1
|
Li Z, Li H, Ralescu AL, Dillman JR, Altaye M, Cecil KM, Parikh NA, He L. Joint self-supervised and supervised contrastive learning for multimodal MRI data: Towards predicting abnormal neurodevelopment. Artif Intell Med 2024; 157:102993. [PMID: 39369634 DOI: 10.1016/j.artmed.2024.102993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/04/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
The integration of different imaging modalities, such as structural, diffusion tensor, and functional magnetic resonance imaging, with deep learning models has yielded promising outcomes in discerning phenotypic characteristics and enhancing disease diagnosis. The development of such a technique hinges on the efficient fusion of heterogeneous multimodal features, which initially reside within distinct representation spaces. Naively fusing the multimodal features does not adequately capture the complementary information and could even produce redundancy. In this work, we present a novel joint self-supervised and supervised contrastive learning method to learn the robust latent feature representation from multimodal MRI data, allowing the projection of heterogeneous features into a shared common space, and thereby amalgamating both complementary and analogous information across various modalities and among similar subjects. We performed a comparative analysis between our proposed method and alternative deep multimodal learning approaches. Through extensive experiments on two independent datasets, the results demonstrated that our method is significantly superior to several other deep multimodal learning methods in predicting abnormal neurodevelopment. Our method has the capability to facilitate computer-aided diagnosis within clinical practice, harnessing the power of multimodal data. The source code of the proposed model is publicly accessible on GitHub: https://github.com/leonzyzy/Contrastive-Network.
Collapse
Affiliation(s)
- Zhiyuan Li
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Hailong Li
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Anca L Ralescu
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Jonathan R Dillman
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mekibib Altaye
- Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kim M Cecil
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nehal A Parikh
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lili He
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Zhu Y, Cong S, Zhang Q, Huang Z, Yao X, Cheng Y, Liang D, Hu Z, Shao D. Multimodal radiomics-based methods using deep learning for prediction of brain metastasis in non-small cell lung cancer with 18F-FDG PET/CT images. Biomed Phys Eng Express 2024; 10:065011. [PMID: 39214122 DOI: 10.1088/2057-1976/ad7595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Objective. Approximately 57% of non-small cell lung cancer (NSCLC) patients face a 20% risk of brain metastases (BMs). The delivery of drugs to the central nervous system is challenging because of the blood-brain barrier, leading to a relatively poor prognosis for patients with BMs. Therefore, early detection and treatment of BMs are highly important for improving patient prognosis. This study aimed to investigate the feasibility of a multimodal radiomics-based method using 3D neural networks trained on18F-FDG PET/CT images to predict BMs in NSCLC patients.Approach. We included 226 NSCLC patients who underwent18F-FDG PET/CT scans of areas, including the lung and brain, prior to EGFR-TKI therapy. Moreover, clinical data (age, sex, stage, etc) were collected and analyzed. Shallow lung features and deep lung-brain features were extracted using PyRadiomics and 3D neural networks, respectively. A support vector machine (SVM) was used to predict BMs. The receiver operating characteristic (ROC) curve and F1 score were used to assess BM prediction performance.Main result. The combination of shallow lung and shallow-deep lung-brain features demonstrated superior predictive performance (AUC = 0.96 ± 0.01). Shallow-deep lung-brain features exhibited strong significance (P < 0.001) and potential predictive performance (coefficient > 0.8). Moreover, BM prediction by age was significant (P < 0.05).Significance. Our approach enables the quantitative assessment of medical images and a deeper understanding of both superficial and deep tumor characteristics. This noninvasive method has the potential to identify BM-related features with statistical significance, thereby aiding in the development of targeted treatment plans for NSCLC patients.
