1
|
He X, Wu M, Chen L, Liu M, Hu X, Meng Y, Yue H, Yang X, Zheng P, Dai Y. APMCG-1 attenuates ischemic stroke injury by reducing oxidative stress and apoptosis and promoting angiogenesis via activating PI3K/AKT pathway. Biomed Pharmacother 2024; 180:117506. [PMID: 39368213 DOI: 10.1016/j.biopha.2024.117506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
Ischemic stroke (IS) is a major cause of mortality and morbidity worldwide. Beyond thrombolysis, strategies targeting anti-oxidative apoptosis and angiogenesis are considered prospective therapeutic strategies. Nevertheless, existing natural and clinical remedies have limited efficacy in the management of IS. Moreover, despite their millennial legacy of IS remediation, natural remedies such as ginseng incur high production costs. The novel glycopeptide APMCG-1, extracted from mountain-cultivated ginseng dregs in our previous study, is a potent therapeutic candidate for IS. This study investigated APMCG-1's remedial mechanisms against IS injury using an H2O2-induced oxidative stress paradigm in human umbilical vein endothelial cells (HUVECs) emulating ischemic endothelial cells, in a ponatinib-induced zebrafish IS model, and in rat middle cerebral artery occlusion (MCAO) prototypes. Cellular assays confirmed the proficiency of APMCG-1 in preventing oxidative stress and cell death, fostering regeneration, and facilitating neovascularization within the H2O2-stressed HUVECs framework. Moreover, APMCG-1 augmented hemodynamic velocity, oxidative stress mitigation, apoptosis reduction, and motor enhancement in a zebrafish model of IS. In MCAO rats, APMCG-1 ameliorated neurological deficits and cerebral injury, as evidenced by increased neurological scores and diminished infarct dimensions. In cells and animal models, APMCG-1 activated the PI3K/AKT signaling pathway, modulating factors such as Nrf2, Bcl-2, Caspase 3, eNOS, and VEGFA, thereby ameliorating cellular oxidative distress and catalyzing angiogenesis. Collectively, these results demonstrate the potential protective effects of APMCG-1 in IS pharmacotherapy and its prospective utility as an herbal-derived IS treatment modality.
Collapse
Affiliation(s)
- Xingyue He
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mingdian Wu
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Likun Chen
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Meijun Liu
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130118, China
| | - Xuan Hu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ying Meng
- Rehabilitation Medicine Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hao Yue
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoshan Yang
- Guangzhou Baiyun Meiwan Testing Co., Ltd, Guangzhou 510403, China
| | - Peng Zheng
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130118, China.
| | - Yulin Dai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
2
|
Shi Z, Das S, Morabito S, Miyoshi E, Stocksdale J, Emerson N, Srinivasan SS, Shahin A, Rahimzadeh N, Cao Z, Silva J, Castaneda AA, Head E, Thompson L, Swarup V. Single-nucleus multi-omics identifies shared and distinct pathways in Pick's and Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611761. [PMID: 39282421 PMCID: PMC11398495 DOI: 10.1101/2024.09.06.611761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The study of neurodegenerative diseases, particularly tauopathies like Pick's disease (PiD) and Alzheimer's disease (AD), offers insights into the underlying regulatory mechanisms. By investigating epigenomic variations in these conditions, we identified critical regulatory changes driving disease progression, revealing potential therapeutic targets. Our comparative analyses uncovered disease-enriched non-coding regions and genome-wide transcription factor (TF) binding differences, linking them to target genes. Notably, we identified a distal human-gained enhancer (HGE) associated with E3 ubiquitin ligase (UBE3A), highlighting disease-specific regulatory alterations. Additionally, fine-mapping of AD risk genes uncovered loci enriched in microglial enhancers and accessible in other cell types. Shared and distinct TF binding patterns were observed in neurons and glial cells across PiD and AD. We validated our findings using CRISPR to excise a predicted enhancer region in UBE3A and developed an interactive database (http://swaruplab.bio.uci.edu/scROAD) to visualize predicted single-cell TF occupancy and regulatory networks.
