1
|
Wang Y, Kazuki K, Hichiwa G, Hiratsuka M, Ogihara R, Abe S, Tu H, Li Y, Gao X, Oshimura M, Tomizuka K, Kazuki Y. Human artificial chromosome carrying R-spondin1 and IL-22 expression cassettes in rejuvenated MSCs enhances therapeutic efficacy in ulcerative colitis model mice. Biomed Pharmacother 2025; 182:117751. [PMID: 39693903 DOI: 10.1016/j.biopha.2024.117751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Ulcerative colitis (UC) is an incurable intestinal disease, with current treatments mainly focused on inflammation control and, in severe cases, surgical resection. Recent studies have highlighted the need for new therapies that promote tissue regeneration. R-spondin-1 (RSPO1) and interleukin-22 (IL-22) have shown anti-inflammatory and regenerative effects in UC models, but have short half-lives and poor targeting abilities. Another therapeutic tool, mesenchymal stem cells (MSCs), offer promising migratory and homing capabilities; however, the preparation of homogeneous therapeutic MSCs at sufficient levels in vitro is challenging. Therefore, we developed a novel line of MSCs (HAC-MSC) with significant therapeutic effects in dextran sodium sulfate (DSS)-induced colitis mice. Construction of HAC-MSC involved a two-part strategy: 1) establishment of a non-integrating human artificial chromosome (HAC) vector carrying therapeutic genes encoding IL22 and RSPO1; and 2) transfer of the HAC to previously characterized rejuvenated MSCs (rej-MSCs) prepared using Sendai virus technology for prolonged proliferation capacity in vitro. HAC-MSC stably and efficiently produced therapeutic factors in vitro and, following intraperitoneal administration to DSS-induced colitis mice, showed continuous expression of the therapeutic factors over 5 days. Additionally, HAC-MSC-treated mice showed alleviation of the disease activity index score, reduced depth of injury, and promotion of intestinal growth compared with MSC-treated mice. Furthermore, effective treatment with HAC-MSC required only a fraction (1 %-10 %) of the number of cells needed for conventional MSC therapy. These findings highlight the outstanding potential of rej-MSCs carrying therapeutic factor-loaded HACs as a cell therapy tool with prospective applications in the treatment of UC and other diseases.
Collapse
Affiliation(s)
- Yayan Wang
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Genki Hichiwa
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Masaharu Hiratsuka
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Ryohei Ogihara
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Haochen Tu
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Yanze Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Mitsuo Oshimura
- Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Kazuma Tomizuka
- Laboratory of Bioengineering, Faculty of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Yasuhiro Kazuki
- Department of Chromosome Biomedical Engineering, Integrated Medical Sciences, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
2
|
Jafar H, Alqudah D, Rahmeh R, Al-Hattab D, Ahmed K, Rayyan R, Abusneinah A, Rasheed M, Rayyan Y, Awidi A. Safety and Potential Efficacy of Expanded Umbilical Cord-Derived Mesenchymal Stromal Cells in Luminal Ulcerative Colitis Patients. Stem Cells Dev 2024; 33:645-651. [PMID: 39446772 DOI: 10.1089/scd.2024.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by periods of flare-ups and remission. It is likely to be an autoimmune in origin, presenting persistent therapeutic challenges despite current therapies. This study aims to investigate the potential of umbilical cord mesenchymal stromal cells (UCMSCs) in treating ulcerative colitis (UC). This study is a prospective phase 1 pilot, open-label, single-arm, and single-center study. UCMSCs were cultured under current Good Manufacturing Practice (cGMP) conditions and intravenously administered to six patients with UC. Safety and efficacy were evaluated using the Mayo Score/Disease Activity Index. Among the six enrolled adult patients, five completed long-term follow-ups. All exhibited at diagnosis active UC confirmed through comprehensive assessment methods. Each patient received three injections intravenously 2 weeks apart with a dose of 100 million UCMSC each. No significant short-term or intermediate-term adverse events were detected post-UCMSC administration. Long-term follow-up at 12 and 24 months showed sustained safety and no adverse events. Notably, three out of five patients achieved a Mayo score of 0 for UC, maintained at both 12 and 24 months, indicating a highly significant response (P < 0.001). This study demonstrates the safety and potential efficacy of UCMSCs in active UC. However, larger trials are warranted to validate these preliminary findings and to establish the role of UCMSC therapy as an option for managing UC.
Collapse
Affiliation(s)
- Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Dana Alqudah
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Reem Rahmeh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Dana Al-Hattab
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- Electrical and Mathematical Sciences and Engineering Department, King Abdulla University of Science and Technology, Thuwal, ThuwalSaudi Arabia
| | - Khalid Ahmed
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Rama Rayyan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Awni Abusneinah
- School of Medicine, The University of Jordan, Amman, Jordan
- Internal Medicine Department, Jordan University Hospital, Amman, Jordan
| | - Mohammad Rasheed
- School of Medicine, The University of Jordan, Amman, Jordan
- Internal Medicine Department, Jordan University Hospital, Amman, Jordan
| | - Yaser Rayyan
- School of Medicine, The University of Jordan, Amman, Jordan
- Internal Medicine Department, Jordan University Hospital, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
- Internal Medicine Department, Jordan University Hospital, Amman, Jordan
| |
Collapse
|
3
|
Park JJ, Lee OH, Park JE, Cho J. Comparison of Cryopreservation Media for Mesenchymal Stem Cell Spheroids. Biopreserv Biobank 2024; 22:486-496. [PMID: 38011543 DOI: 10.1089/bio.2023.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Multipotent mesenchymal stromal/stem cell (MSC) spheroids generated in three-dimensional culture are of considerable interest as a novel therapeutic tool for regenerative medicine. However, the lack of reliable methods for storing MSC spheroids represents a significant roadblock to their successful use in the clinic. An ideal storage medium for MSC spheroids should function as both a vehicle for delivery and a cryoprotectant during storage of spheroids for use at a later time. In this study, we compared the outcomes after subjecting MSC spheroids to a freeze/thaw cycle in three Good Manufacturing Practices-grade cryopreservation media, CryoStor10 (CS10), Stem-Cellbanker (SCB), and Recovery Cell Culture Freezing Media (RFM) or conventional freezing medium (CM) (CM, Dulbecco's modified Eagle's medium containing 20% fetal bovine serum and 10% dimethyl sulfoxide) as a control for 2 months. The endpoints tested were viability, morphology, and expression of stem cell markers and other relevant genes. The results of LIVE/DEAD™ assays and annexin V/propidium iodide staining suggested that viability was relatively higher after one freeze/thaw cycle in CS10 or SCB than after freeze/thaw in CM or RFM. Furthermore, the relative "stemness" and expression of MSC markers were similar with or without freeze/thaw in CS10. Scanning electron microscopy also indicated that the surface morphology of MSC spheroids was well preserved after cryopreservation in CS10. Thus, even though it was tested for a short-term period, we suggest that CS10, which has been approved for clinical use by the U.S. Food and Drug Association, is a promising cryopreservation medium that would facilitate the development of MSC spheroids for future clinical use.
