guo H, Tikhomirov AB, Mitchell A, Alwayn IPJ, Zeng H, Hewitt KC. Real-time assessment of liver fat content using a filter-based Raman system operating under ambient light through lock-in amplification. BIOMEDICAL OPTICS EXPRESS 2022; 13:5231-5245. [PMID: 36425639 PMCID: PMC9664892 DOI: 10.1364/boe.467849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
During liver procurement, surgeons mostly rely on their subjective visual inspection of the liver to assess the degree of fatty infiltration, for which misclassification is common. We developed a Raman system, which consists of a 1064 nm laser, a handheld probe, optical filters, photodiodes, and a lock-in amplifier for real-time assessment of liver fat contents. The system performs consistently in normal and strong ambient light, and the excitation incident light penetrates at least 1 mm into duck fat phantoms and duck liver samples. The signal intensity is linearly correlated with MRI-calibrated fat contents of the phantoms and the liver samples.
Collapse
Affiliation(s)
- Hao Guo
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, NS B3H 4R2, Canada
- Department of Medical Physics, Nova Scotia Health Authority, 5820 University Avenue Halifax, NS B3H 1V7, Canada
| | - Alexey B. Tikhomirov
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, NS B3H 4R2, Canada
| | - Alexandria Mitchell
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, NS B3H 4R2, Canada
- Department of Medical Physics, Nova Scotia Health Authority, 5820 University Avenue Halifax, NS B3H 1V7, Canada
| | - Ian Patrick Joseph Alwayn
- Department of Surgery, Leiden University Medical Center (LUMC) Transplant Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Haishan Zeng
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Kevin C. Hewitt
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Organ transplantation is one of the miracles in medicine in the 20th century. However, in the current practice, all the donor organs suffer from ischemia/reperfusion injury (IRI), which compromise transplant outcomes and limits organ availability. Continuous efforts have been made in organ machine perfusion to ameliorate IRI. In 2017, ischemia-free organ transplantation (IFOT) was first proposed with the aim of complete avoidance of IRI in organ transplantation. The purpose of this review is to highlight the latest progresses in IFOT. RECENT FINDINGS The feasibility of IFOT has been validated in liver, kidney, and heart transplantation. The results of the first nonrandomized controlled study demonstrate that ischemia-free liver transplantation (IFLT) may improve transplant outcomes and increase organ availability. Furthermore, laboratory results, including the absence of the characteristic pathological changes, gene transcription and metabolic reprogramming, as well as sterile inflammation activation in IFLT grafts, suggest the virtual avoidance of graft IRI in IFLT. SUMMARY IFOT might change the current practice by abrogating graft IRI. IFOT also provides a unique model to investigate the interaction between allograft IRI and rejection. The next steps will be to simplify the technique, make long-distance transportation possible and evaluate cost-effectiveness.
Collapse
Affiliation(s)
- Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Tao Luo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Runbing Mo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| |
Collapse
|
23
|
Bacterial and Viral Infections in Liver Transplantation: New Insights from Clinical and Surgical Perspectives. Biomedicines 2022; 10:biomedicines10071561. [PMID: 35884867 PMCID: PMC9313066 DOI: 10.3390/biomedicines10071561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/11/2022] [Accepted: 06/27/2022] [Indexed: 01/03/2023] Open
Abstract
End-stage liver disease patients undergoing liver transplantation are prone to develop numerous infectious complications because of immunosuppression, surgical interventions, and malnutrition. Infections in transplant recipients account for the main cause of mortality and morbidity with rates of up to 80%. The challenges faced in the early post-transplant period tend to be linked to transplant procedures and nosocomial infections commonly in bloodstream, surgical, and intra-abdominal sites. Viral infections represent an additional complication of immunosuppression; they can be donor-derived, reactivated from a latent virus, nosocomial or community-acquired. Bacterial and viral infections in solid organ transplantation are managed by prophylaxis, multi-drug resistant screening, risk assessment, vaccination, infection control and antimicrobial stewardship. The aim of this review was to discuss the epidemiology of bacterial and viral infections in liver transplants, infection control issues, as well as surgical frontiers of ex situ liver perfusion.