Collapse
Affiliation(s)
- Yuan Zhu
- Lauterbur Rese Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, People's Republic of China
| | - Shan Cong
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, People's Republic of China
| | - Qiyang Zhang
- Lauterbur Rese Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Zhenxing Huang
- Lauterbur Rese Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xiaohui Yao
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, People's Republic of China
| | - You Cheng
- The Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Dong Liang
- Lauterbur Rese Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Zhanli Hu
- Lauterbur Rese Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Dan Shao
- The Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
3
|
Schielen SJC, Pilmeyer J, Aldenkamp AP, Zinger S. The diagnosis of ASD with MRI: a systematic review and meta-analysis. Transl Psychiatry 2024; 14:318. [PMID: 39095368 PMCID: PMC11297045 DOI: 10.1038/s41398-024-03024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
While diagnosing autism spectrum disorder (ASD) based on an objective test is desired, the current diagnostic practice involves observation-based criteria. This study is a systematic review and meta-analysis of studies that aim to diagnose ASD using magnetic resonance imaging (MRI). The main objective is to describe the state of the art of diagnosing ASD using MRI in terms of performance metrics and interpretation. Furthermore, subgroups, including different MRI modalities and statistical heterogeneity, are analyzed. Studies that dichotomously diagnose individuals with ASD and healthy controls by analyses progressing from magnetic resonance imaging obtained in a resting state were systematically selected by two independent reviewers. Studies were sought on Web of Science and PubMed, which were last accessed on February 24, 2023. The included studies were assessed on quality and risk of bias using the revised Quality Assessment of Diagnostic Accuracy Studies tool. A bivariate random-effects model was used for syntheses. One hundred and thirty-four studies were included comprising 159 eligible experiments. Despite the overlap in the studied samples, an estimated 4982 unique participants consisting of 2439 individuals with ASD and 2543 healthy controls were included. The pooled summary estimates of diagnostic performance are 76.0% sensitivity (95% CI 74.1-77.8), 75.7% specificity (95% CI 74.0-77.4), and an area under curve of 0.823, but uncertainty in the study assessments limits confidence. The main limitations are heterogeneity and uncertainty about the generalization of diagnostic performance. Therefore, comparisons between subgroups were considered inappropriate. Despite the current limitations, methods progressing from MRI approach the diagnostic performance needed for clinical practice. The state of the art has obstacles but shows potential for future clinical application.
Collapse
Affiliation(s)
- Sjir J C Schielen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Jesper Pilmeyer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Albert P Aldenkamp
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Behavioral Sciences, Epilepsy Center Kempenhaeghe, Heeze, the Netherlands
| | - Svitlana Zinger
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
4
|
Alharthi AG, Alzahrani SM. Do it the transformer way: A comprehensive review of brain and vision transformers for autism spectrum disorder diagnosis and classification. Comput Biol Med 2023; 167:107667. [PMID: 37939407 DOI: 10.1016/j.compbiomed.2023.107667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Autism spectrum disorder (ASD) is a condition observed in children who display abnormal patterns of interaction, behavior, and communication with others. Despite extensive research efforts, the underlying causes of this neurodevelopmental disorder and its biomarkers remain unknown. However, advancements in artificial intelligence and machine learning have improved clinicians' ability to diagnose ASD. This review paper investigates various MRI modalities to identify distinct features that characterize individuals with ASD compared to typical control subjects. The review then moves on to explore deep learning models for ASD diagnosis, including convolutional neural networks (CNNs), autoencoders, graph convolutions, attention networks, and other models. CNNs and their variations are particularly effective due to their capacity to learn structured image representations and identify reliable biomarkers for brain disorders. Computer vision transformers often employ CNN architectures with transfer learning techniques like fine-tuning and layer freezing to enhance image classification performance, surpassing traditional machine learning models. This review paper contributes in three main ways. Firstly, it provides a comprehensive overview of a recommended architecture for using vision transformers in the systematic ASD diagnostic process. To this end, the paper investigates various pre-trained vision architectures such as VGG, ResNet, Inception, InceptionResNet, DenseNet, and Swin models that were fine-tuned for ASD diagnosis and classification. Secondly, it discusses the vision transformers of 2020th like BiT, ViT, MobileViT, and ConvNeXt, and applying transfer learning methods in relation to their prospective practicality in ASD classification. Thirdly, it explores brain transformers that are pre-trained on medically rich data and MRI neuroimaging datasets. The paper recommends a systematic architecture for ASD diagnosis using brain transformers. It also reviews recently developed brain transformer-based models, such as METAFormer, Com-BrainTF, Brain Network, ST-Transformer, STCAL, BolT, and BrainFormer, discussing their deep transfer learning architectures and results in ASD detection. Additionally, the paper summarizes and discusses brain-related transformers for various brain disorders, such as MSGTN, STAGIN, and MedTransformer, in relation to their potential usefulness in ASD. The study suggests that developing specialized transformer-based models, following the success of natural language processing (NLP), can offer new directions for image classification problems in ASD brain biomarkers learning and classification. By incorporating the attention mechanism, treating MRI modalities as sequence prediction tasks trained on brain disorder classification problems, and fine-tuned on ASD datasets, brain transformers can show a great promise in ASD diagnosis.
