1
|
Wang J, Dai D, Xie H, Li D, Xiong G, Zhang C. Biological Effects, Applications and Design Strategies of Medical Polyurethanes Modified by Nanomaterials. Int J Nanomedicine 2022; 17:6791-6819. [PMID: 36600880 PMCID: PMC9807071 DOI: 10.2147/ijn.s393207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
Polyurethane (PU) has wide application and popularity as medical apparatus due to its unique structural properties relationship. However, there are still some problems with medical PUs, such as a lack of functionality, insufficient long-term implantation safety, undesired stability, etc. With the rapid development of nanotechnology, the nanomodification of medical PU provides new solutions to these clinical problems. The introduction of nanomaterials could optimize the biocompatibility, antibacterial effect, mechanical strength, and degradation of PUs via blending or surface modification, therefore expanding the application range of medical PUs. This review summarizes the current applications of nano-modified medical PUs in diverse fields. Furthermore, the underlying mechanisms in efficiency optimization are analyzed in terms of the enhanced biological and mechanical properties critical for medical use. We also conclude the preparation schemes and related parameters of nano-modified medical PUs, with discussions about the limitations and prospects. This review indicates the current status of nano-modified medical PUs and contributes to inspiring novel and appropriate designing of PUs for desired clinical requirements.
Collapse
Affiliation(s)
- Jianrong Wang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Danni Dai
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Hanshu Xie
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Dan Li
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Gege Xiong
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| |
Collapse
|
2
|
Major R, Wilczek G, Więcek J, Gawlikowski M, Plutecka H, Kasperkiewicz K, Kot M, Pomorska M, Ostrowski R, Kopernik M. Hemocompatibile Thin Films Assessed under Blood Flow Shear Forces. Molecules 2022; 27:molecules27175696. [PMID: 36080463 PMCID: PMC9458224 DOI: 10.3390/molecules27175696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to minimize the risk of life-threatening thromboembolism in the ventricle through the use of a new biomimetic heart valve based on metal-polymer composites. Finite volume element simulations of blood adhesion to the material were carried out, encompassing radial flow and the cone and plane test together with determination of the effect of boundary conditions. Both tilt-disc and bicuspid valves do not have optimized blood flow due to their design based on rigid valve materials (leaflet made of pyrolytic carbon). The main objective was the development of materials with specific properties dedicated to contact with blood. Materials were evaluated by dynamic tests using blood, concentrates, and whole human blood. Hemostability tests under hydrodynamic conditions were related to the mechanical properties of thin-film materials obtained from tribological tests. The quality of the coatings was high enough to avoid damage to the coating even as they were exposed up to maximum loading. Analysis towards blood concentrates of the hydrogenated carbon sample and the nitrogen-doped hydrogenated carbon sample revealed that the interaction of the coating with erythrocytes was the strongest. Hemocompatibility evaluation under hydrodynamic conditions confirmed very good properties of the developed coatings.
Collapse
Affiliation(s)
- Roman Major
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland
| | - Grażyna Wilczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa St. 9, 40-007 Katowice, Poland
| | - Justyna Więcek
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland
| | - Maciej Gawlikowski
- Faculty of Biomedical Engineering, Department of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Roosevelt St. 40, 41-800 Zabrze, Poland
| | - Hanna Plutecka
- Division of Molecular Biology and Clinical Genetics, Faculty of Medicine, Jagiellonian University Medical College, Skawinska St. 8, 31-066 Cracow, Poland
| | - Katarzyna Kasperkiewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska St., 2840-032 Katowice, Poland
| | - Marcin Kot
- Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
| | - Małgorzata Pomorska
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Cracow, Poland
| | - Roman Ostrowski
- Institute of Optoelectronics, Military University of Technology, Gen. S. Kaliskiego St. 2, 00-908 Warsaw, Poland
| | - Magdalena Kopernik
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
- Correspondence: ; Tel.: +48-12-617-51-26
| |
Collapse
|
3
|
Overview on the Antimicrobial Activity and Biocompatibility of Sputtered Carbon-Based Coatings. Processes (Basel) 2021. [DOI: 10.3390/pr9081428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Due to their outstanding properties, carbon-based structures have received much attention from the scientific community. Their applications are diverse and include use in coatings on self-lubricating systems for anti-wear situations, thin films deposited on prosthetic elements, catalysis structures, or water remediation devices. From these applications, the ones that require the most careful testing and improvement are biomedical applications. The biocompatibility and antibacterial issues of medical devices remain a concern, as several prostheses still fail after several years of implantation and biofilm formation remains a real risk to the success of a device. Sputtered deposition prevents the introduction of hazardous chemical elements during the preparation of coatings, and this technique is environmentally friendly. In addition, the mechanical properties of C-based coatings are remarkable. In this paper, the latest advances in sputtering methods and biocompatibility and antibacterial action for diamond-based carbon (DLC)-based coatings are reviewed and the greater outlook is then discussed.