Collapse
|
24
|
Lee ACH, Edobor A, Lysandrou M, Mirle V, Sadek A, Johnston L, Piech R, Rose R, Hart J, Amundsen B, Jendrisak M, Millis JM, Donington J, Madariaga ML, Barth RN, di Sabato D, Shanmugarajah K, Fung J. The Effect of Normothermic Machine Perfusion on the Immune Profile of Donor Liver. Front Immunol 2022; 13:788935. [PMID: 35720395 PMCID: PMC9201055 DOI: 10.3389/fimmu.2022.788935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Background Normothermic machine perfusion (NMP) allows viability assessment and potential resuscitation of donor livers prior to transplantation. The immunological effect of NMP on liver allografts is undetermined, with potential implications on allograft function, rejection outcomes and overall survival. In this study we define the changes in immune profile of human livers during NMP. Methods Six human livers were placed on a NMP device. Tissue and perfusate samples were obtained during cold storage prior to perfusion and at 1, 3, and 6 hours of perfusion. Flow cytometry, immunohistochemistry, and bead-based immunoassays were used to measure leukocyte composition and cytokines in the perfusate and within the liver tissue. Mean values between baseline and time points were compared by Student’s t-test. Results Within circulating perfusate, significantly increased frequencies of CD4 T cells, B cells and eosinophils were detectable by 1 hour of NMP and continued to increase at 6 hours of perfusion. On the other hand, NK cell frequency significantly decreased by 1 hour of NMP and remained decreased for the duration of perfusion. Within the liver tissue there was significantly increased B cell frequency but decreased neutrophils detectable at 6 hours of NMP. A transient decrease in intermediate monocyte frequency was detectable in liver tissue during the middle of the perfusion run. Overall, no significant differences were detectable in tissue resident T regulatory cells during NMP. Significantly increased levels of pro-inflammatory and anti-inflammatory cytokines were seen following initiation of NMP that continued to rise throughout duration of perfusion. Conclusions Time-dependent dynamic changes are seen in individual leukocyte cell-types within both perfusate and tissue compartments of donor livers during NMP. This suggests a potential role of NMP in altering the immunogenicity of donor livers prior to transplant. These data also provide insights for future work to recondition the intrinsic immune profile of donor livers during NMP prior to transplantation.
Collapse
Affiliation(s)
| | - Arianna Edobor
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Maria Lysandrou
- Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Vikranth Mirle
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Amir Sadek
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Laura Johnston
- Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Ryan Piech
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Rebecca Rose
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - John Hart
- Department of Pathology, University of Chicago, Chicago, IL, United States
| | - Beth Amundsen
- Gift of Hope Tissue and Donor Network, Itasca, IL, United States
| | - Martin Jendrisak
- Gift of Hope Tissue and Donor Network, Itasca, IL, United States
| | | | - Jessica Donington
- Section of Transplant Surgery, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Maria Lucia Madariaga
- Section of Transplant Surgery, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Rolf N Barth
- Section of Thoracic Surgery, Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Diego di Sabato
- Section of Thoracic Surgery, Department of Surgery, University of Chicago, Chicago, IL, United States
| | | | - John Fung
- Section of Thoracic Surgery, Department of Surgery, University of Chicago, Chicago, IL, United States
| |
Collapse
|
25
|
Chen Z, Wang T, Chen C, Zhao Q, Ma Y, Guo Y, Hong X, Yu J, Huang C, Ju W, Chen M, He X. Transplantation of Extended Criteria Donor Livers Following Continuous Normothermic Machine Perfusion Without Recooling. Transplantation 2022; 106:1193-1200. [PMID: 34495016 PMCID: PMC9128617 DOI: 10.1097/tp.0000000000003945] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/10/2021] [Accepted: 07/18/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Traditional liver transplant strategies with cold preservation usually result in ischemia-reperfusion injury (IRI) to the donor liver. Regular normothermic machine perfusion (NMP) donor livers suffer IRI twice. Here, we aimed to introduce a novel technique called continuous NMP without recooling to avoid a second IRI and its application in livers from extended criteria donors. METHODS Seven donor livers transplanted following continuous NMP without recooling, 7 donor livers transplanted following standard NMP, and 14 livers under static cold storage (SCS) were included in this study. Perioperative outcomes were recorded and analyzed between groups. RESULTS During the NMP without a recooling procedure, all livers cleared lactate quickly to normal levels in a median time of 100 min (interquartile range, 60-180) and remained stable until the end of perfusion. In the NMP without recooling and standard NMP groups, posttransplant peak aspartate aminotransferase and alanine aminotransferase levels were both significantly lower than those in the SCS group (P = 0.0015 and 0.016, respectively). The occurrence rate of early allograft dysfunction was significantly lower in the NMP without recooling group than in the SCS group (P = 0.022), whereas there was no difference in the NMP group with or without recooling (P = 0.462). CONCLUSIONS Our pilot study revealed a novel technique designed to avoid secondary IRI. This novel technique is shown to have at least a comparable effect on the standard NMP, although more data are needed to show its superiority in the future.
Collapse
Affiliation(s)
- Zhitao Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Tielong Wang
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Chuanbao Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Qiang Zhao
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Yihao Ma
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Yiwen Guo
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Xitao Hong
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Jia Yu
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Changjun Huang
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Weiqiang Ju
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Maogen Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| | - Xiaoshun He
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, People’s Republic of China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, People’s Republic of China
| |
Collapse
|
26
|
Shi JH, Yang DJ, Jin Q, Cheng N, Shi YB, Bai Y, Yu DS, Guo WZ, Ge GB, Zhang SJ. Cytochrome P450 2E1 predicts liver functional recovery from donation after circulatory death using air-ventilated normothermic machine perfusion. Sci Rep 2022; 12:7446. [PMID: 35523980 PMCID: PMC9076671 DOI: 10.1038/s41598-022-11434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/25/2022] [Indexed: 12/05/2022] Open
Abstract
The optimal oxygen concentration is unclear for normothermic machine perfusion (NMP) of livers from donation after circulatory death (DCD). Our purposes were to investigate the effect of air-ventilated NMP on the DCD liver, analyze the underlying mechanism and select the targets to predict liver functional recovery with NMP. NMP was performed using the NMP system with either air ventilation or oxygen ventilation for 2 h in the rat liver following warm ischemia and cold-storage preservation. Proteomics and metabolomics were used to reveal the significant molecular networks. The bioinformation analysis was validated by administering peroxisome proliferator activator receptor-γ (PPARγ) antagonist and agonist via perfusion circuit in the air-ventilated NMP. Results showed that air-ventilated NMP conferred a better functional recovery and a less inflammatory response in the rat DCD liver; integrated proteomics and metabolomics analysis indicated that intrahepatic docosapentaenoic acid downregulation and upregulation of cytochrome P450 2E1 (CYP2E1) expression and activity were associated with DCD liver functional recovery with air-ventilated NMP; PPARγ antagonist worsened liver function under air-oxygenated NMP whereas PPARγ agonist played the opposite role. In conclusion, air-ventilated NMP confers a better liver function from DCD rats through the DAP-PPARγ-CYP2E1 axis; CYP2E1 activity provides a biomarker of liver functional recovery from DCD.
