1
|
Dagher OK, Posey AD. Forks in the road for CAR T and CAR NK cell cancer therapies. Nat Immunol 2023; 24:1994-2007. [PMID: 38012406 DOI: 10.1038/s41590-023-01659-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/20/2023] [Indexed: 11/29/2023]
Abstract
The advent of chimeric antigen receptor (CAR) T cell therapy has resulted in unprecedented long-term clearance of relapse/refractory hematological malignancies in both pediatric and adult patients. However, severe toxicities, such as cytokine release syndrome and neurotoxicity, associated with CAR T cells affect therapeutic utility; and treatment efficacies for solid tumors are still not impressive. As a result, engineering strategies that modify other immune cell types, especially natural killer (NK) cells have arisen. Owing to both CAR-dependent and CAR-independent (innate immune-mediated) antitumor killing capacity, major histocompatibility complex-independent cytotoxicity, reduced risk of alloreactivity and lack of major CAR T cell toxicities, CAR NK cells constitute one of the promising next-generation CAR immune cells that are also amenable as 'off-the-shelf' therapeutics. In this Review, we compare CAR T and CAR NK cell therapies, with particular focus on immunological synapses, engineering strategies and challenges.
Collapse
Affiliation(s)
- Oula K Dagher
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| | - Avery D Posey
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Sioud M, Olberg A. Antibody Surface Profiling Identifies Glycoforms in Multiple Myeloma as Targets for Immunotherapy: From Antibody Derivatives to Mimetic Peptides for Killing Tumor Cells. Cancers (Basel) 2023; 15:cancers15071934. [PMID: 37046595 PMCID: PMC10093763 DOI: 10.3390/cancers15071934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
Despite therapeutic advances in recent years, there are still unmet medical needs for patients with multiple myeloma (MM). Hence, new therapeutic strategies are needed. Using phage display for screening a large repertoire of single chain variable fragments (scFvs), we isolated several candidates that recognize a heavily sulfated MM-specific glycoform of the surface antigen syndecan-1 (CD138). One of the engineered scFv-Fc antibodies, named MM1, activated NK cells and induced antibody-dependent cellular cytotoxicity against MM cells. Analysis of the binding specificity by competitive binding assays with various glycan ligands identified N-sulfation of glucosamine units as essential for binding. Additionally, site-directed mutagenesis revealed that the amino acids arginine and histidine in the complementarily determining regions (CDRs) 2 and 3 of the heavy chain are important for binding. Based on this observation, a heavy-chain antibody, known as a nanobody, and a peptide mimicking the CDR loop sequences were designed. Both variants exhibited high affinity and specificity to MM cells as compared to blood lymphocytes. Specific killing of MM cells was achieved by conjugating the CDR2/3 mimic peptide to a pro-apoptotic peptide (KLAKLAK)2. In a co-culture model, the fusion peptide killed MM cells, while leaving normal peripheral blood mononuclear cells unaffected. Collectively, the development of antibodies and peptides that detect tumor-specific glycoforms of therapeutic targets holds promise for improving targeted therapies and tumor imaging.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Cancer Immunology, Division of Cancer Medicine, Oslo University Hospital-Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway
| | - Anniken Olberg
- Department of Cancer Immunology, Division of Cancer Medicine, Oslo University Hospital-Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway
| |
Collapse
|
3
|
Berrien-Elliott MM, Jacobs MT, Fehniger TA. Allogeneic natural killer cell therapy. Blood 2023; 141:856-868. [PMID: 36416736 PMCID: PMC10023727 DOI: 10.1182/blood.2022016200] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Interest in adoptive cell therapy for treating cancer is exploding owing to early clinical successes of autologous chimeric antigen receptor (CAR) T lymphocyte therapy. However, limitations using T cells and autologous cell products are apparent as they (1) take weeks to generate, (2) utilize a 1:1 donor-to-patient model, (3) are expensive, and (4) are prone to heterogeneity and manufacturing failures. CAR T cells are also associated with significant toxicities, including cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and prolonged cytopenias. To overcome these issues, natural killer (NK) cells are being explored as an alternative cell source for allogeneic cell therapies. NK cells have an inherent ability to recognize cancers, mediate immune functions of killing and communication, and do not induce graft-versus-host disease, cytokine release syndrome, or immune effector cell-associated neurotoxicity syndrome. NK cells can be obtained from blood or cord blood or be derived from hematopoietic stem and progenitor cells or induced pluripotent stem cells, and can be expanded and cryopreserved for off-the-shelf availability. The first wave of point-of-care NK cell therapies led to the current allogeneic NK cell products being investigated in clinical trials with promising preliminary results. Basic advances in NK cell biology and cellular engineering have led to new translational strategies to block inhibition, enhance and broaden target cell recognition, optimize functional persistence, and provide stealth from patients' immunity. This review details NK cell biology, as well as NK cell product manufacturing, engineering, and combination therapies explored in the clinic leading to the next generation of potent, off-the-shelf cellular therapies for blood cancers.