Collapse
|
4
|
Reczyńska K, Major R, Kopernik M, Pamuła E, Imbir G, Plutecka H, Bruckert F, Surmiak M. Surface modification of polyurethane with eptifibatide-loaded degradable nanoparticles reducing risk of blood coagulation. Colloids Surf B Biointerfaces 2021; 201:111624. [PMID: 33621749 DOI: 10.1016/j.colsurfb.2021.111624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 11/18/2022]
Abstract
The main purpose of the work was to develop a drug releasing coatings on the surface of medical devices exposed to blood flow, what should enable effective inhibition of blood coagulation process. As a part of the work, the process of encapsulating the anticoagulant drug eptifibatide (EPT) in poly(DL-lactic-co-glycolic acid) (PLGA) nanoparticles was developed. EPT encapsulation efficiency was 29.1 ± 2.1%, while the EPT loading percentage in the nanoparticles was 4.2 ± 0.3%. The PLGA nanoparticles were suspended in a polyanion solution (hyaluronic acid (HA)) and deposited on the surface-treated thermoplastic polyurethane (TPU) by a layer-by-layer method. As a polycation poly-L-lysine (PLL) was used. The influence of released EPT on the activation of the coagulation system was analyzed using dynamic blood tester. Performed experiments show an effective delivery of the drug to the bloodstream and low risk of platelets (membrane receptor) activation. The dynamic blood test process, including its physical phenomenon, was described using numerical methods, i.e. a finite volume cone-and-plate test model as well as non-Newtonian blood models. The values of shear stress and blood flow velocity under the fast-rotating cone were computed applying boundary conditions of cylinder wall imitating blood-nanomaterial interaction. Implementing boundary conditions as initial shear stress values of bottom cylinder wall resulted in the increase of shear stress in blood under rotating cone. The developed system combining drug eluting polymeric nanoparticles with the polyelectrolyte "layer-by-layer" coating can be easily introduced to medical implants of various shape, with the advantages of resorbable drug carriers allowing for local and controllable delivery of anti-thrombogenic drugs.
Collapse
Affiliation(s)
- Katarzyna Reczyńska
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Roman Major
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta st., 30-059 Cracow, Poland
| | - Magdalena Kopernik
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Kraków, Poland.
| | - Elżbieta Pamuła
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Gabriela Imbir
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta st., 30-059 Cracow, Poland
| | - Hanna Plutecka
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawińska st., 31-066 Cracow, Poland
| | - Franz Bruckert
- Laboratoire des Matériaux et du Génie Physique - UMR 5628, 3 parvis Louis Néel, Grenoble Cedex 1, France
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawińska st., 31-066 Cracow, Poland
| |
Collapse
|
5
|
Beshchasna N, Saqib M, Kraskiewicz H, Wasyluk Ł, Kuzmin O, Duta OC, Ficai D, Ghizdavet Z, Marin A, Ficai A, Sun Z, Pichugin VF, Opitz J, Andronescu E. Recent Advances in Manufacturing Innovative Stents. Pharmaceutics 2020; 12:E349. [PMID: 32294908 PMCID: PMC7238261 DOI: 10.3390/pharmaceutics12040349] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases are the most distributed cause of death worldwide. Stenting of arteries as a percutaneous transluminal angioplasty procedure became a promising minimally invasive therapy based on re-opening narrowed arteries by stent insertion. In order to improve and optimize this method, many research groups are focusing on designing new or improving existent stents. Since the beginning of the stent development in 1986, starting with bare-metal stents (BMS), these devices have been continuously enhanced by applying new materials, developing stent coatings based on inorganic and organic compounds including drugs, nanoparticles or biological components such as genes and cells, as well as adapting stent designs with different fabrication technologies. Drug eluting stents (DES) have been developed to overcome the main shortcomings of BMS or coated stents. Coatings are mainly applied to control biocompatibility, degradation rate, protein adsorption, and allow adequate endothelialization in order to ensure better