Collapse
Affiliation(s)
- Ji-Hua Shi
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| | - Dong-Jing Yang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qiang Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 200473, China
| | - Nuo Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuan-Bin Shi
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yang Bai
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Dong-Sheng Yu
- Division of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 200473, China.
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation and Zhengzhou Key Laboratory for HPB Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
27
|
Left renal vein graft and in situ hepatic perfusion in hepatectomy for complete tumor invasion of hepatic veins: hemodynamic optimization and surgical technique. Langenbecks Arch Surg 2022; 407:1-7. [PMID: 35102435 PMCID: PMC9283147 DOI: 10.1007/s00423-022-02451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/20/2022] [Indexed: 11/05/2022]
Abstract
Purpose Assessing hepatic vein reconstruction using a left renal vein graft and in situ hypothermic liver perfusion in an extended liver resection. Methods Patients included in this study were those with liver tumors undergoing curative surgery with resection and reconstruction of hepatic veins. Hepatic vein was reconstructed using a left renal vein graft. We describe the technical aspects of liver resection and vascular reconstruction, the key aspects of hemodynamic management, and the use of in situ hypothermic liver preservations during liver transection (prior to and during vascular clamping). Results The right hepatic vein was reconstructed with a median left renal venal graft length of 4.5 cm (IQR, 3.1–5.2). Creatinine levels remained within normal limits in the immediate postoperative phase and during follow-up. Median blood loss was 500 ml (IQR, 300–1500) and in situ perfusion with cold ischemia was 67 min (IQR, 60.5–77.5). The grafts remained patent during the follow-up with no signs of thrombosis. No major postoperative complications were observed. Conclusion Left renal vein graft for the reconstruction of a hepatic vein and in situ hypothermic liver perfusion are feasible during extended liver resection. Supplementary Information The online version contains supplementary material available at 10.1007/s00423-022-02451-6.
Collapse
|
28
|
Tien C, Remulla D, Kwon Y, Emamaullee J. Contemporary strategies to assess and manage liver donor steatosis: a review. Curr Opin Organ Transplant 2021; 26:474-481. [PMID: 34524179 PMCID: PMC8447219 DOI: 10.1097/mot.0000000000000893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Due to a persistent shortage of donor livers, attention has turned toward ways of utilizing marginal grafts, particularly those with steatosis, without incurring inferior outcomes. Here we review the evaluation and utilization of steatotic liver allografts, highlight recently published data, and discuss novel methods of graft rehabilitation. RECENT FINDINGS Although severe liver allograft (>60%) steatosis has been associated with inferior graft and recipient outcomes, mild (<30%) steatosis has not. There is ongoing debate regarding safe utilization of grafts with moderate (30-60%) steatosis. Presently, no established protocols for evaluating steatosis in donor candidates or utilizing such grafts exist. Liver biopsy is accepted as the gold standard technique, though noninvasive methods have shown promise in accurately predicting steatosis. More recently, machine perfusion has been shown to enhance ex situ liver function and reduce steatosis, emerging as a potential means of optimizing steatotic grafts prior to transplantation. SUMMARY Steatotic liver allografts constitute a large proportion of deceased donor organs. Further work is necessary to define safe upper limits for the acceptable degree of steatosis, develop standardized evaluation protocols, and establish utilization guidelines that prioritize safety. Machine perfusion has shown promise in rehabilitating steatotic grafts and offers the possibility of expanding the deceased donor pool.