Collapse
Affiliation(s)
- Jin Ju Park
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ok-Hee Lee
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jie-Eun Park
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jaejin Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Jiang X, Luo X, Cai C, Bai Y, Ding H, Yue H, Li Y, Yang Z, Zhang H, Liang Y, Peng C, Huang H, Liu M, Li Z, Shi Y, Han S, Li X, Zhang B. Umbilical cord mesenchymal stem cells in ulcerative colitis treatment: efficacy and possible mechanisms. Stem Cell Res Ther 2024; 15:272. [PMID: 39218946 PMCID: PMC11368034 DOI: 10.1186/s13287-024-03878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) possess powerful immunomodulatory ability. This study aimed to assess the efficacy and safety of human umbilical cord-derived mesenchymal stem cells (UMSCs) in patients with ulcerative colitis (UC) and to explore the potential mechanisms. METHODS This prospective, self-controlled clinical study was conducted at Henan Provincial People's Hospital. Patients with moderate-to-severe active UC, unresponsive to traditional drugs were continuously enrolled from September 2018 to March 2023. UMSCs were administered intravenously monthly for two months at a cell dosage of 1 × 106 per kg. The primary outcome was a clinical response at 2 months. The levels of cytokines and progerin in the plasma of the patients were analyzed using enzyme-linked immunosorbent assay kits, and longitudinal data was analyzed using generalized estimation equation. RESULTS Forty-one patients were enrolled and received UMSC therapy. At 2 months, 73.2% (30/41) of patients achieved a clinical response, and 41.5% (17/41) achieved a clinical remission. At 6 months, 2 patients were lost to follow-up; the corresponding figures were 70.0% (25/41) and 34.2% (14/41), respectively. After UMSC therapy, the Mayo score, Mayo endoscopy score, mean and maximum values of Ulcerative Colitis Endoscopic Index of Severity and Nancy index were significantly reduced compared with baseline values. Additionally, the levels of progerin and inflammatory markers, such as interleukin (IL)-1β, IL-6, IL-8, IL-12, and IL-17 A decreased, while hemoglobin, albumin, and IL-10/IL-17 A ratio increased, particularly in the response group. Multiple stepwise logistic regression analysis showed age was an independent risk factor affecting efficacy (odds ratio, 0.875 (95% confidence interval (0.787, 0.972)); the area under the receiver operating characteristic curve for age was 0.79. No serious adverse events were observed during or after UMSC therapy. CONCLUSION UMSCs are safe and effective for patients with UC, with age being an independent risk factor affecting efficacy. Mechanistically, UMSC treatment may ameliorate cell senescence and suppress the secretion of pro-inflammatory cytokines. TRIAL REGISTRATION The study was retrospectively registered at www.chictr.org.cn/ (ChiCTR1900026035) on September 18, 2019.
Collapse
Affiliation(s)
- Xiaoke Jiang
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Xiaoying Luo
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
- Microbiome Laboratory, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Conghui Cai
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
- Microbiome Laboratory, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Yangqiu Bai
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Hui Ding
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Han Yue
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Yalong Li
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Zhiyu Yang
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
- Microbiome Laboratory, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Huimin Zhang
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Yuan Liang
- Department of Pulmonary and Critical Care Medicine, Xinyang Central Hospital, No.1, Siyi Road, Xinyang, Henan Province, 464000, China
| | - Cong Peng
- Department of Gastroenterology, Yunfu People's Hospital, No. 120, Huanshi East Road, Yunfu, Guangdong Province, 527300, China
| | - Huanrong Huang
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
- Microbiome Laboratory, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Min Liu
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
- Microbiome Laboratory, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Zhenjuan Li
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Yujie Shi
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
- Microbiome Laboratory, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
- Department of Pathology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Shuangyin Han
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China.
| | - Xiuling Li
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China.
| | - Bingyong Zhang
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China.
| |
Collapse
|
5
|
Hosseini-Asl SMK, Mehrabani G, Masoumi SJ. Key Focus Areas in Pouchitis Therapeutic Status: A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:472-486. [PMID: 39205822 PMCID: PMC11347594 DOI: 10.30476/ijms.2024.100782.3326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 03/08/2024] [Indexed: 09/04/2024]
Abstract
Pouchitis, as the most common complication after ileal pouch-anal anastomosis (IPAA), has an incidence from 7% to 46%. Pouchitis treatment still represents one of the biggest gaps of knowledge in the treatment of diseases. This review has focused on achievements and challenges in the treatment of pouchitis. A combined assessment of symptoms, endoscopic findings, histologic results, quick biomarkers, and fecal calprotectin test were determined to be valuable diagnostic criteria. Conventional therapy was described as a modification of bacterial flora, mainly with antibiotics and more recently with probiotics such as bifidobacteria, lactobacilli, and streptococci. Other therapeutic approaches such as anti-tumor necrosis factor, infliximab, adalimumab, vedolizumab, ustekinumab, tacrolimus, tofacitinib, thiopurines, corticosteroids, prolyl hydroxylase-containing enzymes, povidone-iodine, dextrose spray, fecal microbiota transplantation, herbal medicines, and leukocyte apheresis have been discussed. Changes in dietary components, and administration of complementary and alternative medicine, probiotics, and fecal transplantation in addition to conventional therapies were also shown to affect the outcome of disease. Due to the potential significant impairment in quality of life caused by pouchitis, it is essential to address the gaps in knowledge for both patients and physicians in its treatment. Therefore, well-designed and adequately powered studies should assess the optimal treatment for pouchitis.