clinical outcome of BMS, reducing restenosis and thrombosis. As coating materials (i) organic polymers: polyurethanes, poly(ε-caprolactone), styrene-b-isobutylene-b-styrene, polyhydroxybutyrates, poly(lactide-co-glycolide), and phosphoryl choline; (ii) biological components: vascular endothelial growth factor (VEGF) and anti-CD34 antibody and (iii) inorganic coatings: noble metals, wide class of oxides, nitrides, silicide and carbide, hydroxyapatite, diamond-like carbon, and others are used. DES were developed to reduce the tissue hyperplasia and in-stent restenosis utilizing antiproliferative substances like paclitaxel, limus (siro-, zotaro-, evero-, bio-, amphi-, tacro-limus), ABT-578, tyrphostin AGL-2043, genes, etc. The innovative solutions aim at overcoming the main limitations of the stent technology, such as in-stent restenosis and stent thrombosis, while maintaining the prime requirements on biocompatibility, biodegradability, and mechanical behavior. This paper provides an overview of the existing stent types, their functionality, materials, and manufacturing conditions demonstrating the still huge potential for the development of promising stent solutions.
Collapse
Affiliation(s)
- Natalia Beshchasna
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Str. 2, 01109 Dresden, Germany; (M.S.); (J.O.)
| | - Muhammad Saqib
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Str. 2, 01109 Dresden, Germany; (M.S.); (J.O.)
| | | | - Łukasz Wasyluk
- Balton Sp. z o.o. Modlińska 294, 03-152 Warsaw, Poland; (H.K.); (Ł.W.)
| | - Oleg Kuzmin
- VIP Technologies, Prospect Academicheskiy 8/2, 634055 Tomsk, Russia;
| | - Oana Cristina Duta
- Department of Science and Engineering of Oxide Materials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania; (O.C.D.); (D.F.); (Z.G.); (E.A.)
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania; (O.C.D.); (D.F.); (Z.G.); (E.A.)
| | - Zeno Ghizdavet
- Department of Science and Engineering of Oxide Materials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania; (O.C.D.); (D.F.); (Z.G.); (E.A.)
| | - Alexandru Marin
- Department of Hydraulics, Hydraulic Machinery and Environmental Engineering, Faculty of Power Engineering, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania; (O.C.D.); (D.F.); (Z.G.); (E.A.)
- Academy of Romanian Scientists, Spl. Independentei 54, 050094 Bucharest, Romania
| | - Zhilei Sun
- Research School of High-Energy Physics, Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia;
| | - Vladimir F. Pichugin
- Research School of High-Energy Physics, Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia;
| | - Joerg Opitz
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Str. 2, 01109 Dresden, Germany; (M.S.); (J.O.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania; (O.C.D.); (D.F.); (Z.G.); (E.A.)
- Academy of Romanian Scientists, Spl. Independentei 54, 050094 Bucharest, Romania
| |
Collapse
|
6
|
Mzyk A, Imbir G, Trembecka-Wójciga K, Lackner JM, Plutecka H, Jasek-Gajda E, Kawałko J, Major R. Rolling or Two-Stage Aggregation of Platelets on the Surface of Thin Ceramic Coatings under in Vitro Simulated Blood Flow Conditions. ACS Biomater Sci Eng 2020; 6:898-911. [PMID: 33464848 DOI: 10.1021/acsbiomaterials.9b01074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The process of modern cardiovascular device fabrication should always be associated with an investigation of how surface properties modulate its hemocompatibility through plasma protein adsorption as well as blood morphotic element activation and adhesion. In this work, a package of novel assays was used to correlate the physicochemical properties of thin ceramic coatings with hemocompatibility under dynamic conditions. Different variants of carbon-based films were prepared on polymer substrates using the magnetron sputtering method. The microstructural, mechanical, and surface physicochemical tests were performed to characterize the coatings, followed by investigation of whole human blood quality changes under blood flow conditions using the "Impact R" test, tubes' tester, and radial flow chamber assay. The applied methodology allowed us to determine that aggregate formation on hydrophobic and hydrophilic carbon-based coatings may follow one of the two different mechanisms dependent on the type and conformational changes of adsorbed blood plasma proteins.
