1
|
Baumer V, Isaacson N, Kanakamedala S, McGee D, Kaze I, Prawel D. Comparing ceramic Fischer-Koch-S and gyroid TPMS scaffolds for potential in bone tissue engineering. Front Bioeng Biotechnol 2024; 12:1410837. [PMID: 39193226 PMCID: PMC11347304 DOI: 10.3389/fbioe.2024.1410837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Triply Periodic Minimal Surfaces (TPMS), such as Gyroid, are widely accepted for bone tissue engineering due to their interconnected porous structures with tunable properties that enable high surface area to volume ratios, energy absorption, and relative strength. Among these topologies, the Fischer-Koch-S (FKS) has also been suggested for compact bone scaffolds, but few studies have investigated these structures beyond computer simulations. FKS scaffolds have been fabricated in metal and polymer, but to date none have been fabricated in a ceramic used in bone tissue engineering (BTE) scaffolds. This study is the first to fabricate ceramic FKS scaffolds and compare them with the more common Gyroid topology. Results showed that FKS scaffolds were 32% stronger, absorbed 49% more energy, and had only 11% lower permeability than Gyroid scaffolds when manufactured at high porosity (70%). Both FKS and Gyroid scaffolds displayed strength and permeability in the low range of trabecular long bones with high reliability (Weibull failure probability) in the normal direction. Fracture modes were further investigated to explicate the quasi-brittle failure exhibited by both scaffold topologies, exploring stress-strain relationships along with scanning electron microscopy for failure analysis. Considering the physical aspects of successful bone tissue engineering scaffolds, FKS scaffolds appear to be more promising for further study as bone regeneration scaffolds than Gyroid due to their higher compressive strength and reliability, at only a small penalty to permeability. In the context of BTE, FKS scaffolds may be better suited than Gyroids to applications where denser bone and strength is prioritized over permeability, as suggested by earlier simulation studies.
Collapse
Affiliation(s)
- Vail Baumer
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Nelson Isaacson
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Shashank Kanakamedala
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Duncan McGee
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, United States
| | - Isabella Kaze
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - David Prawel
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Periferakis A, Periferakis AT, Troumpata L, Dragosloveanu S, Timofticiuc IA, Georgatos-Garcia S, Scheau AE, Periferakis K, Caruntu A, Badarau IA, Scheau C, Caruntu C. Use of Biomaterials in 3D Printing as a Solution to Microbial Infections in Arthroplasty and Osseous Reconstruction. Biomimetics (Basel) 2024; 9:154. [PMID: 38534839 DOI: 10.3390/biomimetics9030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/28/2024] Open
Abstract
The incidence of microbial infections in orthopedic prosthetic surgeries is a perennial problem that increases morbidity and mortality, representing one of the major complications of such medical interventions. The emergence of novel technologies, especially 3D printing, represents a promising avenue of development for reducing the risk of such eventualities. There are already a host of biomaterials, suitable for 3D printing, that are being tested for antimicrobial properties when they are coated with bioactive compounds, such as antibiotics, or combined with hydrogels with antimicrobial and antioxidant properties, such as chitosan and metal nanoparticles, among others. The materials discussed in the context of this paper comprise beta-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP), hydroxyapatite, lithium disilicate glass, polyetheretherketone (PEEK), poly(propylene fumarate) (PPF), poly(trimethylene carbonate) (PTMC), and zirconia. While the recent research results are promising, further development is required to address the increasing antibiotic resistance exhibited by several common pathogens, the potential for fungal infections, and the potential toxicity of some metal nanoparticles. Other solutions, like the incorporation of phytochemicals, should also be explored. Incorporating artificial intelligence (AI) in the development of certain orthopedic implants and the potential use of AI against bacterial infections might represent viable solutions to these problems. Finally, there are some legal considerations associated with the use of biomaterials and the widespread use of 3D printing, which must be taken into account.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Iosif-Aliodor Timofticiuc
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
3
|
Ma J, Li Y, Mi Y, Gong Q, Zhang P, Meng B, Wang J, Wang J, Fan Y. Novel 3D printed TPMS scaffolds: microstructure, characteristics and applications in bone regeneration. J Tissue Eng 2024; 15:20417314241263689. [PMID: 39071895 PMCID: PMC11283664 DOI: 10.1177/20417314241263689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/07/2024] [Indexed: 07/30/2024] Open
Abstract
Bone defect disease seriously endangers human health and affects beauty and function. In the past five years, the three dimension (3D) printed radially graded triply periodic minimal surface (TPMS) porous scaffold has become a new solution for repairing bone defects. This review discusses 3D printing technologies and applications for TPMS scaffolds. To this end, the microstructural effects of 3D printed TPMS scaffolds on bone regeneration were reviewed and the structural characteristics of TPMS, which can promote bone regeneration, were introduced. Finally, the challenges and prospects of using TPMS scaffolds to treat bone defects were presented. This review is expected to stimulate the interest of bone tissue engineers in radially graded TPMS scaffolds and provide a reliable solution for the clinical treatment of personalised bone defects.