Collapse
Affiliation(s)
- Zechuan Shi
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Sudeshna Das
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Samuel Morabito
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
| | - Emily Miyoshi
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Jennifer Stocksdale
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Nora Emerson
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Shushrruth Sai Srinivasan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Arshi Shahin
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Negin Rahimzadeh
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
| | - Zhenkun Cao
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Justine Silva
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Andres Alonso Castaneda
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Leslie Thompson
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Gupta PK, Barak S, Feuermann Y, Goobes G, Kaphzan H. 1H-NMR-based metabolomics reveals metabolic alterations in early development of a mouse model of Angelman syndrome. Mol Autism 2024; 15:31. [PMID: 39049050 PMCID: PMC11267930 DOI: 10.1186/s13229-024-00608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Angelman syndrome (AS) is a rare neurodevelopmental genetic disorder caused by the loss of function of the ubiquitin ligase E3A (UBE3A) gene, affecting approximately 1:15,000 live births. We have recently shown that mitochondrial function in AS is altered during mid to late embryonic brain development leading to increased oxidative stress and enhanced apoptosis of neural precursor cells. However, the overall alterations of metabolic processes are still unknown. Hence, as a follow-up, we aim to investigate the metabolic profiles of wild-type (WT) and AS littermates and to identify which metabolic processes are aberrant in the brain of AS model mice during embryonic development. METHODS We collected brain tissue samples from mice embryos at E16.5 and performed metabolomic analyses using proton nuclear magnetic resonance (1H-NMR) spectroscopy. Multivariate and Univariate analyses were performed to determine the significantly altered metabolites in AS mice. Pathways associated with the altered metabolites were identified using metabolite set enrichment analysis. RESULTS Our analysis showed that overall, the metabolomic fingerprint of AS embryonic brains differed from those of their WT littermates. Moreover, we revealed a significant elevation of distinct metabolites, such as acetate, lactate, and succinate in the AS samples compared to the WT samples. The elevated metabolites were significantly associated with the pyruvate metabolism and glycolytic pathways. LIMITATIONS Only 14 metabolites were successfully identified and investigated in the present study. The effect of unidentified metabolites and their unresolved peaks was not determined. Additionally, we conducted the metabolomic study on whole brain tissue samples. Employing high-resolution NMR studies on different brain regions could further expand our knowledge regarding metabolic alterations in the AS brain. Furthermore, increasing the sample size could reveal the involvement of more significantly altered metabolites in the pathophysiology of the AS brain. CONCLUSIONS Ube3a loss of function alters bioenergy-related metabolism in the AS brain during embryonic development. Furthermore, these neurochemical changes could be linked to the mitochondrial reactive oxygen species and oxidative stress that occurs during the AS embryonic development.
Collapse
Affiliation(s)
- Pooja Kri Gupta
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3103301, Israel
| | - Sharon Barak
- Department of Chemistry and The Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Yonatan Feuermann
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3103301, Israel
| | - Gil Goobes
- Department of Chemistry and The Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3103301, Israel.
| |
Collapse
|
4
|
Simchi L, Gupta PK, Feuermann Y, Kaphzan H. Elevated ROS levels during the early development of Angelman syndrome alter the apoptotic capacity of the developing neural precursor cells. Mol Psychiatry 2023; 28:2382-2397. [PMID: 36991133 PMCID: PMC10611580 DOI: 10.1038/s41380-023-02038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder caused by the maternally inherited loss of function of the UBE3A gene. AS is characterized by a developmental delay, lack of speech, motor dysfunction, epilepsy, autistic features, happy demeanor, and intellectual disability. While the cellular roles of UBE3A are not fully understood, studies suggest that the lack of UBE3A function is associated with elevated levels of reactive oxygen species (ROS). Despite the accumulating evidence emphasizing the importance of ROS during early brain development and its involvement in different neurodevelopmental disorders, up to date, the levels of ROS in AS neural precursor cells (NPCs) and the consequences on AS embryonic neural development have not been elucidated. In this study we show multifaceted mitochondrial aberration in AS brain-derived embryonic NPCs, which exhibit elevated mitochondrial membrane potential (ΔΨm), lower levels of endogenous reduced glutathione, excessive mitochondrial ROS (mROS) levels, and increased apoptosis compared to wild-type (WT) littermates. In addition, we report that glutathione replenishment by glutathione-reduced ethyl ester (GSH-EE) corrects the excessive mROS levels and attenuates the enhanced apoptosis in AS NPCs. Studying the glutathione redox imbalance and mitochondrial abnormalities in embryonic AS NPCs provides an essential insight into the involvement of UBE3A in early neural development, information that can serve as a powerful avenue towards a broader view of AS pathogenesis. Moreover, since mitochondrial dysfunction and elevated ROS levels were associated with other neurodevelopmental disorders, the findings herein suggest some potential shared underlying mechanisms for these disorders as well.