Collapse
Affiliation(s)
- Christine Tien
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Daphne Remulla
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Yong Kwon
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Surgery, University of Southern California, Los Angeles, CA
| | - Juliet Emamaullee
- Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Surgery, University of Southern California, Los Angeles, CA
| |
Collapse
|
29
|
Kageyama S, Kadono K, Hirao H, Nakamura K, Ito T, Gjertson DW, Sosa RA, Reed EF, Kaldas FM, Busuttil RW, Kupiec-Weglinski JW, Zhai Y. Ischemia-reperfusion Injury in Allogeneic Liver Transplantation: A Role of CD4 T Cells in Early Allograft Injury. Transplantation 2021; 105:1989-1997. [PMID: 33065722 PMCID: PMC8046839 DOI: 10.1097/tp.0000000000003488] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND A major discrepancy between clinical and most experimental settings of liver ischemia-reperfusion injury (IRI) is the allogenicity. METHODS In the current study, we first established a murine model of allogeneic orthotopic liver transplantation with extended cold ischemia time (18 h). Roles of CD4 T cells in the pathogenesis of IRI in liver allografts were determined using a depleting anti-CD4 antibody. The clinical relevance of CD4 as a marker of liver IRI was analyzed retrospectively in 55 liver transplant patients. RESULTS CD4 depletion in both donors and recipients resulted in the most effective protection of liver allografts from IRI, as measured by serum transaminase levels and liver histology. CD4 depletion inhibited IR-induced intragraft neutrophil/macrophage infiltration and proinflammatory gene expressions. Quantitative reverse-transcriptase polymerase chain reaction analysis of human liver biopsies (2 h postreperfusion) revealed that posttransplant, rather than pretransplant, CD4 transcript levels correlated positively with proinflammatory gene expression profile. When we divided patients into subgroups according to intragraft CD4 levels, the high CD4 cohort developed a more severe hepatocellular damage than that with low CD4 levels. CONCLUSIONS CD4 T cells play a key pathogenic role in IRI of allogeneic liver transplants, and intragraft CD4 levels in the early postreperfusion phase may serve as a potential biomarker and therapeutic target to ameliorate liver IRI and improve orthotopic liver transplantation outcomes.
Collapse
Affiliation(s)
- Shoichi Kageyama
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, University of California, Los Angeles, CA
| | - Kentaro Kadono
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, University of California, Los Angeles, CA
| | - Hirofumi Hirao
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, University of California, Los Angeles, CA
| | - Kojiro Nakamura
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, University of California, Los Angeles, CA
| | - Takahiro Ito
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, University of California, Los Angeles, CA
| | - David W. Gjertson
- Department of Biostatistics, UCLA School of Public Health University of California, Los Angeles, CA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Rebecca A. Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Fady M. Kaldas
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, University of California, Los Angeles, CA
| | - Ronald W. Busuttil
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, University of California, Los Angeles, CA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, University of California, Los Angeles, CA
| | - Yuan Zhai
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, University of California, Los Angeles, CA
| |
Collapse
|
30
|
De Stefano N, Navarro-Tableros V, Roggio D, Calleri A, Rigo F, David E, Gambella A, Bassino D, Amoroso A, Patrono D, Camussi G, Romagnoli R. Human liver stem cell-derived extracellular vesicles reduce injury in a model of normothermic machine perfusion of rat livers previously exposed to a prolonged warm ischemia. Transpl Int 2021; 34:1607-1617. [PMID: 34448268 PMCID: PMC9291857 DOI: 10.1111/tri.13980] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/11/2023]
Abstract
Livers from donors after circulatory death (DCD) are a promising option to increase the donor pool, but their use is associated with higher complication rate and inferior graft survival. Normothermic machine perfusion (NMP) keeps the graft at 37°C, providing nutrients and oxygen supply. Human liver stem cell‐derived extracellular vesicles (HLSC‐EVs) are able to reduce liver injury and promote regeneration. We investigated the efficacy of a reconditioning strategy with HLSC‐EVs in an experimental model of NMP. Following total hepatectomy, rat livers were divided into 4 groups: (i) healthy livers, (ii) warm ischemic livers (60 min of warm ischemia), (iii) warm ischemic livers treated with 5 × 108 HLSC‐EVs/g‐liver, and (iv) warm ischemic livers treated with a 25 × 108 HLSC‐EVs/g‐liver. NMP lasted 6 h and HLSC‐EVs (Unicyte AG, Germany) were administered within the first 15 min. Compared to controls, HLSC‐EV treatment significantly reduced transaminases release. Moreover, HLSC‐EVs enhanced liver metabolism by promoting phosphate utilization and pH self‐regulation. As compared to controls, the higher dose of HLSC‐EV was associated with significantly higher bile production and lower intrahepatic resistance. Histologically, this group showed reduced necrosis and enhanced proliferation. In conclusion, HLSC‐EV treatment during NMP was feasible and effective in reducing injury in a DCD model with prolonged warm ischemia.
