1
|
Bazzoli D, Mahmoodi N, Verrill TA, Overton TW, Mendes PM. Nanovibrational Stimulation of Escherichia coli Mitigates Surface Adhesion by Altering Cell Membrane Potential. ACS NANO 2024; 18:30786-30797. [PMID: 39436348 PMCID: PMC11544934 DOI: 10.1021/acsnano.4c11000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
Mechanical forces shape living matter from the macro- to the microscale as both eukaryotic and prokaryotic cells are force wielders and sensors. However, whereas such forces have been used to control mechanically dependent behaviors in mammalian cells, we lack the same level of understanding in bacteria. Surface adhesion, the initial stages of biofilm formation and surface biofouling, is a mechanically dependent process, which makes it an ideal target for mechano-control. In this study, we employed nanometer surface vibrations to mechanically stimulate bacteria and investigate their effect on adhesion. We discovered that vibrational stimulation at the nanoscale consistently reduces surface adhesion by altering cell membrane potential. Our findings identify a link between bacteria electrophysiology and surface adhesion and provide evidence that the nanometric mechanical "tickling" of bacteria can inhibit surface adhesion.
Collapse
Affiliation(s)
- Dario
G. Bazzoli
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Nasim Mahmoodi
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Terri-Anne Verrill
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Tim W. Overton
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Paula M. Mendes
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
2
|
Grobas I, Bazzoli DG, Asally M. Biofilm and swarming emergent behaviours controlled through the aid of biophysical understanding and tools. Biochem Soc Trans 2020; 48:2903-2913. [PMID: 33300966 PMCID: PMC7752047 DOI: 10.1042/bst20200972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Bacteria can organise themselves into communities in the forms of biofilms and swarms. Through chemical and physical interactions between cells, these communities exhibit emergent properties that individual cells alone do not have. While bacterial communities have been mainly studied in the context of biochemistry and molecular biology, recent years have seen rapid advancements in the biophysical understanding of emergent phenomena through physical interactions in biofilms and swarms. Moreover, new technologies to control bacterial emergent behaviours by physical means are emerging in synthetic biology. Such technologies are particularly promising for developing engineered living materials (ELM) and devices and controlling contamination and biofouling. In this minireview, we overview recent studies unveiling physical and mechanical cues that trigger and affect swarming and biofilm development. In particular, we focus on cell shape, motion and density as the key parameters for mechanical cell-cell interactions within a community. We then showcase recent studies that use physical stimuli for patterning bacterial communities, altering collective behaviours and preventing biofilm formation. Finally, we discuss the future potential extension of biophysical and bioengineering research on microbial communities through computational modelling and deeper investigation of mechano-electrophysiological coupling.
Collapse
Affiliation(s)
- Iago Grobas
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K
| | - Dario G. Bazzoli
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K
| | - Munehiro Asally
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, U.K
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
3
|
Fernandes MM, Carvalho EO, Lanceros-Mendez S. Electroactive Smart Materials: Novel Tools for Tailoring Bacteria Behavior and Fight Antimicrobial Resistance. Front Bioeng Biotechnol 2019; 7:277. [PMID: 31681752 PMCID: PMC6813912 DOI: 10.3389/fbioe.2019.00277] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2019] [Accepted: 10/02/2019] [Indexed: 11/13/2022] Open
Abstract
Despite being very simple organisms, bacteria possess an outstanding ability to adapt to different environments. Their long evolutionary history, being exposed to vastly different physicochemical surroundings, allowed them to detect and respond to a wide range of signals including biochemical, mechanical, electrical, and magnetic ones. Taking into consideration their adapting mechanisms, it is expected that novel materials able to provide bacteria with specific stimuli in a biomimetic context may tailor their behavior and make them suitable for specific applications in terms of anti-microbial and pro-microbial approaches. This review maintains that electroactive smart materials will be a future approach to be explored in microbiology to obtain novel strategies for fighting the emergence of live threatening antibiotic resistance.