Collapse
Affiliation(s)
| | - Golnoush Mehrabani
- School of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Seyed Jalil Masoumi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Cohort Study of SUMS Employees’ Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Mehrabani D, Sholehvar F, Yaghmaei P, Zare S, Razeghian-Jahromi I, Jalli R, Hamzavai M, Mehrabani G, Zamiri B, Karimi-Busheri F. The impact of acemannan, an extracted product from Aloe vera, on proliferation of dental pulp stem cells and healing of mandibular defects in rabbits. AMERICAN JOURNAL OF STEM CELLS 2024; 13:75-86. [PMID: 38765804 PMCID: PMC11101985 DOI: 10.62347/uafc3719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 03/25/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVES Dental pulp stem cells (DPSCs) were shown to play an important role in regenerative medicine including reconstruction of various bone lesions. This study determined the impact of acemannan, an extracted product from Aloe vera, on in vitro proliferation of DPSCs and in vivo healing of mandibular defects in rabbits. METHODS DPSCs were isolated and characterized. The growth kinetics of cells exposed to acemannan (8 mg/mL) and Hank's balanced salt solution (HBSS) were compared in vitro. Fifteen male rabbits were divided into 3 groups. Five animals were left as control group without any therapeutic intervention. Five rabbits were considered as experimental group 1 and received 20 µL of a cell suspension containing 106 DPSCs in the bone defect. Another 5 rabbits were regarded as experimental group 2 and were injected in the bone defect with 20 µL of a cell suspension containing 106 DPSCs treated with acemannan for 24 h. After 60 days, the animals were assessed by radiography and histologically. RESULTS The mesenchymal properties of DPSCs were confirmed. Population doubling time (PDT) of DPSCs treated with acemannan (29.8 h) was significantly shorter than cells were just exposed to HBSS (45.9 h). DPSCs together with acemannan could significantly accelerate the healing process and osteogenesis in mandibular defects. CONCLUSIONS As DPSCS showed an increased proliferation when treated with acemannan and accelerated the healing process in mandibular defects, these findings can open a new avenue in dentistry regenerative medicine when remedies of bone defects are targeted.
Collapse
Affiliation(s)
- Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical SciencesShiraz, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical SciencesShiraz, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical SciencesShiraz, Iran
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine, University of AlbertaEdmonton, AB, Canada
| | - Fatemeh Sholehvar
- Department of Biology, Faculty of Science, Zand Institute of Higher EducationShiraz, Iran
- Department of Biology, Science and Research Branch, Islamic Azad UniversityTehran, Iran
| | - Parichehr Yaghmaei
- Department of Biology, Faculty of Science, Zand Institute of Higher EducationShiraz, Iran
| | - Shahrokh Zare
- Stem Cell Technology Research Center, Shiraz University of Medical SciencesShiraz, Iran
| | | | - Reza Jalli
- Medical Imaging Research Center, Department of Radiology, Shiraz University of Medical SciencesShiraz, Iran
| | - Marzieh Hamzavai
- School of Dentistry, Shiraz University of Medical SciencesShiraz, Iran
- Dr. Hamzavi Dental Clinic CenterShiraz, Iran
| | - Golshid Mehrabani
- School of Dentistry, Shiraz University of Medical SciencesShiraz, Iran
- Henry M. Goldman School of Dental Medicine, Boston UniversityBoston, MA, USA
| | - Barbad Zamiri
- School of Dentistry, Shiraz University of Medical SciencesShiraz, Iran
| | - Feridoun Karimi-Busheri
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
7
|
Kiarashi M, Bayat H, Shahrtash SA, Etajuri EA, Khah MM, Al-Shaheri NA, Nasiri K, Esfahaniani M, Yasamineh S. Mesenchymal Stem Cell-based Scaffolds in Regenerative Medicine of Dental Diseases. Stem Cell Rev Rep 2024; 20:688-721. [PMID: 38308730 DOI: 10.1007/s12015-024-10687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Biomedical engineering breakthroughs and increased patient expectations and requests for more comprehensive care are propelling the field of regenerative dentistry forward at a fast pace. Stem cells (SCs), bioactive compounds, and scaffolds are the mainstays of tissue engineering, the backbone of regenerative dentistry. Repairing damaged teeth and gums is a significant scientific problem at present. Novel therapeutic approaches for tooth and periodontal healing have been inspired by tissue engineering based on mesenchymal stem cells (MSCs). Furthermore, as a component of the MSC secretome, extracellular vesicles (EVs) have been shown to contribute to periodontal tissue repair and regeneration. The scaffold, made of an artificial extracellular matrix (ECM), acts as a supporting structure for new cell development and tissue formation. To effectively promote cell development, a scaffold must be non-toxic, biodegradable, biologically compatible, low in immunogenicity, and safe. Due to its promising biological characteristics for cell regeneration, dental tissue engineering has recently received much attention for its use of natural or synthetic polymer scaffolds with excellent mechanical properties, such as small pore size and a high surface-to-volume ratio, as a matrix. Moreover, as a bioactive material for carrying MSC-EVs, the combined application of scaffolds and MSC-EVs has a better regenerative effect on dental diseases. In this paper, we discuss how MSCs and MSC-derived EV treatment may be used to regenerate damaged teeth, and we highlight the role of various scaffolds in this process.
Collapse
Affiliation(s)
- Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | | | - Enas Abdalla Etajuri
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Meysam Mohammadi Khah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran.
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
8
|
Cao X, Aierken A, Wang J, Guo X, Peng S, Jin Y. Protective Effect of Mesenchymal Stem Cell Active Factor Combined with Alhagi maurorum Extract on Ulcerative Colitis and the Underlying Mechanism. Int J Mol Sci 2024; 25:3653. [PMID: 38612465 PMCID: PMC11011388 DOI: 10.3390/ijms25073653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Ulcerative colitis (UC) is a relapsing and reoccurring inflammatory bowel disease. The treatment effect of Alhagi maurorum and stem cell extracts on UC remains unclear. The aim of the present study was to investigate the protective role of Alhagi maurorum combined with stem cell extract on the intestinal mucosal barrier in an intestinal inflammation mouse model. Sixty mice were randomly divided into a control group, model group, Alhagi group, MSC group, and MSC/Alhagi group. MSC and Alhagi extract were found to reduce the disease activity index (DAI) scores in mice with colitis, alleviate weight loss, improve intestinal inflammation in mice (p < 0.05), preserve the integrity of the ileal wall and increase the number of goblet cells and mucin in colon tissues. Little inflammatory cell infiltration was observed in the Alhagi, MSC, or MSC/Alhagi groups, and the degree of inflammation was significantly alleviated compared with that in the model group. The distribution of PCNA and TNF-alpha in the colonic tissues of the model group was more disperse than that in the normal group (p < 0.05), and the fluorescence intensity was lower. After MSC/Alhagi intervention, PCNA and TNF-alpha were distributed along the cellular membrane in the MSC/Alhagi group (p < 0.05). Compared with that in the normal control group, the intensity was slightly reduced, but it was still stronger than that in the model group. In conclusion, MSC/Alhagi can alleviate inflammatory reactions in mouse colonic tissue, possibly by strengthening the protective effect of the intestinal mucosal barrier.