Collapse
Affiliation(s)
- Nicola De Stefano
- General Surgery 2U, Liver Transplantation Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Victor Navarro-Tableros
- 2i3T - Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico dell'Università degli Studi di Torino, Scarl. - Molecular Biotechnology Center (MBC), Turin, Italy
| | - Dorotea Roggio
- General Surgery 2U, Liver Transplantation Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Alberto Calleri
- General Surgery 2U, Liver Transplantation Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Federica Rigo
- General Surgery 2U, Liver Transplantation Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Ezio David
- Pathology Unit, Molinette Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Alessandro Gambella
- Pathology Unit, Molinette Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Daniela Bassino
- S.C. Banca del Sangue e Immunoematologia, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Antonio Amoroso
- Regional Transplantation Center, Piedmont, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Damiano Patrono
- General Surgery 2U, Liver Transplantation Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Renato Romagnoli
- General Surgery 2U, Liver Transplantation Center, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| |
Collapse
|
31
|
van Beekum CJ, Vilz TO, Glowka TR, von Websky MW, Kalff JC, Manekeller S. Normothermic Machine Perfusion (NMP) of the Liver - Current Status and Future Perspectives. Ann Transplant 2021; 26:e931664. [PMID: 34426566 PMCID: PMC8400594 DOI: 10.12659/aot.931664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
A shortage of available organs for liver transplantation has led transplant surgeons and researchers to seek for innovative approaches in hepatoprotection and improvement of marginal allografts. The most exciting development in the past decade has been continuous mechanical perfusion of livers with blood or preservation solution to mitigate ischemia-reperfusion injury in contrast to the current standard of static cold storage. Two variations of machine perfusion have emerged in clinical practice. During hypothermic oxygenated perfusion the liver is perfused using a red blood cell-free perfusate at 2-10°C. In contrast, normothermic machine perfusion mimics physiologic liver perfusion using a red blood cell-based solution at 35.5-037.5°C, offering a multitude of potential advantages. Putative effects of normothermic perfusion include abrogation of hyperfibrinolysis after reperfusion and inflammation, glycogen repletion, and regeneration of adenosine triphosphate. Research in normothermic machine perfusion focuses on development of biomarkers predicting allograft quality and susceptibility to ischemia-reperfusion injury. Moreover, normothermic perfusion of marginal allografts allows for application of a variety of therapeutic interventions potentially enhancing organ quality. Both methods need to be subjected to translational investigation and evaluation in clinical trials. A clear advantage is transformation of an emergency procedure at night into a planned daytime surgery. Current clinical trials suggest that normothermic perfusion not only increases the use of hepatic allografts but is also associated with milder ischemia-reperfusion injury, resulting in a reduced risk of early allograft dysfunction and less biliary complications, including ischemic cholangiopathy, compared to static cold storage. The aim of this review is to give a concise overview of normothermic machine perfusion and its current applications, benefits, and possible advances in the future.
Collapse
|
32
|
Ex Vivo Mesenchymal Stem Cell Therapy to Regenerate Machine Perfused Organs. Int J Mol Sci 2021; 22:ijms22105233. [PMID: 34063399 PMCID: PMC8156338 DOI: 10.3390/ijms22105233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 01/06/2023] Open
Abstract
Transplantation represents the treatment of choice for many end-stage diseases but is limited by the shortage of healthy donor organs. Ex situ normothermic machine perfusion (NMP) has the potential to extend the donor pool by facilitating the use of marginal quality organs such as those from donors after cardiac death (DCD) and extended criteria donors (ECD). NMP provides a platform for organ quality assessment but also offers the opportunity to treat and eventually regenerate organs during the perfusion process prior to transplantation. Due to their anti-inflammatory, immunomodulatory and regenerative capacity, mesenchymal stem cells (MSCs) are considered as an interesting tool in this model system. Only a limited number of studies have reported on the use of MSCs during ex situ machine perfusion so far with a focus on feasibility and safety aspects. At this point, no clinical benefits have been conclusively demonstrated, and studies with controlled transplantation set-ups are urgently warranted to elucidate favorable effects of MSCs in order to improve organs during ex situ machine perfusion.
Collapse
|
33
|
Fukai M, Nakayabu T, Ohtani S, Shibata K, Shimada S, Sakamoto S, Fuda H, Furukawa T, Watanabe M, Hui SP, Chiba H, Shimamura T, Taketomi A. The Phenolic Antioxidant 3,5-dihydroxy-4-methoxybenzyl Alcohol (DHMBA) Prevents Enterocyte Cell Death under Oxygen-Dissolving Cold Conditions through Polyphyletic Antioxidant Actions. J Clin Med 2021; 10:jcm10091972. [PMID: 34064340 PMCID: PMC8124816 DOI: 10.3390/jcm10091972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/19/2022] Open
Abstract
Cold preservation in University of Wisconsin (UW) solution is not enough to maintain the viability of the small intestine, due to the oxidative stress. The novel phenolic antioxidant 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA) has dual properties to reduce oxidative stress, radical scavenging, and antioxidant protein induction, in other cells. This study was designed to determine whether DHMBA reduces cold preservation injury of enterocytes, and to identify the effector site. Enterocytes were subjected to 48-h cold preservation under atmosphere in UW solution (±DHMBA), and then returned to normal culture to replicate reperfusion of the small intestine after cold preservation. At the end of cold preservation (ECP) and at 1, 3, 6, and 72 h after rewarming (R1h, R3h, R6h, and R72h), we evaluated cell function and the injury mechanism. The results showed that DHMBA protected mitochondrial function mainly during cold preservation, and suppressed cell death after rewarming, as shown by the MTT, ATP, mitochondrial membrane potential, LDH, and lipid peroxidation assays, together with enhanced survival signals (PI3K, Akt, p70S6K) and induction of antioxidant proteins (HO-1, NQO-1, TRX-1). We found that DHMBA mitigates the cold-induced injury of enterocytes by protecting the mitochondria through direct and indirect antioxidative activities.
Collapse
Affiliation(s)
- Moto Fukai
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo 060-8638, Hokkaido, Japan; (T.N.); (S.O.); (K.S.); (S.S.); (S.S.); (A.T.)