Collapse
Affiliation(s)
- Asrar G Alharthi
- Department of Computer Science, College of Computers and Information Technology, Taif University, Saudi Arabia.
| | - Salha M Alzahrani
- Department of Computer Science, College of Computers and Information Technology, Taif University, Saudi Arabia
| |
Collapse
|
5
|
Alharthi AG, Alzahrani SM. Multi-Slice Generation sMRI and fMRI for Autism Spectrum Disorder Diagnosis Using 3D-CNN and Vision Transformers. Brain Sci 2023; 13:1578. [PMID: 38002538 PMCID: PMC10670036 DOI: 10.3390/brainsci13111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Researchers have explored various potential indicators of ASD, including changes in brain structure and activity, genetics, and immune system abnormalities, but no definitive indicator has been found yet. Therefore, this study aims to investigate ASD indicators using two types of magnetic resonance images (MRI), structural (sMRI) and functional (fMRI), and to address the issue of limited data availability. Transfer learning is a valuable technique when working with limited data, as it utilizes knowledge gained from a pre-trained model in a domain with abundant data. This study proposed the use of four vision transformers namely ConvNeXT, MobileNet, Swin, and ViT using sMRI modalities. The study also investigated the use of a 3D-CNN model with sMRI and fMRI modalities. Our experiments involved different methods of generating data and extracting slices from raw 3D sMRI and 4D fMRI scans along the axial, coronal, and sagittal brain planes. To evaluate our methods, we utilized a standard neuroimaging dataset called NYU from the ABIDE repository to classify ASD subjects from typical control subjects. The performance of our models was evaluated against several baselines including studies that implemented VGG and ResNet transfer learning models. Our experimental results validate the effectiveness of the proposed multi-slice generation with the 3D-CNN and transfer learning methods as they achieved state-of-the-art results. In particular, results from 50-middle slices from the fMRI and 3D-CNN showed a profound promise in ASD classifiability as it obtained a maximum accuracy of 0.8710 and F1-score of 0.8261 when using the mean of 4D images across the axial, coronal, and sagittal. Additionally, the use of the whole slices in fMRI except the beginnings and the ends of brain views helped to reduce irrelevant information and showed good performance of 0.8387 accuracy and 0.7727 F1-score. Lastly, the transfer learning with the ConvNeXt model achieved results higher than other transformers when using 50-middle slices sMRI along the axial, coronal, and sagittal planes.
Collapse
Affiliation(s)
| | - Salha M. Alzahrani
- Department of Computer Science, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia;
| |
Collapse
|
6
|
Lakhan A, Mohammed MA, Abdulkareem KH, Hamouda H, Alyahya S. Autism Spectrum Disorder detection framework for children based on federated learning integrated CNN-LSTM. Comput Biol Med 2023; 166:107539. [PMID: 37804778 DOI: 10.1016/j.compbiomed.2023.107539] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/03/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
The incidence of Autism Spectrum Disorder (ASD) among children, attributed to genetics and environmental factors, has been increasing daily. ASD is a non-curable neurodevelopmental disorder that affects children's communication, behavior, social interaction, and learning skills. While machine learning has been employed for ASD detection in children, existing ASD frameworks offer limited services to monitor and improve the health of ASD patients. This paper presents a complex and efficient ASD framework with comprehensive services to enhance the results of existing ASD frameworks. Our proposed approach is the Federated Learning-enabled CNN-LSTM (FCNN-LSTM) scheme, designed for ASD detection in children using multimodal datasets. The ASD framework is built in a distributed computing environment where different ASD laboratories are connected to the central hospital. The FCNN-LSTM scheme enables local laboratories to train and validate different datasets, including Ages and Stages Questionnaires (ASQ), Facial Communication and Symbolic Behavior Scales (CSBS) Dataset, Parents Evaluate Developmental Status (PEDS), Modified Checklist for Autism in Toddlers (M-CHAT), and Screening Tool for Autism in Toddlers and Children (STAT) datasets, on different computing laboratories. To ensure the security of patient data, we have implemented a security mechanism based on advanced standard encryption (AES) within the federated learning environment. This mechanism allows all laboratories to offload and download data securely. We integrate all trained datasets into the aggregated nodes and make the final decision for ASD patients based on the decision process tree. Additionally, we have designed various Internet of Things (IoT) applications to improve the efficiency of ASD patients and achieve more optimal learning results. Simulation results demonstrate that our proposed framework achieves an ASD detection accuracy of approximately 99% compared to all existing ASD frameworks.