Collapse
Affiliation(s)
- Lilach Simchi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Pooja Kri Gupta
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Yonatan Feuermann
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
5
|
Sharma S, Kumar P. Decoding the Role of MDM2 as a Potential Ubiquitin E3 Ligase and Identifying the Therapeutic Efficiency of Alkaloids against MDM2 in Combating Glioblastoma. ACS OMEGA 2023; 8:5072-5087. [PMID: 36777618 PMCID: PMC9910072 DOI: 10.1021/acsomega.2c07904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/17/2023] [Indexed: 05/28/2023]
Abstract
Glioblastomas (GBMs) represent the most aggressive form of brain tumor arising from the malignant transformation of astrocytes. Despite various advancements, treatment options remain limited to chemotherapy and radiotherapy followed by surgery giving an overall survival of 14-15 months. These therapies are somewhere restricted in giving a better survival and cure. There is a need for new therapeutics that could potentially target GBM based on molecular pathways and pathology. Here, ubiquitin E3 ligases can be used as targets as they bind a wide array of substrates and therefore can be attractive targets for new inhibitors. Through this study, we have tried to sort various ubiquitin E3 ligases based on their expression, pathways to which these ligases are associated, and mutational frequencies, and then we tried to screen potent inhibitors against the most favorable E3 ligase as very few studies are available concerning inhibition of E3 ligase in GBM. Our study found MDM2 to be the most ideal E3 ligase and further we tried to target MDM2 against various compounds under the alkaloid class. Molecular Docking and MD simulations combined with ADMET properties and BBB scores revealed that only evodiamine and sanguinarine were effective in inhibiting MDM2. We also tried to give a proposed mechanism of how these inhibitors mediate the p53 signaling in GBM. Therefore, the new scaffolds predicted by the computational approach could help in designing promising therapeutic agents targeting MDM2 in glioblastoma.
Collapse
|
6
|
NFKB1 Gene Mutant Was Associated with Prognosis of Coronary Artery Disease and Exacerbated Endothelial Mitochondrial Fission and Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9494926. [PMID: 36317060 PMCID: PMC9617727 DOI: 10.1155/2022/9494926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/11/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022]
Abstract
Endothelial apoptosis is the core pathological change in atherosclerotic cardiovascular disease, including coronary artery disease (CAD). Determining the molecular mechanisms underlying endothelial apoptosis is important. Nuclear factor kappa B (NF-κB) is a crucial transcription factor for controlling apoptosis. Our previous study demonstrated that the -94 ATTG ins/del mutant in the promoter of NFKB1 gene (rs28362491) is a risk factor for CAD. In the present study, we found that NFKB1 rs28362491 polymorphism was positively associated with increased major adverse cardiac and cerebrovascular events (MACCEs) in CAD patients. After adjusting for confounding factors including age, smoking, hypertension, glucose, and low-density lipoprotein cholesterol, the mutant DD genotype was an independent predictor of MACCEs (OR = 2.578, 95%CI = 1.64–4.05, P = 0.003). The in vitro study showed that mutant human umbilical vein endothelial cells (DD-mutant HUVECs) were more susceptible to high-glucose/palmitate-induced apoptosis, which was accompanied by decreased p50 expression and increased expression of cleaved caspase-3, Cytochrome c, and phospho-p65 (P < 0.05). The mitochondrial membrane potential was significantly lower, while increasing levels of mtROS and more opening of the mPTP were observed in DD-mutant HUVECs (P < 0.05). Furthermore, the percentage of cells with fragmented or spherical mitochondria was significantly higher in DD-mutant HUVECs than in wild-type cells (genotype II HUVECs) (P < 0.05). In addition, after stimulation with high glucose/palmitate, the NFKB1 gene mutant significantly increased the expression of Drp1, which indicated that the NFKB1 gene mutant affected the expression of mitochondrial morphology-related proteins, leading to excessive mitochondrial fission. In conclusion, the mutant DD genotype of the NFKB1 gene was an independent predictor of worse long-term prognosis for CAD patients. DD-mutant HUVECs exhibited abnormal activation of the NF-κB pathway and increased Drp1 expression, which caused excessive mitochondrial fission and dysfunction, ultimately leading to increased apoptosis.