Collapse
Affiliation(s)
- Jiaqi Ma
- Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yumeng Li
- Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yujing Mi
- Department of Orthodontics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiannan Gong
- Shanxi Provincial People’s Hospital of Stomatology,Taiyuan,China
| | - Pengfei Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Bing Meng
- Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jue Wang
- Department of Prosthodontics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yawei Fan
- Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Timofticiuc IA, Călinescu O, Iftime A, Dragosloveanu S, Caruntu A, Scheau AE, Badarau IA, Didilescu AC, Caruntu C, Scheau C. Biomaterials Adapted to Vat Photopolymerization in 3D Printing: Characteristics and Medical Applications. J Funct Biomater 2023; 15:7. [PMID: 38248674 PMCID: PMC10816811 DOI: 10.3390/jfb15010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Along with the rapid and extensive advancements in the 3D printing field, a diverse range of uses for 3D printing have appeared in the spectrum of medical applications. Vat photopolymerization (VPP) stands out as one of the most extensively researched methods of 3D printing, with its main advantages being a high printing speed and the ability to produce high-resolution structures. A major challenge in using VPP 3D-printed materials in medicine is the general incompatibility of standard VPP resin mixtures with the requirements of biocompatibility and biofunctionality. Instead of developing completely new materials, an alternate approach to solving this problem involves adapting existing biomaterials. These materials are incompatible with VPP 3D printing in their pure form but can be adapted to the VPP chemistry and general process through the use of innovative mixtures and the addition of specific pre- and post-printing steps. This review's primary objective is to highlight biofunctional and biocompatible materials that have been adapted to VPP. We present and compare the suitability of these adapted materials to different medical applications and propose other biomaterials that could be further adapted to the VPP 3D printing process in order to fulfill patient-specific medical requirements.
Collapse
Affiliation(s)
- Iosif-Aliodor Timofticiuc
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Octavian Călinescu
- Department of Biophysics, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Adrian Iftime
- Department of Biophysics, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Andreea Cristiana Didilescu
- Department of Embryology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
5
|
da Silva TS, Horvath-Pereira BDO, da Silva-Júnior LN, Tenório Fireman JVB, Mattar M, Félix M, Buchaim RL, Carreira ACO, Miglino MA, Soares MM. Three-Dimensional Printing of Graphene Oxide/Poly-L-Lactic Acid Scaffolds Using Fischer-Koch Modeling. Polymers (Basel) 2023; 15:4213. [PMID: 37959893 PMCID: PMC10648465 DOI: 10.3390/polym15214213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Accurately printing customizable scaffolds is a challenging task because of the complexity of bone tissue composition, organization, and mechanical behavior. Graphene oxide (GO) and poly-L-lactic acid (PLLA) have drawn attention in the field of bone regeneration. However, as far as we know, the Fischer-Koch model of the GO/PLLA association for three-dimensional (3D) printing was not previously reported. This study characterizes the properties of GO/PLLA-printed scaffolds in order to achieve reproducibility of the trabecula, from virtual planning to the printed piece, as well as its response to a cell viability assay. Fourier-transform infrared and Raman spectroscopy were performed to evaluate the physicochemical properties of the nanocomposites. Cellular adhesion, proliferation, and growth on the nanocomposites were evaluated using scanning electron microscopy. Cell viability tests revealed no significant differences among different trabeculae and cell types, indicating that these nanocomposites were not cytotoxic. The Fischer Koch modeling yielded satisfactory results and can thus be used in studies directed at diverse medical applications, including bone tissue engineering and implants.
Collapse
Affiliation(s)
- Thamires Santos da Silva
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.d.S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (J.V.B.T.F.); (A.C.O.C.); (M.A.M.)
| | - Bianca de Oliveira Horvath-Pereira
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.d.S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (J.V.B.T.F.); (A.C.O.C.); (M.A.M.)
| | - Leandro Norberto da Silva-Júnior
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.d.S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (J.V.B.T.F.); (A.C.O.C.); (M.A.M.)
| | - João Víctor Barbosa Tenório Fireman
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.d.S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (J.V.B.T.F.); (A.C.O.C.); (M.A.M.)
| | - Michel Mattar
- Instituto de Reabilitação Oro Facial Osteogenesis S/S LTDA, Vila Olimpia 04532-060, SP, Brazil;
| | - Marcílio Félix
- Department of Animal Anatomy, University of Marilia, Mirante, Marília 17525-902, SP, Brazil;
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil;
| | - Ana Claudia Oliveira Carreira
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.d.S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (J.V.B.T.F.); (A.C.O.C.); (M.A.M.)
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Maria Angelica Miglino
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.d.S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (J.V.B.T.F.); (A.C.O.C.); (M.A.M.)
- Department of Animal Anatomy, University of Marilia, Mirante, Marília 17525-902, SP, Brazil;
| | - Marcelo Melo Soares
- Instituto de Reabilitação Oro Facial Osteogenesis S/S LTDA, Vila Olimpia 04532-060, SP, Brazil;
| |
Collapse
|