Collapse
Affiliation(s)
- Abdullah Lakhan
- Department of Cybersecurity and Computer Science, Dawood University of Engineering and Technology, Karachi City 74800, Sindh, Pakistan.
| | - Mazin Abed Mohammed
- Department of Artificial Intelligence, College of Computer Science and Information Technology, University of Anbar, Anbar 31001, Iraq.
| | | | - Hassen Hamouda
- College of Science and Humanities at Alghat, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Saleh Alyahya
- Department of Electrical Engineering, College of Engineering and Information Technology, Onaizah Colleges, Onaizah 2053, Saudi Arabia.
| |
Collapse
|
7
|
Qureshi MS, Qureshi MB, Asghar J, Alam F, Aljarbouh A. Prediction and Analysis of Autism Spectrum Disorder Using Machine Learning Techniques. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:4853800. [PMID: 37469788 PMCID: PMC10352530 DOI: 10.1155/2023/4853800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/05/2022] [Accepted: 04/05/2022] [Indexed: 07/21/2023]
Abstract
Autism spectrum disorder is a severe, life-prolonged neurodevelopmental disease typified by disabilities that are chronic or limited in the development of socio-communication skills, thinking abilities, activities, and behavior. In children aged two to three years, the symptoms of autism are more evident and easier to recognize. The major part of the existing literature on autism spectrum disorder is covered by a prediction system based on traditional machine learning algorithms such as support vector machine, random forest, multiple layer perceptron, naive Bayes, convolution neural network, and deep neural network. The proposed models are validated by using performance measurement parameters such as accuracy, precision, and recall. In this research, autism spectrum disorder prediction has been investigated and compared using common parameters such as application type, simulation method, comparison methodology, and input data. The key purpose of this study is to give a centralized framework to use for researchers working on autism spectrum disorder prediction. The best results were obtained by using the random forest algorithm as it performs better than other traditional machine learning algorithms. The achieved accuracy is 89.23%. The workflow representations of the investigated frameworks assist readers in comprehending the fundamental workings and architectures of these frameworks.
Collapse
Affiliation(s)
- Muhammad Shuaib Qureshi
- Department of Computer Science, School of Arts and Sciences, University of Central Asia, Naryn, Kyrgyzstan
| | | | - Junaid Asghar
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University Dera Ismail Khan, KPK, Pakistan
| | - Fatima Alam
- Department of Computer Science, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad 44000, Pakistan
| | - Ayman Aljarbouh
- Department of Computer Science, School of Arts and Sciences, University of Central Asia, Naryn, Kyrgyzstan
| |
Collapse
|
8
|
Wadhera T, Bedi J, Sharma S. Autism spectrum disorder prediction using bidirectional stacked gated recurrent unit with time-distributor wrapper: an EEG study. Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
9
|
Horien C, Floris DL, Greene AS, Noble S, Rolison M, Tejavibulya L, O'Connor D, McPartland JC, Scheinost D, Chawarska K, Lake EMR, Constable RT. Functional Connectome-Based Predictive Modeling in Autism. Biol Psychiatry 2022; 92:626-642. [PMID: 35690495 PMCID: PMC10948028 DOI: 10.1016/j.biopsych.2022.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 01/08/2023]
Abstract
Autism is a heterogeneous neurodevelopmental condition, and functional magnetic resonance imaging-based studies have helped advance our understanding of its effects on brain network activity. We review how predictive modeling, using measures of functional connectivity and symptoms, has helped reveal key insights into this condition. We discuss how different prediction frameworks can further our understanding of the brain-based features that underlie complex autism symptomatology and consider how predictive models may be used in clinical settings. Throughout, we highlight aspects of study interpretation, such as data decay and sampling biases, that require consideration within the context of this condition. We close by suggesting exciting future directions for predictive modeling in autism.