Collapse
Affiliation(s)
| | | | | | | | - Sha Peng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.C.); (A.A.); (J.W.); (X.G.)
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.C.); (A.A.); (J.W.); (X.G.)
| |
Collapse
|
9
|
Signorini L, Marenzi G, Facente A, Marrelli B, Marano RM, Valletta A, Pacifici L, Gasparro R, Sammartino G, Severino M. Critical Overview on Pure Chitosan-based Scaffolds for Bone Tissue Engineering: Clinical insights in Dentistry. Int J Med Sci 2023; 20:1527-1534. [PMID: 37859701 PMCID: PMC10583188 DOI: 10.7150/ijms.87978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023] Open
Abstract
Bone Tissue Engineering (BTE) is a field of regenerative medicine continuously improving, thanks to the development of new biomaterials used as grafts or scaffolds for repairing bone defects. In recent years, chitosan, a natural biopolymer extracted mainly from crustacean shells, has demonstrated unique and desirable characteristics for BTE applications, such as: biocompatibility, biodegradability, and osteoconductive behavior. Additionally, the presence of numerous active amine groups in its chemical structure allows it to be easily modified. Data suggest that chitosan scaffolds are highly biomimetic, and show an interesting bioactivity, and antibacterial behavior. We have demonstrated, in a critical overview, how chitosan-based scaffolds may hold great interest for BTE applications in medical and dental applications. Future research should be focused on the use of chitosan-scaffolds combined with other biomaterials or bioactive molecules, to increase their overall regenerative potential, also in critical-sized defects. In conclusion, chitosan can be considered a promising biomaterial in BTE and clinical dentistry.
Collapse
Affiliation(s)
- Luca Signorini
- Saint Camillus University of Health Science, 00100 Rome, Italy
| | - Gaetano Marenzi
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Postgraduate School of Oral Surgery, University “Federico II” of Naples, via S. Pansini 5, 80131 Naples, Italy
| | - Anastasia Facente
- Tecnologica Research Institute - Marrelli Health, 88900 Crotone, Italy
| | | | - Rosa Maria Marano
- Tecnologica Research Institute - Marrelli Health, 88900 Crotone, Italy
| | - Alessandra Valletta
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Postgraduate School of Oral Surgery, University “Federico II” of Naples, via S. Pansini 5, 80131 Naples, Italy
| | - Luciano Pacifici
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, 00195 Rome, Italy
| | - Roberta Gasparro
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Postgraduate School of Oral Surgery, University “Federico II” of Naples, via S. Pansini 5, 80131 Naples, Italy
| | - Gilberto Sammartino
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Postgraduate School of Oral Surgery, University “Federico II” of Naples, via S. Pansini 5, 80131 Naples, Italy
| | - Marco Severino
- Department of Medicine and Surgery, University of Perugia, Italy
| |
Collapse
|
10
|
Wen Z, Kang L, Fu H, Zhu S, Ye X, Yang X, Zhang S, Hu J, Li X, Chen L, Hu Y, Yang X. Oral delivery of porous starch-loaded bilayer microgels for controlled drug delivery and treatment of ulcerative colitis. Carbohydr Polym 2023; 314:120887. [PMID: 37173037 DOI: 10.1016/j.carbpol.2023.120887] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023]
Abstract
We prepared one type of bilayer microgels for oral administration with three effects: pH responsiveness, time lag, and colon enzyme degradation. Combined with the dual biological effects of curcumin (Cur) for reducing inflammation and promoting repair of colonic mucosal injury, targeted colonic localization and release of Cur according to the colonic microenvironment were enhanced. The inner core, derived from guar gum and low-methoxyl pectin, afforded colonic adhesion and degradation behavior; the outer layer, modified by alginate and chitosan via polyelectrolyte interaction, achieved colonic localization. The porous starch (PS)-mediated strong adsorption allowed Cur loading in inner core to achieve a multifunctional delivery system. In vitro, the formulations exhibited good bioresponses at different pH conditions, potentially delaying Cur release in the upper gastrointestinal tract. In vivo, dextran sulfate sodium-induced ulcerative colitis (UC) symptoms were significantly alleviated after oral administration, accompanied by reduced levels of inflammatory factors. The formulations facilitated colonic delivery, allowing Cur accumulation in colonic tissue. Moreover, the formulations could alter gut microbiota composition in mice. During Cur delivery, each formulation increased species richness, decreased pathogenic bacterial content, and afforded synergistic effects against UC. These PS-loaded bilayer microgels, exhibiting excellent biocompatibility, multi-bioresponsiveness, and colon targeting, could be beneficial in UC therapy, allowing development into a novel oral formulation.
Collapse
Affiliation(s)
- Zhijie Wen
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Li Kang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Hudie Fu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Shengpeng Zhu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Xuexin Ye
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Xuedan Yang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Shangwen Zhang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Jie Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Xiaojun Li
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Lvyi Chen
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Yan Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China.
| | - Xinzhou Yang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China.
