1
|
Patel J, Roy H, Chintamaneni PK, Patel R, Bohara R. Advanced Strategies in Enhancing the Hepatoprotective Efficacy of Natural Products: Integrating Nanotechnology, Genomics, and Mechanistic Insights. ACS Biomater Sci Eng 2025; 11:2528-2549. [PMID: 40211874 PMCID: PMC12076289 DOI: 10.1021/acsbiomaterials.5c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 05/13/2025]
Abstract
Liver disorders like hepatitis, cirrhosis, and hepatocellular carcinoma present a significant global health challenge, with high morbidity and mortality rates. Key factors contributing to liver disorders include inflammation, oxidative stress, and apoptosis. Due to their multifaceted action, natural compounds are promising candidates for mitigating liver-related disorders. Research studies revealed the antioxidant, anti-inflammatory, and detoxifying properties of natural compounds like curcumin, glycyrrhizin, and silymarin and their potential for liver detoxification and protection. With advancements in nanotechnology in drug delivery, natural compounds have improved stability and targetability, thereby enhancing their bioavailability and therapeutic efficiency. Further, recent advancements in genomics and an increased understanding of genetic factors influencing liver disorders and the hepatoprotective effects of natural agents made way for personalized medicine. Moreover, combinatorial therapy with natural products, synthetic drugs, or other natural agents has improved therapeutic outcomes. Even though clinical trials have confirmed the efficiency of natural compounds as hepatoprotective agents, several challenges remain unanswered in their translation to clinical practice. Therefore, it is logical to integrate natural compounds with nanotechnology and genomics to further advance hepatoprotection. This review gives an overview of the substantial progress made in the field of hepatoprotection, with specific emphasis on natural compounds and their integration with nanotechnology and genomics. This provides valuable insights for future research and innovations in developing therapeutic strategies for liver disorders.
Collapse
Affiliation(s)
- Jitendra Patel
- Datta
Meghe College of Pharmacy, Datta Meghe Institute
of Higher Education (Deemed to be University), Sawangi (Meghe), Wardha 442001, Maharashtra, India
| | - Harekrishna Roy
- Department
of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri 522503, Andhra Pradesh, India
| | - Pavan Kuma Chintamaneni
- Department
of Pharmaceutics, GITAM School of Pharmacy, GITAM Deemed to be University, Hyerabad 502329, Telangana, India
| | - Rukmani Patel
- Department
of Chemistry, Bharati University Durg, Durg 491001, Chhattisgarh, India
| | | |
Collapse
|
2
|
Li H, Liu J, Wang J, Li Z, Yu J, Huang X, Wan B, Meng X, Zhang X. Improving the Anti-Tumor Effect of Indoleamine 2,3-Dioxygenase Inhibitor CY1-4 by CY1-4 Nano-Skeleton Drug Delivery System. J Funct Biomater 2024; 15:372. [PMID: 39728172 DOI: 10.3390/jfb15120372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Background: CY1-4, 9-nitropyridine [2',3':4,5] pyrimido [1,2-α] indole -5,11- dione, is an indoleamine 2,3-dioxygenase (IDO) inhibitor and a poorly water-soluble substance. It is very important to increase the solubility of CY1-4 to improve its bioavailability and therapeutic effect. In this study, the mesoporous silica nano-skeleton carrier material Sylysia was selected as the carrier to load CY1-4, and then the CY1-4 nano-skeleton drug delivery system (MSNM@CY1-4) was prepared by coating the hydrophilic polymer material Hydroxypropyl methylcellulose (HPMC) and the lipid material Distearoylphosphatidyl-ethanolamine-poly(ethylene glycol)2000 (DSPE-PEG2000) to improve the anti-tumor effect of CY1-4. Methods: The solubility and dissolution of MSNM@CY1-4 were investigated, and its bioavailability, anti-tumor efficacy, IDO inhibitory ability and immune mechanism were evaluated in vivo. Results: CY1-4 was loaded in MSNM@CY1-4 in an amorphous form, and MSNM@CY1-4 could significantly improve the solubility (up to about 200 times) and dissolution rate of CY1-4. In vivo studies showed that the oral bioavailability of CY1-4 in 20 mg/kg MSNM@CY1-4 was about 23.9-fold more than that in 50 mg/kg CY1-4 suspension. In B16F10 tumor-bearing mice, MSNM@CY1-4 significantly inhibited tumor growth, prolonged survival time, significantly inhibited IDO activity in blood and tumor tissues, and reduced Tregs in tumor tissues and tumor-draining lymph nodes to improve anti-tumor efficacy. Conclusions: The nano-skeleton drug delivery system (MSNM@CY1-4) constructed in this study is a potential drug delivery platform for improving the anti-tumor effect of oral poorly water-soluble CY1-4.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junwei Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingru Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuoyue Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jianming Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xu Huang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bingchuan Wan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangbao Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China
| |
Collapse
|
3
|
Shelar A, Singh AV, Chaure N, Jagtap P, Chaudhari P, Shinde M, Nile SH, Chaskar M, Patil R. Nanoprimers in sustainable seed treatment: Molecular insights into abiotic-biotic stress tolerance mechanisms for enhancing germination and improved crop productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175118. [PMID: 39097019 DOI: 10.1016/j.scitotenv.2024.175118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Abiotic and biotic stresses during seed germination are typically managed with conventional agrochemicals, known to harm the environment and reduce crop yields. Seeking sustainable alternatives, nanotechnology-based agrochemicals leverage unique physical and chemical properties to boost seed health and alleviate stress during germination. Nanoprimers in seed priming treatment are advanced nanoscale materials designed to enhance seed germination, growth, and stress tolerance by delivering bioactive compounds and nutrients directly to seeds. Present review aims to explores the revolutionary potential of nanoprimers in sustainable seed treatment, focusing on their ability to enhance crop productivity by improving tolerance to abiotic and biotic stresses. Key objectives include understanding the mechanisms by which nanoprimers confer resistance to stresses such as drought, salinity, pests, and diseases, and assessing their impact on plant physiological and biochemical pathways. Key findings reveal that nanoprimers significantly enhance seedling vigor and stress resilience, leading to improved crop yields. These advancements are attributed to the precise delivery of nanomaterials that optimize plant growth conditions and activate stress tolerance mechanisms. However, the study also highlights the importance of comprehensive toxicity and risk assessments. Current review presents a novel contribution, highlighting both the advantages and potential risks of nanoprimers by offering a comprehensive overview of advancements in seed priming with metal and metal oxide nanomaterials, addressing a significant gap in the existing literature. By delivering advanced molecular insights, the study underscores the transformative potential of nanoprimers in fostering sustainable agricultural practices and responsibly meeting global food demands.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse, 10589 Berlin, Germany
| | - Nandu Chaure
- Department of Physics, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Pramod Jagtap
- Zonal Agricultural Research Station, Mahatma Phule Krishi Vidyapeeth, Ganeshkhind, Pune 411007, MH, India
| | - Pramod Chaudhari
- Zonal Agricultural Research Station, Mahatma Phule Krishi Vidyapeeth, Ganeshkhind, Pune 411007, MH, India
| | - Manish Shinde
- Centre for Materials for Electronics Technology (C-MET), Panchawati, Pune 411008, MH, India
| | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali 140306, PB, India.
| | - Manohar Chaskar
- Swami Ramanand Teerth Marathwada University, Nanded 431606 (MS) India.
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, MH, India.
| |
Collapse
|