Collapse
Affiliation(s)
| | - Miriam T. Jacobs
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Todd A. Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
4
|
Fregnani A, Saggin L, Gianesin K, Quotti Tubi L, Carraro M, Barilà G, Scapinello G, Bonetto G, Pesavento M, Berno T, Branca A, Gurrieri C, Zambello R, Semenzato G, Trentin L, Manni S, Piazza F. CK1α/RUNX2 Axis in the Bone Marrow Microenvironment: A Novel Therapeutic Target in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14174173. [PMID: 36077711 PMCID: PMC9454895 DOI: 10.3390/cancers14174173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is an incurable disease for which novel therapeutic approaches targeting the malignant cells and the associated bone disease are urgently needed. CK1α is a protein kinase that plays a crucial role in the signaling network that sustains plasma cell (PC) survival and bone disease. This protein regulates Wnt/β-catenin signaling, which is fundamental for both MM cell survival and mesenchymal stromal cell (MSC) osteogenic differentiation. In this study, we investigated its involvement in MM–MSC cross-talk. We found that, by lowering CK1α expression levels in co-cultures of MM and MSC cells, expression of RUNX2—the master regulator of osteogenic differentiation—was regulated differently in the two cell types. Our data suggest the possibility of using a specific CK1α inhibitor as part of a novel therapeutic approach to selectively kill malignant PCs and overcome the blocking of osteogenic differentiation induced by MM cells in MSCs. Abstract Multiple myeloma (MM) is a malignant plasma cell (PC) neoplasm, which also displays pathological bone involvement. Clonal expansion of MM cells in the bone marrow causes a perturbation of bone homeostasis that culminates in MM-associated bone disease (MMABD). We previously demonstrated that the S/T kinase CK1α sustains MM cell survival through the activation of AKT and β-catenin signaling. CK1α is a negative regulator of the Wnt/β-catenin cascade, the activation of which promotes osteogenesis by directly stimulating the expression of RUNX2, the master gene regulator of osteoblastogenesis. In this study, we investigated the role of CK1α in the osteoblastogenic potential of mesenchymal stromal cells (MSCs) and its involvement in MM–MSC cross-talk. We found that CK1α silencing in in vitro co-cultures of MMs and MSCs modulated RUNX2 expression differently in PCs and in MSCs, mainly through the regulation of Wnt/β-catenin signaling. Our findings suggest that the CK1α/RUNX2 axis could be a potential therapeutic target for constraining malignant PC expansion and supporting the osteoblastic transcriptional program of MSCs, with potential for ameliorating MMABD. Moreover, considering that Lenalidomide treatment leads to MM cell death through Ikaros, Aiolos and CK1α proteasomal degradation, we examined its effects on the osteoblastogenic potential of MSC compartments.
