1
|
Anselmi C, Mendes Soares IP, Mota RLM, Leite ML, Ribeiro RADO, Fernandes LDO, Bottino MC, de Souza Costa CA, Hebling J. Functionalization of PCL-Based Fiber Scaffolds with Different Sources of Calcium and Phosphate and Odontogenic Potential on Human Dental Pulp Cells. J Funct Biomater 2024; 15:97. [PMID: 38667554 PMCID: PMC11051160 DOI: 10.3390/jfb15040097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
This study investigated the incorporation of sources of calcium, phosphate, or both into electrospun scaffolds and evaluated their bioactivity on human dental pulp cells (HDPCs). Additionally, scaffolds incorporated with calcium hydroxide (CH) were characterized for degradation, calcium release, and odontogenic differentiation by HDPCs. Polycaprolactone (PCL) was electrospun with or without 0.5% w/v of calcium hydroxide (PCL + CH), nano-hydroxyapatite (PCL + nHA), or β-glycerophosphate (PCL + βGP). SEM/EDS analysis confirmed fibrillar morphology and particle incorporation. HDPCs were cultured on the scaffolds to assess cell viability, adhesion, spreading, and mineralized matrix formation. PCL + CH was also evaluated for gene expression of odontogenic markers (RT-qPCR). Data were submitted to ANOVA and Student's t-test (α = 5%). Added CH increased fiber diameter and interfibrillar spacing, whereas βGP decreased both. PCL + CH and PCL + nHA improved HDPC viability, adhesion, and proliferation. Mineralization was increased eightfold with PCL + CH. Scaffolds containing CH gradually degraded over six months, with calcium release within the first 140 days. CH incorporation upregulated DSPP and DMP1 expression after 7 and 14 days. In conclusion, CH- and nHA-laden PCL fiber scaffolds were cytocompatible and promoted HDPC adhesion, proliferation, and mineralized matrix deposition. PCL + CH scaffolds exhibit a slow degradation profile, providing sustained calcium release and stimulating HDPCs to upregulate odontogenesis marker genes.
Collapse
Affiliation(s)
- Caroline Anselmi
- Department of Morphology, Orthodontics, and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil; (C.A.); (R.L.M.M.)
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (I.P.M.S.); (M.C.B.)
| | - Igor Paulino Mendes Soares
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (I.P.M.S.); (M.C.B.)
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil;
| | - Rafaella Lara Maia Mota
- Department of Morphology, Orthodontics, and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil; (C.A.); (R.L.M.M.)
| | - Maria Luísa Leite
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia (UBC), Vancouver, BC V6T 1Z4, Canada;
| | - Rafael Antonio de Oliveira Ribeiro
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil;
| | - Lídia de Oliveira Fernandes
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil;
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (I.P.M.S.); (M.C.B.)
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil;
| | - Josimeri Hebling
- Department of Morphology, Orthodontics, and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil; (C.A.); (R.L.M.M.)
| |
Collapse
|
2
|
Millones-Gómez PA, Minchón-Medina CA, Rodríguez-Salazar DY, Delgado-Caramutti JGA, Valencia-Arias A. Factors associated with scientific production citations in dentistry: Zero-inflated negative binomial regression and hurdle modelling. F1000Res 2023; 12:1321. [PMID: 38973941 PMCID: PMC11226947 DOI: 10.12688/f1000research.141422.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 07/09/2024] Open
Abstract
Background: The global scientific literature in dentistry has shown important advances in the field, with major contributions ranging from the analysis of the basic epidemiological aspects of prevention to specialised results in the field of dental treatments. The present investigation aimed to analyse the current state of the scientific literature on dentistry hosted in the Web of Science database. Methods: The methodology included two phases in the analysis of articles and indexed reviews in all thematic areas. During the first phase, the following variables were analysed: scientific production by the publisher, the evolution of scientific output published by publishers, the factors associated with the impact of scientific production, and the modelling of the impact of scientific production on dentistry. During the second phase, associations, evolutions, and trends in the use of keywords in the scientific literature in dentistry were analysed. Results: The first phase shows that scientific production in dentistry will increase between 2010 and 2021, reaching 12,126 articles in 2021. Publishers such as Wiley and Elsevier stand out, but Quintessence Publishing has the most citations. Factors such as pages, authors, and references influence the number of citations. Phase 2 analyzes trends in the dental literature using the WoS database. Topics such as "dental education", "pediatric dentistry", and "pandemic" stand out. The intersection of technology and dentistry and the importance of evidence-based education are highlighted. Conclusions: In conclusion, the study shows that the most studied topics include the association of dental education and the curriculum, the association of pediatric dentistry with oral health, and dental care. The findings show that more recently emphasised topics also stand out, such as evidence-based dentistry, the COVID-19 pandemic, infection control, and endodontics, as well as the need for future research to expand current knowledge based on emerging topics in the scientific literature on dentistry.