- Correspondence: ; Tel.: +81-11-7065927; Fax: +81-11-7177515
| | - Takuya Nakayabu
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo 060-8638, Hokkaido, Japan; (T.N.); (S.O.); (K.S.); (S.S.); (S.S.); (A.T.)
| | - Shintaro Ohtani
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo 060-8638, Hokkaido, Japan; (T.N.); (S.O.); (K.S.); (S.S.); (S.S.); (A.T.)
| | - Kengo Shibata
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo 060-8638, Hokkaido, Japan; (T.N.); (S.O.); (K.S.); (S.S.); (S.S.); (A.T.)
| | - Shingo Shimada
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo 060-8638, Hokkaido, Japan; (T.N.); (S.O.); (K.S.); (S.S.); (S.S.); (A.T.)
| | - Soudai Sakamoto
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo 060-8638, Hokkaido, Japan; (T.N.); (S.O.); (K.S.); (S.S.); (S.S.); (A.T.)
| | - Hirotoshi Fuda
- Faculty of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Nishi5, Kita12, Kita-ku, Sapporo 060-0812, Hokkaido, Japan; (H.F.); (T.F.); (M.W.); (S.-P.H.); (H.C.)
| | - Takayuki Furukawa
- Faculty of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Nishi5, Kita12, Kita-ku, Sapporo 060-0812, Hokkaido, Japan; (H.F.); (T.F.); (M.W.); (S.-P.H.); (H.C.)
| | - Mitsugu Watanabe
- Faculty of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Nishi5, Kita12, Kita-ku, Sapporo 060-0812, Hokkaido, Japan; (H.F.); (T.F.); (M.W.); (S.-P.H.); (H.C.)
- Watanabe Oyster Laboratory Co. Ltd., 490-3, Shimoongata-cho, Hachioji 190-0154, Tokyo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Nishi5, Kita12, Kita-ku, Sapporo 060-0812, Hokkaido, Japan; (H.F.); (T.F.); (M.W.); (S.-P.H.); (H.C.)
| | - Hitoshi Chiba
- Faculty of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Nishi5, Kita12, Kita-ku, Sapporo 060-0812, Hokkaido, Japan; (H.F.); (T.F.); (M.W.); (S.-P.H.); (H.C.)
- Department of Nutrition, Sapporo University of Health Sciences, 1-15, 2 chome, Nakanumanishi4jou, Higashi-ku, Sapporo 007-0894, Hokkaido, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Central Clinical Facilities, Hokkaido University Hospital, Nishi5 Kita14, Kita-ku, Sapporo 060-8648, Hokkaido, Japan;
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo 060-8638, Hokkaido, Japan; (T.N.); (S.O.); (K.S.); (S.S.); (S.S.); (A.T.)
| |
Collapse
|
34
|
The Endothelial Glycocalyx and Organ Preservation-From Physiology to Possible Clinical Implications for Solid Organ Transplantation. Int J Mol Sci 2021; 22:ijms22084019. [PMID: 33924713 PMCID: PMC8070558 DOI: 10.3390/ijms22084019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/14/2023] Open
Abstract
The endothelial glycocalyx is a thin layer consisting of proteoglycans, glycoproteins and glycosaminoglycans that lines the luminal side of vascular endothelial cells. It acts as a barrier and contributes to the maintenance of vascular homeostasis and microperfusion. During solid organ transplantation, the endothelial glycocalyx of the graft is damaged as part of Ischemia Reperfusion Injury (IRI), which is associated with impaired organ function. Although several substances are known to mitigate glycocalyx damage, it has not been possible to use these substances during graft storage on ice. Normothermic machine perfusion (NMP) emerges as an alternative technology for organ preservation and allows for organ evaluation, but also offers the possibility to treat and thus improve organ quality during storage. This review highlights the current knowledge on glycocalyx injury during organ transplantation, presents ways to protect the endothelial glycocalyx and discusses potential glycocalyx protection strategies during normothermic machine perfusion.
Collapse
|
35
|
Goumard C, Turco C, Sakka M, Aoudjehane L, Lesnik P, Savier E, Conti F, Scatton O. Ex-Vivo Pharmacological Defatting of the Liver: A Review. J Clin Med 2021; 10:jcm10061253. [PMID: 33803539 PMCID: PMC8002874 DOI: 10.3390/jcm10061253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
The ongoing organ shortage has forced transplant teams to develop alternate sources of liver grafts. In this setting, ex-situ machine perfusion has rapidly developed as a promising tool to assess viability and improve the function of organs from extended criteria donors, including fatty liver grafts. In particular, normothermic machine perfusion represents a powerful tool to test a liver in full 37 °C metabolism and add pharmacological corrections whenever needed. In this context, many pharmacological agents and therapeutics have been tested to induce liver defatting on normothermic machine perfusion with promising results even on human organs. This systematic review makes a comprehensive synthesis on existing pharmacological therapies for liver defatting, with special focus on normothermic liver machine perfusion as an experimental ex-vivo translational model.
Collapse
Affiliation(s)
- Claire Goumard
- Department of Hepatobiliary Surgery and Liver Transplantation, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hopitaux de Paris, 75013 Paris, France; (C.T.); (E.S.); (O.S.)
- Sorbonne Université, Centre de Recherche Saint Antoine, INSERM UMRS-938, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France; (L.A.); (F.C.)
- Correspondence:
| | - Célia Turco
- Department of Hepatobiliary Surgery and Liver Transplantation, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hopitaux de Paris, 75013 Paris, France; (C.T.); (E.S.); (O.S.)