Collapse
Affiliation(s)
- Anna Fregnani
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Lara Saggin
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Ketty Gianesin
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Laura Quotti Tubi
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Marco Carraro
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Gregorio Barilà
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Greta Scapinello
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Giorgia Bonetto
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Maria Pesavento
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Tamara Berno
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Antonio Branca
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Carmela Gurrieri
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Renato Zambello
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Gianpietro Semenzato
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Sabrina Manni
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
- Correspondence: (S.M.); (F.P.); Tel.: +39-049-7923263 (S.M. & F.P.); Fax: +39-049-7923250 (S.M. & F.P.)
| | - Francesco Piazza
- Hematology and Clinical Immunology Branch, Department of Medicine, University of Padova, 35128 Padova, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
- Correspondence: (S.M.); (F.P.); Tel.: +39-049-7923263 (S.M. & F.P.); Fax: +39-049-7923250 (S.M. & F.P.)
| |
Collapse
|
5
|
Soekojo CY, Chng WJ. Treatment Horizon in Multiple Myeloma. Eur J Haematol Suppl 2022; 109:425-440. [PMID: 35880395 DOI: 10.1111/ejh.13840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES This paper reviews current and emerging therapies for MM. METHODS Narrative review RESULTS: Multiple myeloma (MM) is a complex, heterogenous condition, and in recent years there has been an expansion in the number and range of treatments. Several new treatment approaches, including enhanced monoclonal antibodies, antibody-drug conjugates (ADC), bispecific T-cell engagers (BiTE) and chimeric antigen-T-cell therapy (CAR-T) are under development. CONCLUSIONS The emergence of new treatments that aim to tackle MM-associated immune dysfunction has led to improvements in overall survival.
Collapse
Affiliation(s)
- Cinnie Yentia Soekojo
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System
| | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System
| |
Collapse
|
6
|
Effect of HLA-G5 Immune Checkpoint Molecule on the Expression of ILT-2, CD27, and CD38 in Splenic B cells. J Immunol Res 2022; 2022:4829227. [PMID: 35600048 PMCID: PMC9119744 DOI: 10.1155/2022/4829227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/23/2022] [Indexed: 11/18/2022] Open
Abstract
The human leukocyte antigen G (HLA-G) is an immune checkpoint molecule with a complex network of interactions with several inhibitory receptors. Although the effect of HLA-G on T cells and NK cells is well studied, the effect of HLA-G on B cells is still largely elusive. B cells are of particular interest in the context of the HLA-G-ILT-2 interaction because the ILT-2 receptor is constitutively expressed on most B cells, whereas it is only present on some subsets of T and NK cells. To characterize the effect of HLA-G5 molecules on B cells, we studied splenic B cells derived from cytomegalovirus (CMV) sero-positive donors after CMV stimulation with antigens in the presence and absence of soluble HLA-G5. In the presence of HLA-G5, increased expression of the ITIM-bearing Ig-like transcript (ILT-2) was observed on B cells, but its expression was not affected by stimulation with CMV antigens. Moreover, it became evident that HLA-G5 exposure resulted in a decreased expression of CD27 and CD38 and, accordingly, in lower proportions of CD19+CD27+CD38+ and higher proportions of CD19+CD27-CD38- B cells. Taken together, our in vitro findings demonstrate that soluble HLA-G5 suppresses markers of B cell activation, suggesting that HLA-G5 has an impact on splenic B cell differentiation and activation. Based on these results, further investigation regarding the role of HLA-G as a prognostic factor and a potential therapeutic agent with respect to B cell function appears reasonable.
Collapse
|
7
|
Trezise S, Nutt SL. The gene regulatory network controlling plasma cell function. Immunol Rev 2021; 303:23-34. [PMID: 34109653 DOI: 10.1111/imr.12988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022]
Abstract
Antibodies are an essential element of the immune response to infection, and in long-term protection upon re-exposure to the same micro-organism. Antibodies are produced by plasmablasts and plasma cells, the terminally differentiated cells of the B lymphocyte lineage. These relatively rare populations, collectively termed antibody secreting cells (ASCs), have developed highly specialized transcriptional and metabolic pathways to facilitate their extraordinarily high rates of antibody synthesis and secretion. In this review, we discuss the gene regulatory network that controls ASC identity and function, with a particular focus on the processes that influence the transcription, translation, folding, modification and secretion of antibodies. We will address how ASCs have adapted their transcriptional, metabolic and protein homeostasis pathways to sustain such high rates of antibody production, and the roles that the major ASC regulators, the transcription factors, Irf4, Blimp-1 and Xbp1, play in co-ordinating these processes.
Collapse
Affiliation(s)
- Stephanie Trezise
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|