Collapse
|
7
|
Panov J, Kaphzan H. An Association Study of DNA Methylation and Gene Expression in Angelman Syndrome: A Bioinformatics Approach. Int J Mol Sci 2022; 23:ijms23169139. [PMID: 36012404 PMCID: PMC9409443 DOI: 10.3390/ijms23169139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 12/01/2022] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of function of the E3-ligase UBE3A. Despite multiple studies, AS pathophysiology is still obscure and has mostly been explored in rodent models of the disease. In recent years, a growing body of studies has utilized omics datasets in the attempt to focus research regarding the pathophysiology of AS. Here, for the first time, we utilized a multi-omics approach at the epigenomic level and the transcriptome level, for human-derived neurons. Using publicly available datasets for DNA methylation and gene expression, we found genome regions in proximity to gene promoters and intersecting with gene-body regions that were differentially methylated and differentially expressed in AS. We found that overall, the genome in AS postmortem brain tissue was hypo-methylated compared to healthy controls. We also found more upregulated genes than downregulated genes in AS. Many of these dysregulated genes in neurons obtained from AS patients are known to be critical for neuronal development and synaptic functioning. Taken together, our results suggest a list of dysregulated genes that may be involved in AS development and its pathological features. Moreover, these genes might also have a role in neurodevelopmental disorders similar to AS.
Collapse
|
8
|
Wang Y, Wang H, Hu L, Chen L. Leptin Gene Protects Against Cold Stress in Antarctic Toothfish. Front Physiol 2021; 12:740806. [PMID: 34975517 PMCID: PMC8715755 DOI: 10.3389/fphys.2021.740806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Leptin is a cytokine-like peptide, predominantly biosynthesized in adipose tissue, which plays an important role in regulating food intake, energy balance and reproduction in mammals. However, how it may have been modified to enable life in the chronic cold is unclear. Here, we identified a leptin-a gene (lepa) in the cold-adapted and neutrally buoyant Antarctic toothfish Dissostichus mawsoni that encodes a polypeptide carrying four α-helices and two cysteine residues forming in-chain disulfide bonds, structures shared by most vertebrate leptins. Quantitative RT-PCR confirmed that mRNA levels of the leptin-a gene of D. mawsoni (DM-lepa) were highest in muscle, followed by kidney and liver; detection levels were low in the gill, brain, intestine, and ovary tissues. Compared with leptin-a genes of fishes living in warmer waters, DM-lepa underwent rapid evolution and was subjected to positive selection. Over-expression of DM-lepa in the zebrafish cell line ZFL resulted in signal accumulation in the cytoplasm and significantly increased cell proliferation both at the normal culture temperature and under cold treatment. DM-lepa over-expression also reduced apoptosis under low-temperature stress and activated the STAT3 signaling pathway, in turn upregulating the anti-apoptotic proteins bcl2l1, bcl2a, myca and mdm2 while downregulating the pro-apoptotic baxa, p53 and caspase-3. These results demonstrate that DM-lepa, through STAT3 signaling, plays a protective role in cold stress by preventing apoptotic damage. Our study reveals a new role of lepa in polar fish.