Collapse
Affiliation(s)
- Aldona Mzyk
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Krakow, Poland
| | - Gabriela Imbir
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Krakow, Poland
| | - Klaudia Trembecka-Wójciga
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Krakow, Poland
| | - Juergen M Lackner
- Joanneum Research Forschungsges, Institute for Surface Technologies and Photonics, Functional Surfaces, 94 Leobner Street, A-8712 Niklasdorf, Austria
| | - Hanna Plutecka
- Department of Medicine, Jagiellonian University Medical College, 8 Skawinska Street, 31-066 Krakow, Poland
| | - Ewa Jasek-Gajda
- Department of Histology, Jagiellonian University Medical College, 7a Kopernika Street, 31-034 Krakow, Poland
| | - Jakub Kawałko
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Roman Major
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Krakow, Poland
| |
Collapse
|
7
|
Hong JK, Gao L, Singh J, Goh T, Ruhoff AM, Neto C, Waterhouse A. Evaluating medical device and material thrombosis under flow: current and emerging technologies. Biomater Sci 2020; 8:5824-5845. [DOI: 10.1039/d0bm01284j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights the importance of flow in medical device thrombosis and explores current and emerging technologies to evaluate dynamic biomaterial Thrombosis in vitro.
Collapse
Affiliation(s)
- Jun Ki Hong
- School of Chemistry
- The University of Sydney
- Australia
- School of Medical Sciences
- Faculty of Medicine and Health
| | - Lingzi Gao
- Heart Research Institute
- Newtown
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Jasneil Singh
- Heart Research Institute
- Newtown
- Australia
- The Charles Perkins Centre
- The University of Sydney
| | - Tiffany Goh
- Heart Research Institute
- Newtown
- Australia
- The Charles Perkins Centre
- The University of Sydney
| | - Alexander M. Ruhoff
- Heart Research Institute
- Newtown
- Australia
- The Charles Perkins Centre
- The University of Sydney
| | - Chiara Neto
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Anna Waterhouse
- School of Medical Sciences
- Faculty of Medicine and Health
- The University of Sydney
- Australia
- Heart Research Institute
| |
Collapse
|
8
|
Mukhopadhyay S, Veroniaina H, Chimombe T, Han L, Zhenghong W, Xiaole Q. Synthesis and compatibility evaluation of versatile mesoporous silica nanoparticles with red blood cells: an overview. RSC Adv 2019; 9:35566-35578. [PMID: 35528069 PMCID: PMC9074774 DOI: 10.1039/c9ra06127d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
Protean mesoporous silica nanoparticles are propitious candidates over decades for nanoscale drug delivery systems due to their unique characteristics, including changeable pore size, mesoporosity, high drug loading capacity and biodegradability.
Collapse
Affiliation(s)
- Subhankar Mukhopadhyay
- Key Laboratory of Modern Chinese Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | | | - Tadious Chimombe
- Key Laboratory of Modern Chinese Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Lidong Han
- Key Laboratory of Modern Chinese Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Wu Zhenghong
- Key Laboratory of Modern Chinese Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Qi Xiaole
- Key Laboratory of Modern Chinese Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| |
Collapse
|
9
|
Weber M, Steinle H, Golombek S, Hann L, Schlensak C, Wendel HP, Avci-Adali M. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Front Bioeng Biotechnol 2018; 6:99. [PMID: 30062094 PMCID: PMC6054932 DOI: 10.3389/fbioe.2018.00099] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
Hemocompatibility of blood-contacting biomaterials is one of the most important criteria for their successful in vivo applicability. Thus, extensive in vitro analyses according to ISO 10993-4 are required prior to clinical applications. In this review, we summarize essential aspects regarding the evaluation of the hemocompatibility of biomaterials and the required in vitro analyses for determining the blood compatibility. Static, agitated, or shear flow models are used to perform hemocompatibility studies. Before and after the incubation of the test material with fresh human blood, hemolysis, cell counts, and the activation of platelets, leukocytes, coagulation and complement system are analyzed. Furthermore, the surface of biomaterials are evaluated concerning attachment of blood cells, adsorption of proteins, and generation of thrombus and fibrin networks.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|