Collapse
Affiliation(s)
- Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut; MD-PhD Program, Yale School of Medicine, New Haven, Connecticut.
| | - Dorothea L Floris
- Methods of Plasticity Research, Department of Psychology, University of Zürich, Zurich, Switzerland; Donders Center for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut; MD-PhD Program, Yale School of Medicine, New Haven, Connecticut
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Max Rolison
- Yale Child Study Center, New Haven, Connecticut
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut
| | - David O'Connor
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - James C McPartland
- Department of Psychology, Yale University, New Haven, Connecticut; Yale Child Study Center, New Haven, Connecticut
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Statistics and Data Science, Yale University, New Haven, Connecticut; Yale Child Study Center, New Haven, Connecticut
| | - Katarzyna Chawarska
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut; Department of Statistics and Data Science, Yale University, New Haven, Connecticut; Yale Child Study Center, New Haven, Connecticut
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut; Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| |
Collapse
|
10
|
Moridian P, Ghassemi N, Jafari M, Salloum-Asfar S, Sadeghi D, Khodatars M, Shoeibi A, Khosravi A, Ling SH, Subasi A, Alizadehsani R, Gorriz JM, Abdulla SA, Acharya UR. Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: A review. Front Mol Neurosci 2022; 15:999605. [PMID: 36267703 PMCID: PMC9577321 DOI: 10.3389/fnmol.2022.999605] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the Supplementary Appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We suggest future approaches to detecting ASDs using AI techniques and MRI neuroimaging.
Collapse
Affiliation(s)
- Parisa Moridian
- Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Navid Ghassemi
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahboobeh Jafari
- Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran
| | - Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Delaram Sadeghi
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Marjane Khodatars
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Afshin Shoeibi
- Data Science and Computational Intelligence Institute, University of Granada, Granada, Spain
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia
| | - Sai Ho Ling
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, NSW, Australia
| | - Abdulhamit Subasi
- Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Computer Science, College of Engineering, Effat University, Jeddah, Saudi Arabia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia
| | - Juan M. Gorriz
- Data Science and Computational Intelligence Institute, University of Granada, Granada, Spain
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - U. Rajendra Acharya
- Ngee Ann Polytechnic, Singapore, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore
| |
Collapse
|
11
|
Qin C, Zhu X, Ye L, Peng L, Li L, Wang J, Ma J, Liu T. Autism detection based on multiple time scale model. J Neural Eng 2022; 19. [PMID: 35985297 DOI: 10.1088/1741-2552/ac8b39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/19/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Current autism clinical detection relies on doctor observation and filling of clinical scales, which is subjective and easily misdetection. Existing autism research of functional magnetic resonance imaging (fMRI) over-compresses the time-scale information and has poor generalization ability. This study extracts multiple time scale brain features of fMRI, providing objective detection. APPROACH We first use least absolute shrinkage and selection operator (LASSO) to build a sparse network and extract features with a time scale of 1. Then, we use hidden markov model (HMM) to extract features that describe the dynamic changes of the brain, with a time scale of 2. Additionally, to analyze the features of the potential network activity of autism from a higher time scale, we use long short-term memory (LSTM) to construct an auto-encoder to re-encode the original data and extract the features of the at a higher time scale, with a time scale of T, and T is the time length of fMRI. We use Recursive Feature Elimination (RFE) for feature selection for three different time scale features, merge them into multiple time scale features, and finally use one-dimensional convolution neural network (1DCNN) for classification. MAIN RESULTS Compared with well-established models, our method has achieved better results. The accuracy of our method is 76.0%, and the area under the roc curve is 0.83, tested on the completely independent data, so our method has better generalization ability. SIGNIFICANCE This research analyzes fMRI sequences from multiple time scale to detect autism, and it also provides a new framework and research ideas for subsequent fMRI analysis.