Collapse
Affiliation(s)
- Ying Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Huamin Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Linghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
- *Correspondence: Liangbiao Chen,
| |
Collapse
|
9
|
An mtDNA mutant mouse demonstrates that mitochondrial deficiency can result in autism endophenotypes. Proc Natl Acad Sci U S A 2021; 118:2021429118. [PMID: 33536343 PMCID: PMC8017921 DOI: 10.1073/pnas.2021429118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASDs) have increasingly been associated with mitochondrial dysfunction, corroborated by mitochondrial DNA (mtDNA) germline and somatic variants being found in ASD patients. If mitochondrial defects can generate ASD, then specific mtDNA mutations should induce ASD endophenotypes in mice. We tested this prediction by introduction of an mtDNA ND6 gene missense mutation (ND6P25L) into the mouse germline and found ASD endophenotypes. The ND6P25L mice exhibit impaired social interaction, compulsive behavior, and increased anxiety. They have reduced electroencephalographic delta and theta wave power, increased predilection to seizures, but without diminution of hippocampal interneurons. These endophenotypes correlate with impaired cortical and hippocampal mitochondrial respiration and increased reactive oxygen species production. Thus, mitochondrial defects can be sufficient to produce ASD phenotypes. Autism spectrum disorders (ASDs) are characterized by a deficit in social communication, pathologic repetitive behaviors, restricted interests, and electroencephalogram (EEG) aberrations. While exhaustive analysis of nuclear DNA (nDNA) variation has revealed hundreds of copy number variants (CNVs) and loss-of-function (LOF) mutations, no unifying hypothesis as to the pathophysiology of ASD has yet emerged. Based on biochemical and physiological analyses, it has been hypothesized that ASD may be the result of a systemic mitochondrial deficiency with brain-specific manifestations. This proposal has been supported by recent mitochondrial DNA (mtDNA) analyses identifying both germline and somatic mtDNA variants in ASD. If mitochondrial defects do predispose to ASD, then mice with certain mtDNA mutations should present with autism endophenotypes. To test this prediction, we examined a mouse strain harboring an mtDNA ND6 gene missense mutation (P25L). This mouse manifests impaired social interactions, increased repetitive behaviors and anxiety, EEG alterations, and a decreased seizure threshold, in the absence of reduced hippocampal interneuron numbers. EEG aberrations were most pronounced in the cortex followed by the hippocampus. Aberrations in mitochondrial respiratory function and reactive oxygen species (ROS) levels were also most pronounced in the cortex followed by the hippocampus, but absent in the olfactory bulb. These data demonstrate that mild systemic mitochondrial defects can result in ASD without apparent neuroanatomical defects and that systemic mitochondrial mutations can cause tissue-specific brain defects accompanied by regional neurophysiological alterations.
Collapse
|
10
|
Bressan P, Kramer P. Mental Health, Mitochondria, and the Battle of the Sexes. Biomedicines 2021; 9:biomedicines9020116. [PMID: 33530498 PMCID: PMC7911591 DOI: 10.3390/biomedicines9020116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/12/2023] Open
Abstract
This paper presents a broad perspective on how mental disease relates to the different evolutionary strategies of men and women and to growth, metabolism, and mitochondria—the enslaved bacteria in our cells that enable it all. Several mental disorders strike one sex more than the other; yet what truly matters, regardless of one’s sex, is how much one’s brain is “female” and how much it is “male”. This appears to be the result of an arms race between the parents over how many resources their child ought to extract from the mother, hence whether it should grow a lot or stay small and undemanding. An uneven battle alters the child’s risk of developing not only insulin resistance, diabetes, or cancer, but a mental disease as well. Maternal supremacy increases the odds of a psychosis-spectrum disorder; paternal supremacy, those of an autism-spectrum one. And a particularly lopsided struggle may invite one or the other of a series of syndromes that come in pairs, with diametrically opposite, excessively “male” or “female” characteristics. By providing the means for this tug of war, mitochondria take center stage in steadying or upsetting the precarious balance on which our mental health is built.
Collapse
|
11
|
Panov J, Kaphzan H. Bioinformatics analyses show dysregulation of calcium-related genes in Angelman syndrome mouse model. Neurobiol Dis 2020; 148:105180. [PMID: 33212289 DOI: 10.1016/j.nbd.2020.105180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Angelman syndrome (AS) is a genetic neurodevelopmental disorder caused by the loss of function of the UBE3A protein in the brain. In a previous study, we showed that activity-dependent calcium dynamics in hippocampal CA1 pyramidal neurons of AS mice is compromised, and its normalization rescues the hippocampal-dependent deficits. Therefore, we expected that the expression profiles of calcium-related genes would be altered in AS mice hippocampi. METHODS We analyzed mRNA sequencing data from AS model mice and WT controls in light of the newly published CaGeDB database of calcium-related genes. We validated our results in two independent RNA sequencing datasets from two additional different AS models: first one, a human neuroblastoma cell line where UBE3A expression was knocked down by siRNA, and the second, an iPSC-derived neurons from AS patient and healthy donor control. FINDINGS We found signatures of dysregulated calcium-related genes in AS mouse model hippocampus. Additionally, we show that these calcium-related genes function as signatures for AS in other human cellular models of AS, thus strengthening our findings. INTERPRETATION Our findings suggest the downstream implications and significance of the compromised calcium signaling in Angelman syndrome. Moreover, since AS share similar features with other autism spectrum disorders, we believe that these findings entail meaningful data and approach for other neurodevelopmental disorders, especially those with known alterations of calcium signaling. FUNDING This work was supported by the Angelman Syndrome Foundation and by the Israel Science Foundation, Grant Number 248/20.
