1
|
High Endogenously Synthesized N-3 Polyunsaturated Fatty Acids in Fat-1 Mice Attenuate High-Fat Diet-Induced Insulin Resistance by Inhibiting NLRP3 Inflammasome Activation via Akt/GSK-3β/TXNIP Pathway. Molecules 2022; 27:molecules27196384. [PMID: 36234919 PMCID: PMC9570616 DOI: 10.3390/molecules27196384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 01/15/2023] Open
Abstract
High-fat (HF) diets and low-grade chronic inflammation contribute to the development of insulin resistance and type 2 diabetes (T2D), whereas n-3 polyunsaturated fatty acids (PUFAs), due to their anti-inflammatory effects, protect against insulin resistance. Interleukin (IL)-1β is implicated in insulin resistance, yet how n-3 PUFAs modulate IL-1β secretion and attenuate HF diet-induced insulin resistance remains elusive. In this study, a HF diet activated NLRP3 inflammasome via inducing reactive oxygen species (ROS) generation and promoted IL-1β production primarily from adipose tissue preadipocytes, but not from adipocytes and induced insulin resistance in wild type (WT) mice. Interestingly, endogenous synthesized n-3 polyunsaturated fatty acids (PUFAs) reversed this process in HF diet-fed fat-1 transgenic mice although the HF diet induced higher weight gain in fat-1 mice, compared with the control diet. Mechanistically, palmitic acid (PA), the main saturated fatty acid in an HF diet inactivated AMPK and led to decreased GSK-3β phosphorylation, at least partially through reducing Akt activity, which ultimately blocked the Nrf2/Trx1 antioxidant pathway and induced TXNIP cytoplasm translocation and NLRP3 inflammasome activation, whereas docosahexaenoic acid (DHA), the most abundant n-3 PUFA in fat-1 adipose tissue, reversed this process via inducing Akt activation. Our GSK-3β shRNA knockdown study further revealed that GSK-3β played a pivot role between the upstream AMPK/Akt pathway and downstream Nrf2/Trx1/TXNIP pathway. Given that NLRP3 inflammasome is implicated in the development of most inflammatory diseases, our results suggest the potential of n-3 PUFAs in the prevention or adjuvant treatment of NLRP3 inflammasome-driven diseases.
Collapse
|
2
|
Evaluation of Circulating MicroRNAs and Adipokines in Breast Cancer Survivors with Arm Lymphedema. Int J Mol Sci 2022; 23:ijms231911359. [PMID: 36232660 PMCID: PMC9570352 DOI: 10.3390/ijms231911359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer-related lymphedema (BCRL) is a form of secondary lymphedema that is characterized by abnormal swelling of one or both arms due to the accumulation of lymph fluid in the interstitial tissue spaces, resulting from obstruction of the lymphatic vessels due to surgery insults, radiotherapy, or chemotherapy. Due to the multifactorial nature of this condition, the pathogenesis of secondary lymphedema remains unclear and the search for molecular factors associated with the condition is ongoing. This study aimed to identify serum microRNAs and adipokines associated with BCRL. Blood was collected from 113 breast cancer survivors and processed to obtain serum for small RNA-sequencing (BCRL vs. non-BCRL, n = 7 per group). MicroRNAs that were differentially expressed (fold change >1.5, p < 0.05) between lymphedema cases and those without lymphedema were further quantified in a validation cohort through quantitative reverse transcription PCR (BCRL n = 16, non-BCRL, n = 83). Leptin and adiponectin levels were measured in a combined cohort (BCRL n = 23, non-BCRL n = 90) using enzyme-linked immunosorbent assays. Two of the most significantly upregulated microRNAs, miR-199a-3p and miR-151a-3p, were strongly correlated with the onset of lymphedema and diabetes mellitus in the BCRL group. Leptin levels were higher in the BCRL cohort compared to the non-BCRL cohort (p < 0.05). A metabolic syndrome biomarker, the adiponectin/leptin ratio, was found to be lower in the BCRL group than in the non-BCRL group (median: 0.28 vs. 0.41, p < 0.05). Extensive studies on the mechanisms of the identified microRNAs and association of leptin with arm lymphedema may provide new insights on the potential biomarkers for lymphedema that should be followed up in a prospective cohort study.