| |
Collapse
|
11
|
Ma Y, Li Y, Zhang S, Liu Z, Du L, Zhang X, Jia X, Yang Q. Study on the function of Huazhuo Jiedu Decoction in promoting the homing of bone marrow mesenchymal stem cells and contributing to the treatment of ulcerative colitis. Heliyon 2023; 9:e18802. [PMID: 37576246 PMCID: PMC10415889 DOI: 10.1016/j.heliyon.2023.e18802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Objective To study the function of Huazhuo Jiedu Decoction (HZJD) in promoting the homing of bone marrow mesenchymal stem cells (BMSCs) and contributing to the reconstruction of the intestinal mucosal barrier in ulcerative colitis. Methods Bone mesenchymal stem cells derived from mice were isolated and cultured, osteogenic and adipogenic assays to study the differentiation ability of BMSCs, and flow cytometry was used to detect the surface marker of the third generation cells. 30 mice were selected and divided into blank group, model group, HZJD group, BMSCs group, and HZJD combined with BMSCs group. Mouse colon length, body weight, and DAI score were used to assess efficacy. The levels of IL-6, IL-1β, TNF-α, and IFN-γ in serum were measured by ELISA. BMSCs transfected with GFP were used to mark the homing of BMSCs in mice. The BMSCs tagging protein CD90+/CD29+ was detected by immunofluorescence. H&E staining detects damage to the colon and the inflammatory response. The expression levels of claudin-2, claudin-4, occludin, and ZO-1 in colon tissues were detected by Western blot. Results After subculture, the cell grew with adherence. Flow cytometry showed that the cells were CD73+/CD90+/CD29+/CD45-/CD34-, which belonged to bone mesenchymal stem cells. ELISA showed that the treatment with HZJD and BMSCs suppressed the DSS-induced inflammatory response. BMSCs carrying GFP can be detected in intestinal tissues. Immunofluorescence showed that the HZJD combined with the BMSCs group had more BMSCs homing to the colonic tissue. The results of H&E and Western blot showed that DSS-induced intestinal mucosal damage in UC mice was repaired by HZJD and BMSCs, and the abnormal tight junction proteins claudin-2, claudin-4, occludin, and ZO-1 were normalized. Conclusion HZJD has a therapeutic effect on ulcerative colitis by promoting the migration of BMSCs to ulcers of the colon and contributing to the reconstruction of the intestinal mucosal barrier in ulcerative colitis.
Collapse
Affiliation(s)
- Yumei Ma
- Hebei Province Hospital of Chinese Medicine Research Center, Hebei, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei, China
| | - Yongzhang Li
- Hebei Province Hospital of Chinese Medicine Research Center, Hebei, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei, China
| | - Shuo Zhang
- Hebei Province Hospital of Chinese Medicine Research Center, Hebei, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei, China
| | - Zongxiu Liu
- Hebei Province Hospital of Chinese Medicine Research Center, Hebei, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei, China
| | - Lipeng Du
- Hebei Province Hospital of Chinese Medicine Research Center, Hebei, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei, China
| | - Xiaoyan Zhang
- Hebei Province Hospital of Chinese Medicine Research Center, Hebei, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei, China
| | - Xuemei Jia
- Hebei Province Hospital of Chinese Medicine Research Center, Hebei, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei, China
| | - Qian Yang
- Hebei Province Hospital of Chinese Medicine Research Center, Hebei, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei, China
| |
Collapse
|
12
|
Tatullo M, Rengo S, Sammartino G, Marenzi G. Unlocking the Potential of Dental-Derived Mesenchymal Stem Cells in Regenerative Medicine. J Clin Med 2023; 12:jcm12113804. [PMID: 37297998 DOI: 10.3390/jcm12113804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Over the past few decades, life expectancy has been increasing in several countries [...].
Collapse
Affiliation(s)
- Marco Tatullo
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, 70124 Bari, Italy
- Honorary Senior Clinical Lecturer, University of Dundee, Dundee DD1 4HR, UK
- MIRROR-Medical Institute for Regeneration and Repairing and Organ Replacement, Interdepartmental Center, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Sandro Rengo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Postgraduate School of Oral Surgery, University "Federico II" of Naples, 80131 Naples, Italy
| | - Gilberto Sammartino
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Postgraduate School of Oral Surgery, University "Federico II" of Naples, 80131 Naples, Italy
| | - Gaetano Marenzi
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Postgraduate School of Oral Surgery, University "Federico II" of Naples, 80131 Naples, Italy
| |
Collapse
|
13
|
Jalli R, Mehrabani D, Zare S, Saeedi Moghadam M, Jamhiri I, Manafi N, Mehrabani G, Ghabanchi J, Razeghian Jahromi I, Rasouli-Nia A, Karimi-Busheri F. Cell Proliferation, Viability, Differentiation, and Apoptosis of Iron Oxide Labeled Stem Cells Transfected with Lipofectamine Assessed by MRI. J Clin Med 2023; 12:jcm12062395. [PMID: 36983399 PMCID: PMC10054380 DOI: 10.3390/jcm12062395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
To assess in vitro and in vivo tracking of iron oxide labeled stem cells transfected by lipofectamine using magnetic resonance imaging (MRI), rat dental pulp stem cells (DPSCs) were characterized, labeled with iron oxide nanoparticles, and then transfected with lipofectamine to facilitate the internalization of these nanoparticles. Cell proliferation, viability, differentiation, and apoptosis were investigated. Prussian blue staining and MRI were used to trace transfected labeled cells. DPSCs were a morphologically spindle shape, adherent to culture plates, and positive for adipogenic and osteogenic inductions. They expressed CD73 and CD90 markers and lacked CD34 and CD45. Iron oxide labeling and transfection with lipofectamine in DPSCs had no toxic impact on viability, proliferation, and differentiation, and did not induce any apoptosis. In vitro and in vivo internalization of iron oxide nanoparticles within DPSCs were confirmed by Prussian blue staining and MRI tracking. Prussian blue staining and MRI tracking in the absence of any toxic effects on cell viability, proliferation, differentiation, and apoptosis were safe and accurate to track DPSCs labeled with iron oxide and transfected with lipofectamine. MRI can be a useful imaging modality when treatment outcome is targeted.
Collapse
Affiliation(s)
- Reza Jalli
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Science, Shiraz 71439-14693, Iran
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Shahrokh Zare
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Mahdi Saeedi Moghadam
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Iman Jamhiri
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Navid Manafi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan 71439-14693, Iran
| | - Golshid Mehrabani
- School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
- Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA 02215, USA
| | - Janan Ghabanchi
- School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Iman Razeghian Jahromi
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Aghdass Rasouli-Nia
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Feridoun Karimi-Busheri
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
14
|
Pretreating mesenchymal stem cells with IL-6 regulates the inflammatory response of DSS-induced ulcerative colitis in rats. Transpl Immunol 2023; 76:101765. [PMID: 36462558 DOI: 10.1016/j.trim.2022.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The immunomodulatory properties of mesenchymal stem cells (MSCs) have been broadly investigated in research on inflammatory diseases including ulcerative colitis. Treating MSCs with an inflammatory stimulus before transplantation is an adaptive strategy that helps MSCs survive in areas of inflammation and promotes the regulation of local immune responses. This study aimed to examine the effects of pretreating bone marrow MSCs (BMSCs) with Interleukin-6 (IL-6) on attenuation of dextran sulfate sodium (DSS)-induced ulcerative colitis in rats. Experimental ulcerative colitis was induced in Wistar rats by administering 2% DSS in their water for 7 days and normal water for the next 3 days. The experimental group received 1 × 106/0.4 ml of BMSCs that were treated with IL-6 for 24 h. Histological changes, colon length, and disease activity index were compared among groups, and the levels of TNF-α, IL-6, and IL-1β in homogenate supernatants were evaluated using ELISA. IL-6-pretreated BMSCs significantly reduced the colonic damage score. The colon length shortened by 6.1 ± 0.14 cm for the rats that received IL-6-pretreated BMSCs, whereas the control group rats' value was 3.8 ± 0.14 cm on the 14th day. The levels of pro-inflammatory cytokines were significantly decreased in the colons of the IL-6-pretreated BMSCs group compared with those of the control group (p < 0.05). This study revealed that IL-6-pretreated BMSCs ameliorated DSS-induced colitis via local anti-inflammatory action and suggested that IL-6-pretreated BMSCs are a promising therapeutic agent for ulcerative colitis treatment.