Collapse
Affiliation(s)
- Chi Qin
- Xi'an Jiaotong University, School of Life Science and Technology, Xi'an, 710049, CHINA
| | - Xiaofei Zhu
- Tangdu Hospital Fourth Military Medical University, Department of Radiology, Xi'an, Shaanxi, 710038, CHINA
| | - Lin Ye
- Xi'an Jiaotong University, School of Life Science and Technology, Xi'an, 710049, CHINA
| | - Li Peng
- Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Department of Radiology, Wuhan, Hubei, 430030, CHINA
| | - Long Li
- Xi'an Jiaotong University, School of Life Science and Technology, Xi'an, 710049, CHINA
| | - Jue Wang
- Xi'an Jiaotong University, School of Life Science and Technology, Xi'an, 710049, CHINA
| | - Jin Ma
- Air Force Medical University, School of Aerospace Medicine, Xi'an, 710032, CHINA
| | - Tian Liu
- Xi'an Jiaotong University, School of Life Science and Technology, Xi'an, 710049, CHINA
| |
Collapse
|
12
|
A review of methods for classification and recognition of ASD using fMRI data. J Neurosci Methods 2021; 368:109456. [PMID: 34954253 DOI: 10.1016/j.jneumeth.2021.109456] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) is a severe neuropsychiatric brain disorder that affects people's social communication and daily routine. Considering the phenomenon of abnormal brain function in the early stage of ASD, functional magnetic resonance imaging (fMRI), an excellent technique that measures brain activity, provides effective data to study ASD. Therefore, based on fMRI data of ASD cases, this paper reviews the progress of machine learning methods and deep learning methods in ASD classification and recognition in the last three years and summarizes the different research results of fMRI data extracted from the Autism Brain Imaging Data Exchange (ABIDE). From the classification performance of classification and recognition of ASD by the two methods, comparing the important classification indicators such as accuracy, sensitivity and specificity, the current challenges and future development trends are reported, which can provide an essential reference for the early diagnosis of ASD cases.
Collapse
|
13
|
Khodatars M, Shoeibi A, Sadeghi D, Ghaasemi N, Jafari M, Moridian P, Khadem A, Alizadehsani R, Zare A, Kong Y, Khosravi A, Nahavandi S, Hussain S, Acharya UR, Berk M. Deep learning for neuroimaging-based diagnosis and rehabilitation of Autism Spectrum Disorder: A review. Comput Biol Med 2021; 139:104949. [PMID: 34737139 DOI: 10.1016/j.compbiomed.2021.104949] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/02/2021] [Accepted: 10/13/2021] [Indexed: 01/23/2023]
Abstract
Accurate diagnosis of Autism Spectrum Disorder (ASD) followed by effective rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) techniques can aid physicians to apply automatic diagnosis and rehabilitation procedures. AI techniques comprise traditional machine learning (ML) approaches and deep learning (DL) techniques. Conventional ML methods employ various feature extraction and classification techniques, but in DL, the process of feature extraction and classification is accomplished intelligently and integrally. DL methods for diagnosis of ASD have been focused on neuroimaging-based approaches. Neuroimaging techniques are non-invasive disease markers potentially useful for ASD diagnosis. Structural and functional neuroimaging techniques provide physicians substantial information about the structure (anatomy and structural connectivity) and function (activity and functional connectivity) of the brain. Due to the intricate structure and function of the brain, proposing optimum procedures for ASD diagnosis with neuroimaging data without exploiting powerful AI techniques like DL may be challenging. In this paper, studies conducted with the aid of DL networks to distinguish ASD are investigated. Rehabilitation tools provided for supporting ASD patients utilizing DL networks are also assessed. Finally, we will present important challenges in the automated detection and rehabilitation of ASD and propose some future works.