- Sorbonne Université, Centre de Recherche Saint Antoine, INSERM UMRS-938, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France; (L.A.); (F.C.)
| | - Mehdi Sakka
- Department of Metabolic Biochemistry, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique- Hopitaux de Paris, 75013 Paris, France;
| | - Lynda Aoudjehane
- Sorbonne Université, Centre de Recherche Saint Antoine, INSERM UMRS-938, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France; (L.A.); (F.C.)
| | - Philippe Lesnik
- Sorbonne Université, INSERM UMRS-1166, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France;
| | - Eric Savier
- Department of Hepatobiliary Surgery and Liver Transplantation, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hopitaux de Paris, 75013 Paris, France; (C.T.); (E.S.); (O.S.)
- Sorbonne Université, Centre de Recherche Saint Antoine, INSERM UMRS-938, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France; (L.A.); (F.C.)
| | - Filomena Conti
- Sorbonne Université, Centre de Recherche Saint Antoine, INSERM UMRS-938, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France; (L.A.); (F.C.)
| | - Olivier Scatton
- Department of Hepatobiliary Surgery and Liver Transplantation, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hopitaux de Paris, 75013 Paris, France; (C.T.); (E.S.); (O.S.)
- Sorbonne Université, Centre de Recherche Saint Antoine, INSERM UMRS-938, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France; (L.A.); (F.C.)
| |
Collapse
|
36
|
Hemorheological and Microcirculatory Factors in Liver Ischemia-Reperfusion Injury-An Update on Pathophysiology, Molecular Mechanisms and Protective Strategies. Int J Mol Sci 2021; 22:ijms22041864. [PMID: 33668478 PMCID: PMC7918617 DOI: 10.3390/ijms22041864] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a multifactorial phenomenon which has been associated with adverse clinical outcomes. IRI related tissue damage is characterized by various chronological events depending on the experimental model or clinical setting. Despite the fact that IRI research has been in the spotlight of scientific interest for over three decades with a significant and continuous increase in publication activity over the years and the large number of pharmacological and surgical therapeutic attempts introduced, not many of these strategies have made their way into everyday clinical practice. Furthermore, the pathomechanism of hepatic IRI has not been fully elucidated yet. In the complex process of the IRI, flow properties of blood are not neglectable. Hemorheological factors play an important role in determining tissue perfusion and orchestrating mechanical shear stress-dependent endothelial functions. Antioxidant and anti-inflammatory agents, ischemic conditioning protocols, dynamic organ preservation techniques may improve rheological properties of the post-reperfusion hepatic blood flow and target endothelial cells, exerting a potent protection against hepatic IRI. In this review paper we give a comprehensive overview of microcirculatory, rheological and molecular–pathophysiological aspects of hepatic circulation in the context of IRI and hepatoprotective approaches.
Collapse
|
37
|
Tissue Viability of Free Flaps after Extracorporeal Perfusion Using a Modified Hydroxyethyl Starch Solution. J Clin Med 2020; 9:jcm9123929. [PMID: 33287393 PMCID: PMC7761798 DOI: 10.3390/jcm9123929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In free flap surgery, tissue is stored under hypothermic ischemia. Extracorporeal perfusion (EP) has the potential to extend storage time and the tissue's perspective of survival. In the present study, the aim is to improve a recently established, simplified extracorporeal perfusion system. METHODS Porcine musculus rectus abdominis were stored under different conditions. One group was perfused continuously with a simplified one-way perfusion system for six hours, while the other received only a single flush but no further treatment. A modified hydroxyethyl starch solution was used as a perfusion and flushing solution. Vitality, functionality, and metabolic activity of both groups were analyzed. RESULTS Perfused muscles, in contrast to the ischemically stored ones, showed no loss of vitality and significantly less functionality loss, confirming the superiority of storage under continuous perfusion over ischemic storage. Furthermore, in comparison to a previous study, the results were improved even further by using a modified hydroxyethyl starch solution. CONCLUSION The use of EP has major benefits compared to the clinical standard static storage at room temperature. Continuous perfusion not only maintains the oxygen and nutrient supply but also removes toxic metabolites formed due to inadequate storage conditions.
Collapse
|
38
|
Mastoridis S, Martinez-Llordella M, Sanchez-Fueyo A. Extracellular vesicles as mediators of alloimmunity and their therapeutic potential in liver transplantation. World J Transplant 2020; 10:330-344. [PMID: 33312894 PMCID: PMC7708876 DOI: 10.5500/wjt.v10.i11.330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogenous group of nanosized, membrane-bound particles which are released by most cell types. They are known to play an essential role in cellular communication by way of their varied cargo which includes selectively enriched proteins, lipids, and nucleic acids. In the last two decades, wide-ranging evidence has established the involvement of EVs in the regulation of immunity, with EVs released by immune and non-immune cells shown to be capable of mediating immune stimulation or suppression and to drive inflammatory, autoimmune, and infectious disease pathology. More recently, studies have demonstrated the involvement of allograft-derived EVs in alloimmune responses following transplantation, with EVs shown to be capable of eliciting allograft rejection as well as promoting tolerance. These insights are necessitating the reassessment of standard paradigms of T cell alloimmunity. In this article, we explore the latest understanding of the impact of EVs on alloresponses following transplantation and we highlight the recent technological advances which have enabled the study of EVs in clinical transplantation. Furthermore, we discuss the rapid progress afoot in the development of EVs as novel therapeutic vehicles in clinical transplantation with particular focus on liver transplantation.