Collapse
|
3
|
Léniz A, González M, Besné I, Carr-Ugarte H, Gómez-García I, Portillo MP. Role of chemerin in the control of glucose homeostasis. Mol Cell Endocrinol 2022; 541:111504. [PMID: 34763009 DOI: 10.1016/j.mce.2021.111504] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022]
Abstract
Chemerin is an adipokine produced by the white adipose tissue and other tissues, which plays various roles in the pathogenesis of inflammatory and metabolic diseases in multiple organs. The present review aims at gathering scientific evidence reported in the last ten years, concerning the relationship of chemerin with alterations of glycaemic control, such as insulin resistance, type 2 diabetes and gestational diabetes in humans. Although the vast majority of the studies have shown a positive correlation between the chemerin level and a bad glycaemic control, a general consensus has not been reached. The reported results come from case-control and observational longitudinal studies, thereby limiting their interpretation. In fact, it cannot be stated whether insulin resistance and diabetes lead to an increase in chemerin levels or, on the contrary, if high levels of chemerin contribute to an impaired glycaemic control. Elevated levels of circulating chemerin are also associated with gestational diabetes mellitus. Chemerin gene polymorphisms could be proposed as mediators of glucose-related diseases. Nevertheless, to date very little is known about their implication in glucose metabolism. With regard to the mechanisms of action, chemerin impairs insulin cascade signaling by acting on several proteins of this cascade and by inducing inflammation.
Collapse
Affiliation(s)
- A Léniz
- Vitoria-Gasteiz Nursing School, Osakidetza-Basque Health Service, Vitoria-Gasteiz, Spain; Nutrition and Obesity Group. Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain; BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain; CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Spain
| | - M González
- Nutrition and Food Science Department, Faculty of Biochemistry and Biological Sciences, National University of Litoral and National Scientific and Technical Research Council (CONICET), 3000 Santa Fe, Argentina
| | - I Besné
- Nutrition and Obesity Group. Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain
| | - H Carr-Ugarte
- Nutrition and Obesity Group. Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain
| | - I Gómez-García
- Nutrition and Obesity Group. Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain
| | - M P Portillo
- Nutrition and Obesity Group. Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, Spain; BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain; CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Spain.
| |
Collapse
|
4
|
Chen H, Li J, Zhang Y, Zhang W, Li X, Tang H, Liu Y, Li T, He H, Du B, Li L, Shi M. Bisphenol F suppresses insulin-stimulated glucose metabolism in adipocytes by inhibiting IRS-1/PI3K/AKT pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113201. [PMID: 35051757 DOI: 10.1016/j.ecoenv.2022.113201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Obesity is one of the risk factors of metabolic diseases. Decreased sensitivity to insulin or impairment of the insulin signaling pathway may affect the metabolism of adipose tissue. Bisphenol F (BPF) has been widely used in various products as a substitute for bisphenol A (BPA). BPA has been defined as "obesogen". However, knowledge about the correlation between BPF and obesity is very limited. This study was aimed to explore the effects of BPF on glucose metabolism and insulin sensitivity in mammalian tissues, using a mouse 3T3-L1 adipocyte line as the model. Differentiated 3T3-L1 adipocytes were treated with BPF at various concentrations for 24 h or 48 h, followed by the measurement of cell viability, lipid accumulation, expression levels of adipocytokines, glucose consumption, and impairment of the insulin signaling pathway. The results indicated that BPF had no effect on the size of 3T3-L1 adipocytes, but the expression of leptin, adiponectin and apelin was decreased, while that of chemerin and resistin was increased after 48 h of BPF treatment. Moreover, BPF inhibited the glucose consumption, the expression of GLUT4, and its translocation to the plasma membranes in 3T3-L1 adipocytes. Western blot analysis indicated that the activation of IRS-1/PI3K/AKT signaling pathway was inhibited by BPF, which resulted in reduced GLUT4 translocation. In conclusion, our data suggest that exposure of adipocytes to BPF may alter the expression of calorie metabolism-related adipokines and suppress insulin-stimulated glucose metabolism by impairing the insulin signaling (IRS-1/PI3K/AKT) pathway.