Collapse
Affiliation(s)
- Marjane Khodatars
- Dept. of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Afshin Shoeibi
- Faculty of Electrical Engineering, FPGA Lab, K. N. Toosi University of Technology, Tehran, Iran; Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Delaram Sadeghi
- Dept. of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Navid Ghaasemi
- Faculty of Electrical Engineering, FPGA Lab, K. N. Toosi University of Technology, Tehran, Iran; Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahboobeh Jafari
- Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran
| | - Parisa Moridian
- Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Khadem
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria, 3217, Australia
| | - Assef Zare
- Faculty of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran
| | - Yinan Kong
- School of Engineering, Macquarie University, Sydney, 2109, Australia
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria, 3217, Australia
| | - Saeid Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria, 3217, Australia
| | | | - U Rajendra Acharya
- Ngee Ann Polytechnic, Singapore, 599489, Singapore; Dept. of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan; Dept. of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
14
|
Liu M, Li B, Hu D. Autism Spectrum Disorder Studies Using fMRI Data and Machine Learning: A Review. Front Neurosci 2021; 15:697870. [PMID: 34602966 PMCID: PMC8480393 DOI: 10.3389/fnins.2021.697870] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
Machine learning methods have been frequently applied in the field of cognitive neuroscience in the last decade. A great deal of attention has been attracted to introduce machine learning methods to study the autism spectrum disorder (ASD) in order to find out its neurophysiological underpinnings. In this paper, we presented a comprehensive review about the previous studies since 2011, which applied machine learning methods to analyze the functional magnetic resonance imaging (fMRI) data of autistic individuals and the typical controls (TCs). The all-round process was covered, including feature construction from raw fMRI data, feature selection methods, machine learning methods, factors for high classification accuracy, and critical conclusions. Applying different machine learning methods and fMRI data acquired from different sites, classification accuracies were obtained ranging from 48.3% up to 97%, and informative brain regions and networks were located. Through thorough analysis, high classification accuracies were found to usually occur in the studies which involved task-based fMRI data, single dataset for some selection principle, effective feature selection methods, or advanced machine learning methods. Advanced deep learning together with the multi-site Autism Brain Imaging Data Exchange (ABIDE) dataset became research trends especially in the recent 4 years. In the future, advanced feature selection and machine learning methods combined with multi-site dataset or easily operated task-based fMRI data may appear to have the potentiality to serve as a promising diagnostic tool for ASD.
Collapse
Affiliation(s)
- Meijie Liu
- Engineering Training Center, Xi'an University of Science and Technology, Xi'an, China.,College of Missile Engineering, Rocket Force University of Engineering, Xi'an, China
| | - Baojuan Li
- School of Biomedical Engineering, Air Force Medical University, Xi'an, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| |
Collapse
|
15
|
Zhang Y, Gorriz JM, Dong Z. Deep Learning in Medical Image Analysis. J Imaging 2021; 7:74. [PMID: 34460524 PMCID: PMC8321330 DOI: 10.3390/jimaging7040074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 11/19/2022] Open
Abstract
Over recent years, deep learning (DL) has established itself as a powerful tool across a broad spectrum of domains in imaging-e [...].
Collapse
Affiliation(s)
- Yudong Zhang
- School of Informatics, University of Leicester, Leicester LE1 7RH, UK
| | - Juan Manuel Gorriz
- Department of Signal Theory, Telematics and Communications, University of Granada, 18071 Granada, Spain;
| | - Zhengchao Dong
- Molecular Imaging and Neuropathology Division, Columbia University and New York State Psychiatric Institute, New York, NY 10032, USA;
| |
Collapse
|
16
|
A Deep Learning Approach to Predict Autism Spectrum Disorder Using Multisite Resting-State fMRI. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083636] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Autism spectrum disorder (ASD) is a complex and degenerative neuro-developmental disorder. Most of the existing methods utilize functional magnetic resonance imaging (fMRI) to detect ASD with a very limited dataset which provides high accuracy but results in poor generalization. To overcome this limitation and to enhance the performance of the automated autism diagnosis model, in this paper, we propose an ASD detection model using functional connectivity features of resting-state fMRI data. Our proposed model utilizes two commonly used brain atlases, Craddock 200 (CC200) and Automated Anatomical Labelling (AAL), and two rarely used atlases Bootstrap Analysis of Stable Clusters (BASC) and Power. A deep neural network (DNN) classifier is used to perform the classification task. Simulation results indicate that the proposed model outperforms state-of-the-art methods in terms of accuracy. The mean accuracy of the proposed model was 88%, whereas the mean accuracy of the state-of-the-art methods ranged from 67% to 85%. The sensitivity, F1-score, and area under receiver operating characteristic curve (AUC) score of the proposed model were 90%, 87%, and 96%, respectively. Comparative analysis on various scoring strategies show the superiority of BASC atlas over other aforementioned atlases in classifying ASD and control.
Collapse
|