Collapse
Affiliation(s)
- Sotiris Mastoridis
- Department ofSurgery, Oxford University Hospitals, Oxford OX37LE, United Kingdom
| | - Marc Martinez-Llordella
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, London SE59NU, United Kingdom
| | - Alberto Sanchez-Fueyo
- Department of Liver Sciences, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, London SE59NU, United Kingdom
| |
Collapse
|
39
|
Hann A, Osei-Bordom DC, Neil DAH, Ronca V, Warner S, Perera MTPR. The Human Immune Response to Cadaveric and Living Donor Liver Allografts. Front Immunol 2020; 11:1227. [PMID: 32655558 PMCID: PMC7323572 DOI: 10.3389/fimmu.2020.01227] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
The liver is an important contributor to the human immune system and it plays a pivotal role in the creation of both immunoreactive and tolerogenic conditions. Liver transplantation provides the best chance of survival for both children and adults with liver failure or cancer. With current demand exceeding the number of transplantable livers from donors following brain death, improved knowledge, technical advances and the desire to prevent avoidable deaths has led to the transplantation of organs from living, ABO incompatible (ABOi), cardiac death donors and machine based organ preservation with acceptable results. The liver graft is the most well-tolerated, from an immunological perspective, of all solid organ transplants. Evidence suggests successful cessation of immunosuppression is possible in ~20–40% of liver transplant recipients without immune mediated graft injury, a state known as “operational tolerance.” An immunosuppression free future following liver transplantation is an ambitious but perhaps not unachievable goal. The initial immune response following transplantation is a sterile inflammatory process mediated by the innate system and the mechanisms relate to the preservation-reperfusion process. The severity of this injury is influenced by graft factors and can have significant consequences. There are minimal experimental studies that delineate the differences in the adaptive immune response to the various forms of liver allograft. Apart from ABOi transplants, antibody mediated hyperacute rejection is rare following liver transplant. T-cell mediated rejection is common following liver transplantation and its incidence does not differ between living or deceased donor grafts. Transplantation in the first year of life results in a higher rate of operational tolerance, possibly due to a bias toward Th2 cytokines (IL4, IL10) during this period. This review further describes the current understanding of the immunological response toward liver allografts and highlight the areas of this topic yet to be fully understood.
Collapse
Affiliation(s)
- Angus Hann
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Desley A H Neil
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Department of Cellular Pathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Vincenzo Ronca
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Suz Warner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,The Liver Unit, Birmingham Children's Hospital, Birmingham, United Kingdom
| | - M Thamara P R Perera
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom.,The Liver Unit, Birmingham Children's Hospital, Birmingham, United Kingdom
| |
Collapse
|
40
|
Hu X, Wang W, Zeng C, He W, Zhong Z, Liu Z, Wang Y, Ye Q. Appropriate timing for hypothermic machine perfusion to preserve livers donated after circulatory death. Mol Med Rep 2020; 22:2003-2011. [PMID: 32582977 PMCID: PMC7411412 DOI: 10.3892/mmr.2020.11257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Hypothermic machine perfusion (HMP) is a method that can be more effective in preserving donor organs compared with cold storage (CS). However, the optimal duration and the exact mechanisms of the protevtive effects of HMP remain unknow. The present study aimed to investigate the adequate perfusion time and mechanisms underlying HMP to protect livers donated after circulatory death (DCD). After circulatory death, adult male Sprague-Dawley rat livers were subjected to 30 min of warm ischemia (WI) and were subsequently preserved by HMP or CS. To determine the optimal perfusion time, liver tissues were analyzed at 0, 1, 3, 5, 12 and 24 h post-preservation to evaluate injury and assess the expression of relevant proteins. WI livers were preserved by HMP or CS for 3 h, and liver viability was evaluated by normothermic reperfusion (NR). During NR, oxygen consumption, bile production and the activities of hepatic enzymes in the perfusate were assessed. Following 2 h of NR, levels of inflammation and oxidative stress were determined in the livers and perfusate. HMP for 3 h resulted in the highest expression of myocyte enhancer factor 2C (MEF2C) and kruppel-like factor 2 (KLF2) and the lowest expression of NF-κB p65, tumor necrosis factor (TNF)-α and interleukin (IL)-1β among the different timepoints, which indicated that 3 h may be the optimal time for HMP induction of the KLF2-dependent signaling pathway. Compared with CS-preserved livers, HMP-preserved livers displayed significantly higher oxygen consumption, lower hepatic enzyme levels in the perfusate following NR. Following HMP preservation, the expression levels of MEF2C, KLF2, endothelial nitric oxide synthase and nitric oxide were increased, whereas the expression levels of NF-κB p65, IL-1β and TNF-α were decreased compared with CS preservation. The results indicated that 3 h may be the optimal time for HMP to protect DCD rat livers. Furthermore, HMP may significantly reduce liver inflammation and oxidative stress injury by mediating the KLF2/NF-κB/eNOS-dependent signaling pathway.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Wei Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Cheng Zeng
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Weiyang He
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|