Collapse
|
3
|
Maletin A, Ristić I, Nešić A, Knežević MJ, Koprivica DĐ, Cakić S, Ilić D, Milekić B, Puškar T, Pilić B. Development of Light-Polymerized Dental Composite Resin Reinforced with Electrospun Polyamide Layers. Polymers (Basel) 2023; 15:2598. [PMID: 37376244 DOI: 10.3390/polym15122598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
As the mechanical properties of resin-based dental composite materials are highly relevant in clinical practice, diverse strategies for their potential enhancement have been proposed in the extant literature, aiming to facilitate their reliable use in dental medicine. In this context, the focus is primarily given to the mechanical properties with the greatest influence on clinical success, i.e., the longevity of the filling in the patient's mouth and its ability to withstand very strong masticatory forces. Guided by these objectives, the goal of the present study was to ascertain whether the reinforcement of dental composite resins with electrospun polyamide (PA) nanofibers would improve the mechanical strength of dental restoration materials. For this purpose, light-cure dental composite resins were interspersed with one and two layers comprising PA nanofibers in order to investigate the influence of such reinforcement on the mechanical properties of the resulting hybrid resins. One set of the obtained samples was investigated as prepared, while another set was immersed in artificial saliva for 14 days and was subsequently subjected to the same set of analyses, namely Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). Findings yielded by the FTIR analysis confirmed the structure of the produced dental composite resin material. They also provided evidence that, while the presence of PA nanofibers did not influence the curing process, it strengthened the dental composite resin. Moreover, flexural strength measurements revealed that the inclusion of a 16 μm-thick PA nanolayer enabled the dental composite resin to withstand a load of 3.2 MPa. These findings were supported by the SEM results, which further indicated that immersing the resin in saline solution resulted in a more compact composite material structure. Finally, DSC results indicated that as-prepared as well as saline-treated reinforced samples had a lower glass transition temperature (Tg) compared to pure resin. Specifically, while pure resin had a Tg of 61.6 °C, each additional PA nanolayer decreased the Tg by about 2 °C, while the further reduction was obtained when samples were immersed in saline for 14 days. These results show that electrospinning is a facile method for producing different nanofibers that can be incorporated into resin-based dental composite materials to modify their mechanical properties. Moreover, while their inclusion strengthens the resin-based dental composite materials, it does not affect the course and outcome of the polymerization reaction, which is an important factor for their use in clinical practice.
Collapse
Affiliation(s)
| | - Ivan Ristić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Aleksandra Nešić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | | | | | - Suzana Cakić
- Faculty of Technology, University of Niš, 16000 Leskovac, Serbia
| | - Dušica Ilić
- Faculty of Electronic Engineering, University of Niš, 18000 Niš, Serbia
| | - Bojana Milekić
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Tatjana Puškar
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Branka Pilić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
4
|
Tiozzo-Lyon P, Andrade M, Leiva-Sabadini C, Morales J, Olivares A, Ravasio A, Aguayo S. Microfabrication approaches for oral research and clinical dentistry. FRONTIERS IN DENTAL MEDICINE 2023. [DOI: 10.3389/fdmed.2023.1120394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Currently, there is a variety of laboratory tools and strategies that have been developed to investigate in-vivo processes using in-vitro models. Amongst these, microfabrication represents a disruptive technology that is currently enabling next-generation biomedical research through the development of complex laboratory approaches (e.g., microfluidics), engineering of micrometer scale sensors and actuators (micropillars for traction force microscopy), and the creation of environments mimicking cell, tissue, and organ-specific contexts. Although microfabrication has been around for some time, its application in dental and oral research is still incipient. Nevertheless, in recent years multiple lines of research have emerged that use microfabrication-based approaches for the study of oral diseases and conditions with micro- and nano-scale sensitivities. Furthermore, many investigations are aiming to develop clinically relevant microfabrication-based applications for diagnostics, screening, and oral biomaterial manufacturing. Therefore, the objective of this review is to summarize the current application of microfabrication techniques in oral sciences, both in research and clinics, and to discuss possible future applications of these technologies for in-vitro studies and practical patient care. Initially, this review provides an overview of the most employed microfabrication methods utilized in biomedicine and dentistry. Subsequently, the use of micro- and nano-fabrication approaches in relevant fields of dental research such as endodontic and periodontal regeneration, biomaterials research, dental implantology, oral pathology, and biofilms was discussed. Finally, the current and future uses of microfabrication technology for clinical dentistry and how these approaches may soon be widely available in clinics for the diagnosis, prevention, and treatment of relevant pathologies are presented.
Collapse
|
5
|
Ali S, Fatima Alam B, Ur Rehman S, Ahmad S, Iqbal K, Farooq I. Global research on dental polymers and their application: A bibliometric analysis and knowledge mapping. Saudi Dent J 2023; 35:197-205. [PMID: 36942205 PMCID: PMC10024104 DOI: 10.1016/j.sdentj.2023.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Purpose The main objective of the current study was to evaluate the top-cited articles, countries, journals, authors, and papers published related to dental polymers and their application. Research articles published from 1962 to 2021 on dental polymers and their application were identified using the Scopus database. Methodology Bibliographical data related to the abstract, citations, keywords, and other relevant information was extracted using different combinations of keywords. Further evaluation and visualization of the selected data were performed with the help of various tools, including MS Excel, Microsoft Word, Google open refine, Biblioshiny, BibExcel, and VOS viewer. An initial search revealed 351 documents, of which 327 were chosen for further analysis. Results A substantial increase in the number of publications related to this domain was observed. The United States was the most prolific country, while the Aristotle University of Thessaloniki from Greece was identified as the leading institute. Conclusion This bibliometric analysis can guide researchers, funding agencies, industry, and institutions.
Collapse
Affiliation(s)
- Saqib Ali
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Beenish Fatima Alam
- Department of Oral Biology, Bahria University Medical and Dental College, Karachi, Pakistan
| | - Shafiq Ur Rehman
- Institute of Information Management, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmad
- Directorate of Library Affairs, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Corresponding author.
| | - Kefi Iqbal
- Department of Dental Materials Science, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Imran Farooq
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| |
Collapse
|