Collapse
|
15
|
Wu X, Mu Y, Yao J, Lin F, Wu D, Ma Z. Adipose-Derived Stem Cells From Patients With Ulcerative Colitis Exhibit Impaired Immunosuppressive Function. Front Cell Dev Biol 2022; 10:822772. [PMID: 35252190 PMCID: PMC8894714 DOI: 10.3389/fcell.2022.822772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are able to modulate the immune response and are used for treating ulcerative colitis (UC). However, it is possible that ADSCs from patients with inflammatory or autoimmune disorders may show defective immunosuppression. We investigated the use of ADSCs from UC patients for autologous cell treatment, specifically, ADSCs from healthy donors (H-ADSCs) and UC patients (P-ADSCs) in terms of various functions, including differentiation, proliferation, secretion, and immunosuppression. The efficacy of P-ADSCs for treating UC was examined in mouse models of acute or chronic colitis. Both H-ADSCs and P-ADSCs were similar in cell morphology, size, adipogenic differentiation capabilities, and cell surface markers. We found that P-ADSCs had lower proliferative capacity, cloning ability, and osteogenic and chondrogenic differentiation potential than H-ADSCs. P-ADSCs exhibited a diminished capacity to inhibit peripheral blood mononuclear cell proliferation, suppress CD25 and CD69 marker expression, decrease the production of inflammation-associated cytokines interferon-γ and tumor necrosis factor-α, and reduce their cytotoxic effect on A549 cells. When primed with inflammatory cytokines, P-ADSCs secreted lower levels of prostaglandin E2, indoleamine 2, 3-dioxygenase, and tumor necrosis factor-α–induced protein 6, which mediated their reduced immunopotency. Moreover, P-ADSCs exhibited weaker therapeutic effects than H-ADSCs, determined by disease activity, histology, myeloperoxidase activity, and body weight. These findings indicate that the immunosuppressive properties of ASCs are affected by donor metabolic characteristics. This study shows, for the first time, the presence of defective ADSC immunosuppression in UC, indicating that autologous transplantation of ADSCs may be inappropriate for patients with UC.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Department of Technology, Research Center for Hua-Da Precision Medicine of Inner Mongolia Autonomous Region, Hohhot, China
- Department of Interventional, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yongxu Mu
- Department of Interventional, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Jingyi Yao
- Experimental Center, Beijing Clinical Research Institute, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Fuhong Lin
- Department of Neurology, Affiliated Hospital of Chifeng College, Chifeng, China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Daocheng Wu, ; Zhijie Ma,
| | - Zhijie Ma
- Department of Pharmacy, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
- *Correspondence: Daocheng Wu, ; Zhijie Ma,
| |
Collapse
|
16
|
Bozkurt MF, Bhaya MN, Dibekoğlu C, Akat A, Ateş U, Erbaş O. Mesenchymal stem cells have ameliorative effect on the colitis model via Nrf2/HO-1 pathway. Acta Cir Bras 2022; 37:e370704. [PMID: 36228298 PMCID: PMC9553072 DOI: 10.1590/acb370704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose: To evaluate the ameliorative effect of mesenchymal stem cells (MSCs) on acetic acid colitis model via Nrf2/HO-1 pathway in rats. Methods: In this study, 30 rats were divided into three groups. Acute colitis was induced by rectal administration of 4% solution of acetic acid. MSCs were injected intraperitoneally in the treatment group. Results: Increased levels of tumor necrosis factor-α (TNF-α), pentraxin-3, and malondialdehyde (MDA) in colitis group were revealed biochemically. Increased level of TNF-α and decreased levels of Nrf2 and interleukin-10 (IL-10) were observed in rectum tissues. Increased fibrous tissue proliferation, vascularization and inflammatory cell infiltration were described in the colitis group. Significant improvement was observed in MSCs treated group histopathologically. Increased immunopositivity of TNF-α, vascular endothelial growth factor (VEGF) and CD68 markers was observed in the colitis group cells, and decreased level of this positivity was observed in MSCs treated group. Conclusions: Biochemical, histopathological and immunohistochemical results strongly support the ameliorative effect of MSCs against acetic induced colitis model via Nrf2/HO-1 pathway in rats.
Collapse
Affiliation(s)
| | | | | | - Ayberk Akat
- Stembio Cell and Tissue Technologies Inc, Turkey
| | - Utku Ateş
- Stembio Cell and Tissue Technologies Inc, Turkey
| | | |
Collapse
|
17
|
Administration of Nrf-2-Modified Hair-Follicle MSCs Ameliorates DSS-Induced Ulcerative Colitis in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9930187. [PMID: 34745427 PMCID: PMC8566060 DOI: 10.1155/2021/9930187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023]
Abstract
Ulcerative colitis (UC) is a common chronic nonspecific intestinal inflammation of unknown etiology associated with a low cure rate and a high relapse rate. Hair follicle mesenchymal stem cells (HF-MSCs) are a class of pluripotent stem cells that have differentiation potential and strong proliferation ability. Nuclear factor red system related factor (Nrf-2) is a key factor in the oxidative stress response. Dextran sulfate sodium- (DSS-) induced rat UC models closely mimic human UC in terms of symptoms and histological changes. Animals were divided into five groups, including a healthy group and UC model rats treated with normal saline, Nrf-2, HF-MSCs, or Nrf-2-expressing HF-MSC group. Based on the expression of intestinal stem cells, inflammatory factors, anti-inflammatory factors, and disease activity index scores, Nrf-2-expressing HF-MSCs had the most obvious therapeutic effect under the same treatment regimen. This study provided a new potential clinical treatment option for ulcerative colitis.