Collapse
Affiliation(s)
- Margarida M. Fernandes
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- Centre of Physics, University of Minho, Braga, Portugal
| | - Estela O. Carvalho
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- Centre of Physics, University of Minho, Braga, Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
4
|
Carvalho EO, Fernandes MM, Padrao J, Nicolau A, Marqués-Marchán J, Asenjo A, Gama FM, Ribeiro C, Lanceros-Mendez S. Tailoring Bacteria Response by Piezoelectric Stimulation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27297-27305. [PMID: 31267736 DOI: 10.1021/acsami.9b05013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2023]
Abstract
Bacteria are simple organisms with a remarkable capacity for survival by adapting to different environments, which is a result of their long evolutionary history. Taking into consideration these adapting mechanisms, this work now investigates the effect of electrically active microenvironments on bacteria and on how this stimulation may trigger bacteria growth inhibition or proliferation. Electrical microenvironments are generated via stimulation of a piezoelectric polymer with a mechanical cue, thus developing an electrical response and a variation on the surface charge of the polymeric material. Specifically, Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli were grown overnight under static and dynamic conditions on piezoelectric poly(vinylidene) fluoride (PVDF) films to further study bacteria behavior under: (i) the effect of the material surface charge in static conditions, (ii) the mechanical effect, and (iii) the piezoelectric effect, the last two performed under dynamic conditions. Bacteria viability in planktonic and biofilm forms was measured, and the microorganism morphology was characterized. Whereas E. coli responds little to any of the stimuli application, S. epidermidis growth can be regulated through the material surface charge and by the applied frequency. Positively charged PVDF induces bacterial growth inhibition in planktonic and adhered cells in static conditions, whereas antifouling properties are obtained when a mechanical or piezoelectric effect at 4 Hz stimuli is applied. By increasing the stimuli to 40 Hz, however, the adhesion of bacteria is promoted. In conclusion, the behavior of certain bacteria species is tailored through the application of piezoelectric materials, which provide sufficient mechanoelectrical stimuli for growth or inhibition of bacteria, allowing for the design of suitable anti- and promicrobial strategies. Such strategies are only found in studies related to mammalian cells, whereas in bacterial cells this type of stimuli are still unknown. Thus, this work provides one of the first insights on the effect of piezoelectric stimuli on bacterial cells.
Collapse
Affiliation(s)
- Estela O Carvalho
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , Braga 4710-057 , Portugal
- Centre of Physics , University of Minho , Braga 4710-057 , Portugal
| | - Margarida M Fernandes
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , Braga 4710-057 , Portugal
- Centre of Physics , University of Minho , Braga 4710-057 , Portugal
| | - Jorge Padrao
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , Braga 4710-057 , Portugal
| | - Ana Nicolau
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , Braga 4710-057 , Portugal
| | | | - Agustina Asenjo
- Instituto de Ciencia de Materiales de Madrid , CSIC , Madrid 28049 , Spain
| | - Francisco M Gama
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , Braga 4710-057 , Portugal
| | - Clarisse Ribeiro
- Centre of Biological Engineering , University of Minho , Campus de Gualtar , Braga 4710-057 , Portugal
- Centre of Physics , University of Minho , Braga 4710-057 , Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures , UPV/EHU Science Park , Leioa 48940 , Spain
- Ikerbasque, Basque Foundation for Science , Bilbao 48013 , Spain
| |
Collapse
|
5
|
Yuan H, Xing K, Hsu HY. Trinity of Three-Dimensional (3D) Scaffold, Vibration, and 3D Printing on Cell Culture Application: A Systematic Review and Indicating Future Direction. Bioengineering (Basel) 2018; 5:E57. [PMID: 30041431 PMCID: PMC6164136 DOI: 10.3390/bioengineering5030057] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
Cell culture and cell scaffold engineering have previously developed in two directions. First can be 'static into dynamic', with proven effects that dynamic cultures have benefits over static ones. Researches in this direction have used several mechanical means, like external vibrators or shakers, to approximate the dynamic environments in real tissue, though such approaches could only partly address the issue. Second, can be '2D into 3D', that is, artificially created three-dimensional (3D) passive (also called 'static') scaffolds have been utilized for 3D cell culture, helping external culturing conditions mimic real tissue 3D environments in a better way as compared with traditional two-dimensional (2D) culturing. In terms of the fabrication of 3D scaffolds, 3D printing (3DP) has witnessed its high popularity in recent years with ascending applicability, and this tendency might continue to grow along with the rapid development in scaffold engineering. In this review, we first introduce cell culturing, then focus 3D cell culture scaffold, vibration stimulation for dynamic culture, and 3DP technologies fabricating 3D scaffold. Potential interconnection of these realms will be analyzed, as well as the limitations of current 3D scaffold and vibration mechanisms. In the recommendation part, further discussion on future scaffold engineering regarding 3D vibratory scaffold will be addressed, indicating 3DP as a positive bridging technology for future scaffold with integrated and localized vibratory functions.
Collapse
Affiliation(s)
- Haobo Yuan
- School of Engineering, University of South Australia; Mawson Lakes Blvd, Mawson Lakes 5095, Australia.
| | - Ke Xing
- School of Engineering, University of South Australia; Mawson Lakes Blvd, Mawson Lakes 5095, Australia.
| | - Hung-Yao Hsu
- School of Engineering, University of South Australia; Mawson Lakes Blvd, Mawson Lakes 5095, Australia.
| |
Collapse
|
6
|
|