Collapse
Affiliation(s)
- Julia Panov
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
12
|
NPD1 rapidly targets mitochondria-mediated apoptosis after acute injection protecting brain against ischemic injury. Exp Neurol 2020; 335:113495. [PMID: 33038416 DOI: 10.1016/j.expneurol.2020.113495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
Mitochondria-related cell death pathways play a major role in ischemic brain injury. Thus, mitochondrial "protective" molecules could be considered for new therapeutic regimens. We recently reported that acute administration of docosahexaenoic acid (DHA) triglyceride lipid emulsion, immediately after hypoxic-ischemic (HI) insult, markedly attenuated brain infarct size. This was associated with an early change of DHA-derived specialized pro-resolving mediator (SPM) profiles. Specifically, DHA treatment induced a 50% increase of neuroprotectin D1 (NPD1) levels in ischemic brain. Based on these findings, we questioned if direct administration of NPD1 after HI injury also affords neuroprotection, and if so, by what mechanisms. Using HI insult to mimic ischemic stroke in neonatal mice, we observed that acute intraperitoneal injection of NPD1 immediately after HI injury prevented the expansion of the ischemic core by ~40% and improved coordination and motor abilities compared to the control group. At 7 days after HI injury, NPD1 treatment decreased ipsilateral hemisphere atrophy and preserved motor functions in wire-holding and bridge-crossing tests compared to control littermates. Brain mitochondria, isolated at 4 h after reperfusion from mice treated with NPD1, showed an increase in the capacity to buffer calcium after HI injury, as result of the preservation of mitochondrial membranes. Further, NPD1 induced a reduction of mitochondrial BAX translocation and oligomerization, attenuated cytochrome C release and decreased AIF nuclear translocation. To confirm whether NPD1 acts as BAX inhibitor, we evaluated NPD1 action co-administrated with a pro-apoptotic agent, staurosporine, using mouse embryonic fibroblasts as in vitro model of apoptosis. NPD1 exposure markedly decreased mitochondria-mediated apoptosis, blocking BAX translocation from cytosol to mitochondria and subsequently reducing caspase-3 activation. Our findings provide novel evidence that the neuroprotective action of NPD1 is elicited rapidly in the first few hours after ischemic injury and is associated with both preserved mitochondrial membrane structure and reduced BAX mitochondrial translocation and activation.
Collapse
|
13
|
Panov J, Simchi L, Feuermann Y, Kaphzan H. Bioinformatics Analyses of the Transcriptome Reveal Ube3a-Dependent Effects on Mitochondrial-Related Pathways. Int J Mol Sci 2020; 21:ijms21114156. [PMID: 32532103 PMCID: PMC7312912 DOI: 10.3390/ijms21114156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
The UBE3A gene encodes the ubiquitin E3-ligase protein, UBE3A, which is implicated in severe neurodevelopmental disorders. Lack of UBE3A expression results in Angelman syndrome, while UBE3A overexpression, due to genomic 15q duplication, results in autism. The cellular roles of UBE3A are not fully understood, yet a growing body of evidence indicates that these disorders involve mitochondrial dysfunction and increased oxidative stress. We utilized bioinformatics approaches to delineate the effects of murine Ube3a deletion on the expression of mitochondrial-related genes and pathways. For this, we generated an mRNA sequencing dataset from mouse embryonic fibroblasts (MEFs) in which both alleles of Ube3a gene were deleted and their wild-type controls. Since oxidative stress and mitochondrial dysregulation might not be exhibited in the resting baseline state, we also activated mitochondrial functioning in the cells of these two genotypes using TNFα application. Transcriptomes of the four groups of MEFs, Ube3a+/+ and Ube3a-/-, with or without the application of TNFα, were analyzed using various bioinformatics tools and machine learning approaches. Our results indicate that Ube3a deletion affects the gene expression profiles of mitochondrial-associated pathways. We further confirmed these results by analyzing other publicly available human transcriptome datasets of Angelman syndrome and 15q duplication syndrome.
Collapse
|