Collapse
Affiliation(s)
- Huiling Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Jiangbin Li
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Yanchao Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Wei Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Xing Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Tianlan Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Haoqi He
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Bohai Du
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China.
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong Province, China; Dongguan Liaobu Hospital, Dongguan 523808, Guangdong Province, China.
| |
Collapse
|
5
|
Sitar-Tǎut AV, Cozma A, Fodor A, Coste SC, Orasan OH, Negrean V, Pop D, Sitar-Tǎut DA. New Insights on the Relationship between Leptin, Ghrelin, and Leptin/Ghrelin Ratio Enforced by Body Mass Index in Obesity and Diabetes. Biomedicines 2021; 9:biomedicines9111657. [PMID: 34829886 PMCID: PMC8615809 DOI: 10.3390/biomedicines9111657] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/18/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Currently, adipose tissue is considered an endocrine organ, however, there are still many questions regarding the roles of adipokines—leptin and ghrelin being two adipokines. The purpose of the study was to assess the relationship between the adipokines and their ratio with obesity and diabetes. Methods: Sixty patients (mean age 61.88 ± 10.08) were evaluated. Cardiovascular risk factors, leptin, ghrelin, and insulin resistance score values were assessed. The patients were classified according to their body mass index (BMI) as normal weight, overweight, and obese. Results: 20% normal weight, 51.7% overweight, 28.3% obese, and 23.3% diabetic. Obese patients had higher leptin values (in obese 34,360 pg/mL vs. overweight 18,000 pg/mL vs. normal weight 14,350 pg/mL, p = 0.0049) and leptin/ghrelin ratio (1055 ± 641 vs. 771.36 ± 921 vs. 370.7 ± 257, p = 0.0228). Stratifying the analyses according to the presence of obesity and patients’ gender, differences were found for leptin (p = 0.0020 in women, p = 0.0055 in men) and leptin/ghrelin ratio (p = 0.048 in women, p = 0.004 in men). Mean leptin/BMI and leptin/ghrelin/BMI ratios were significantly higher, and the ghrelin/BMI ratio was significantly lower in obese and diabetic patients. In conclusion, obesity and diabetes are associated with changes not only in the total amount but also in the level of adipokines/kg/m2. Changes appear even in overweight subjects, offering a basis for early intervention in diabetic and obese patients.
Collapse
Affiliation(s)
- Adela-Viviana Sitar-Tǎut
- Internal Medicine Department, 4th Medical Clinic, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.C.); (S.-C.C.); (O.H.O.); (V.N.)
- Correspondence:
| | - Angela Cozma
- Internal Medicine Department, 4th Medical Clinic, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.C.); (S.-C.C.); (O.H.O.); (V.N.)
| | - Adriana Fodor
- Clinical Center of Diabetes, Nutrition, Metabolic Diseases, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Sorina-Cezara Coste
- Internal Medicine Department, 4th Medical Clinic, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.C.); (S.-C.C.); (O.H.O.); (V.N.)
| | - Olga Hilda Orasan
- Internal Medicine Department, 4th Medical Clinic, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.C.); (S.-C.C.); (O.H.O.); (V.N.)
| | - Vasile Negrean
- Internal Medicine Department, 4th Medical Clinic, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.C.); (S.-C.C.); (O.H.O.); (V.N.)
| | - Dana Pop
- Department of Cardiology, Clinical Rehabilitation Hospital, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Dan-Andrei Sitar-Tǎut
- Business Information Systems Department, Faculty of Economics and Business Administration 58-60 Theodor Mihaly Street, “Babeş-Bolyai” University, 400591 Cluj-Napoca, Romania;
| |
Collapse
|