Collapse
|
18
|
Improving the Efficacy of Mesenchymal Stem/Stromal-Based Therapy for Treatment of Inflammatory Bowel Diseases. Biomedicines 2021; 9:biomedicines9111507. [PMID: 34829736 PMCID: PMC8615066 DOI: 10.3390/biomedicines9111507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) consisting of persistent and relapsing inflammatory processes of the intestinal mucosa are caused by genetic, environmental, and commensal microbiota factors. Despite recent advances in clinical treatments aiming to decrease inflammation, nearly 30% of patients treated with biologicals experienced drawbacks including loss of response, while others can develop severe side effects. Hence, novel effective treatments are highly needed. Mesenchymal stem/stromal cell (MSCs) therapy is an innovative therapeutic alternative currently under investigation for IBD. MSCs have the inherent capacity of modulating inflammatory immune responses as well as regenerating damaged tissues and are therefore a prime candidate to use as cell therapy in patients with IBD. At present, MSC-based therapy has been shown preclinically to modulate intestinal inflammation, whilst the safety of MSC-based therapy has been demonstrated in clinical trials. However, the successful results in preclinical studies have not been replicated in clinical trials. In this review, we will summarize the protocols used in preclinical and clinical trials and the novel approaches currently under investigation which aim to increase the beneficial effects of MSC-based therapy for IBD.
Collapse
|
19
|
Sendon-Lago J, Rio LGD, Eiro N, Diaz-Rodriguez P, Avila L, Gonzalez LO, Vizoso FJ, Perez-Fernandez R, Landin M. Tailored Hydrogels as Delivery Platforms for Conditioned Medium from Mesenchymal Stem Cells in a Model of Acute Colitis in Mice. Pharmaceutics 2021; 13:pharmaceutics13081127. [PMID: 34452089 PMCID: PMC8400526 DOI: 10.3390/pharmaceutics13081127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), is increasingly prevalent and current therapies are not completely effective. Mesenchymal stem cells are emerging as a promising therapeutic option. Here, the effect of local hydrogel application loaded with conditioned medium (CM) from human uterine cervical stem cells (hUCESC-CM) in an experimental acute colitis mice model has been evaluated. Colitis induction was carried out in C57BL/6 mice by dissolving dextran sulfate sodium (DSS) in drinking water for nine days. Ulcers were treated by rectal administration of either mesalazine (as positive control) or a mucoadhesive and thermosensitive hydrogel loaded with hUCESC-CM (H-hUCESC-CM). Body weight changes, colon length, and histopathological analysis were evaluated. In addition, pro-inflammatory TNF-α, IL-6, and IFN-γ mRNA levels were measured by qPCR. Treatment with H-hUCESC-CM inhibited body weight loss and colon shortening and induced a significant decrease in colon mucosa degeneration, as well as TNF-α, IFN-γ, and IL-6 mRNA levels. Results indicate that H-hUCESC-CM effectively alleviated DSS-induced colitis in mice, suggesting that H-hUCESC-CM may represent an attractive cell-free therapy for local treatment of IBD.
Collapse
Affiliation(s)
- Juan Sendon-Lago
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Department of Physiology, Universidade de Santiago de Compostela, Avda. de Barcelona 22, 15706 Santiago de Compostela, Spain; (J.S.-L.); (L.A.)
| | - Lorena Garcia-del Rio
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.G.-d.R.); (P.D.-R.)
| | - Noemi Eiro
- Research Unit, Hospital Fundación de Jove, Avda. Eduardo de Castro 161, 33290 Gijón, Spain; (N.E.); (L.O.G.)
| | - Patricia Diaz-Rodriguez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.G.-d.R.); (P.D.-R.)
| | - Leandro Avila
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Department of Physiology, Universidade de Santiago de Compostela, Avda. de Barcelona 22, 15706 Santiago de Compostela, Spain; (J.S.-L.); (L.A.)
| | - Luis O. Gonzalez
- Research Unit, Hospital Fundación de Jove, Avda. Eduardo de Castro 161, 33290 Gijón, Spain; (N.E.); (L.O.G.)
| | - Francisco J. Vizoso
- Research Unit, Hospital Fundación de Jove, Avda. Eduardo de Castro 161, 33290 Gijón, Spain; (N.E.); (L.O.G.)
- Correspondence: (F.J.V.); (R.P.-F.); (M.L.)
| | - Roman Perez-Fernandez
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Department of Physiology, Universidade de Santiago de Compostela, Avda. de Barcelona 22, 15706 Santiago de Compostela, Spain; (J.S.-L.); (L.A.)
- Correspondence: (F.J.V.); (R.P.-F.); (M.L.)
| | - Mariana Landin
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (L.G.-d.R.); (P.D.-R.)
- Correspondence: (F.J.V.); (R.P.-F.); (M.L.)
| |
Collapse
|
20
|
Effects of Allogeneic Mesenchymal Stem Cell Transplantation in Dogs with Inflammatory Bowel Disease Treated with and without Corticosteroids. Animals (Basel) 2021; 11:ani11072061. [PMID: 34359189 PMCID: PMC8300310 DOI: 10.3390/ani11072061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The conventional treatment of canine inflammatory bowel disease (IBD) includes corticosteroids, but they cannot contain the disease effectively in a percentage of patients. Still, their suppression can lead to a worsening. Moreover, the application of mesenchymal stem cells (MSCs) as an alternative has yielded promising results. However, they have been always infused after a washout period of any other immunosuppressants. Therefore, the feasibility and effects of the combination of stem cells and prednisone in IBD-dogs will be evaluated for the first time in this study. A single infusion of MSCs were administered to a group of IBD-dogs without any treatment and to another having prednisone treatment with poor response. The changes in two clinical indices, albumin and cobalamin concentration were assessed after one, three, six and 12 months. In both groups, an alleviation of the disease severity and an increase in albumin and cobalamin concentrations were observed at each visit. In parallel, the steroid dosage was gradually reduced until it was suppressed in all patients a year after the stem cell infusion. Therefore, the benefits of stem cell transplantation in dogs with inflammatory bowel disease receiving or not prednisone are significant and lasting. Abstract Mesenchymal stem cells have proven to be a promising alternative to conventional steroids to treat canine inflammatory bowel disease (IBD). However, their administration requires a washout period of immunosuppressive drugs that can lead to an exacerbation of the symptoms. Therefore, the feasibility and effects of the combined application of stem cells and prednisone in IBD-dogs without adequate response to corticosteroids was evaluated for the first time in this study over a long- term follow up. Two groups of dogs with IBD, one without treatment and another with prednisone treatment, received a single infusion of stem cells. The clinical indices, albumin and cobalamin were determined prior to the infusion and after one, three, six and 12 months. In both groups, all parameters significantly improved at each time point. In parallel, the steroid dosage was gradually reduced until it was suppressed in all patients a year after the cell therapy. Therefore, cell therapy can significantly and safely improve the disease condition in dogs with IBD receiving or not receiving prednisone. Furthermore, the steroid dosage can be significantly reduced or cancelled after the stem cell infusion. Their beneficial effects are stable over time and are long lasting.
Collapse
|
21
|
Zhang Q, Huang K, Lv J, Fang X, He J, Lv A, Sun X, Cheng L, Zhong Y, Wu S, Dai Y. Case Report: Human Umbilical Cord Mesenchymal Stem Cells as a Therapeutic Intervention for a Critically Ill COVID-19 Patient. Front Med (Lausanne) 2021; 8:691329. [PMID: 34307417 PMCID: PMC8298026 DOI: 10.3389/fmed.2021.691329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/31/2021] [Indexed: 01/22/2023] Open
Abstract
Here we report a critically ill patient who was cured of SARS-CoV-2 infection in Changsha, China. A 66-year-old Chinese woman, with no significant past medical history, developed severe pneumonia-like symptoms and later diagnosed as severe COVID-19 pneumonia. Within 2 months of hospitalization, the patient deteriorated to ARDS including pulmonary edema and SIRS with septic shock. When treatment schemes such as antibiotics plus corticosteroids showed diminished therapeutic value, hUCMSC therapy was compassionately prescribed under the patient's consent of participation. After treatment, there was significant improvement in disease inflammation-related indicators such as IL-4, IL-6, and IL-10. Eventually, it confirmed the therapeutic value that hUCMSCs could dampen the cytokine storm in the critically ill COVID-19 patient and modulated the NK cells. In the continued hUCMSC treatment, gratifying results were achieved in the follow-up of the patient. The data we acquired anticipate a significant therapeutic value of MSC treatment in severe and critically ill patients with COVID-19, while further studies are needed.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kang Huang
- Department of Critical Care Medicine, First Hospital of Changsha, Changsha, China
| | - Jianlei Lv
- Department of Critical Care Medicine, First Hospital of Changsha, Changsha, China
| | - Xiang Fang
- Department of Critical Care Medicine, First Hospital of Changsha, Changsha, China
| | - Jun He
- Department of Critical Care Medicine, First Hospital of Changsha, Changsha, China
| | - Ailian Lv
- Department of Critical Care Medicine, First Hospital of Changsha, Changsha, China
| | - Xuan Sun
- School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China.,National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Lamei Cheng
- School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China.,National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shangjie Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yao Dai
- Department of Critical Care Medicine, First Hospital of Changsha, Changsha, China
| |
Collapse
|
22
|
Kaboodkhani R, Mehrabani D, Karimi-Busheri F. Achievements and Challenges in Transplantation of Mesenchymal Stem Cells in Otorhinolaryngology. J Clin Med 2021; 10:2940. [PMID: 34209041 PMCID: PMC8267672 DOI: 10.3390/jcm10132940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Otorhinolaryngology enrolls head and neck surgery in various tissues such as ear, nose, and throat (ENT) that govern different activities such as hearing, breathing, smelling, production of vocal sounds, the balance, deglutition, facial animation, air filtration and humidification, and articulation during speech, while absence of these functions can lead to high morbidity and even mortality. Conventional therapies for head and neck damaged tissues include grafts, transplants, and artificial materials, but grafts have limited availability and cause morbidity in the donor site. To improve these limitations, regenerative medicine, as a novel and rapidly growing field, has opened a new therapeutic window in otorhinolaryngology by using cell transplantation to target the healing and replacement of injured tissues. There is a high risk of rejection and tumor formation for transplantation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs); mesenchymal stem cells (MSCs) lack these drawbacks. They have easy expansion and antiapoptotic properties with a wide range of healing and aesthetic functions that make them a novel candidate in otorhinolaryngology for craniofacial defects and diseases and hold immense promise for bone tissue healing; even the tissue sources and types of MSCs, the method of cell introduction and their preparation quality can influence the final outcome in the injured tissue. In this review, we demonstrated the anti-inflammatory and immunomodulatory properties of MSCs, from different sources, to be safely used for cell-based therapies in otorhinolaryngology, while their achievements and challenges have been described too.
Collapse
Affiliation(s)
- Reza Kaboodkhani
- Otorhinolaryngology Research Center, Department of Otorhinolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71936-36981, Iran;
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71987-74731, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
23
|
Tong Xie Yao Fang: A Classic Chinese Medicine Prescription with Potential for the Treatment of Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5548764. [PMID: 34211567 PMCID: PMC8208878 DOI: 10.1155/2021/5548764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/05/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
The prescription of Tong Xie Yao Fang (TXYF) was derived from the Yuan dynasty “Dan Brook Heart Law,” which was a representative formula for treating liver-spleen disharmony, diarrhea, and abdominal pain. The prescription is composed of four herbs for soothing the liver and strengthening the spleen. TXYF is reportedly capable of eliminating discomfort in ulcerative colitis (UC). This classic formula has been widely used for regulating gastrointestinal motor dysfunction and repairing colon mucosa. This review aims to provide current information on the pharmacology and clinical research of TXYF in the treatment of UC, and to critically appraise that information, in order to guide the future clinical use and experimental study of TXYF in the treatment of UC. We searched online databases including PubMed, CNKI, and Google Scholar for research published between 2010 and 2020 on TXYF and its efficacy in the treatment of UC. The findings indicated that TXYF has anti-inflammatory and immunomodulatory effects, regulates cell signal transduction, brain-gut axis, and intestinal flora in UC, and may promote targeting of bone mesenchymal stem cells (BMSCs) to the colonic mucosa and accelerate healing of the colonic mucosal barrier. In addition, the results of clinical studies showed that TXYF has good efficacy and few adverse reactions in the treatment of UC. Although it has achieved some success, the research is limited by deficiencies; there is a lack of unified standards for the construction of UC animal models and for administration regimen. In addition, the dosage of TXYF is not consistent and lacks pharmacological verification, and clinical trial data are not detailed or sufficiently rigorous. Therefore, a more rigorous, comprehensive, and in-depth study of TXYF in the treatment of UC is needed.
Collapse
|